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1 Introduction

Let π be an irreducible, automorphic, cuspidal representation of SO4n+2k(A), where A is
the Adele ring of a number field F , and SO4n+2k is the split special orthogonal group in 4n+2k
variables, regarded as an algebraic group over F . Langlands functoriality predicts that π lifts
to an irreducible automorphic representation Π of GL4n+2k(A). Moreover, Π is expected to lie
inside a parabolic induction from a tensor product of Speh blocks (see [1]). In particular, there
will be irreducible, automorphic, cuspidal representations τ of GLnτ (A), such that LS(π× τ, s)
(the partial L-function) has a pole at a positive half integer. For example, if nτ = 4n + 2k,
then this pole should be at s = 1, and one expects that Π = τ . Otherwise, when nτ < 4n+ 2k
and the largest (real) pole of LS(π × τ, s) is strictly larger than 1, one expects that π should
be a CAP representation, with τ figuring in the cuspidal data of Π.

In this paper and its sequel (see [6]), we will consider π with the property that there exists
an irreducible, automorphic, cuspidal representation τ of GL2n(A), such that LS(π× τ, s) has a
pole at s = 3

2 , and LS(π× τ, s) is holomorphic at �(s) > 3
2 , that is, s = 3

2 is the right most pole
of LS(π×τ, s). The conjecture is then that Π is nearly equivalent to an irreducible automorphic
representation, which is parabolically induced from Δ(τ, 2)⊗Π′, where Δ(τ, 2) is a Speh block
of length two (this is an irreducible, square integrable representation of GL4n(A)) and Π′ is an
irreducible, automorphic representation of GL2k(A), lifted from an irreducible, automorphic,
cuspidal representation σ of SO2k(A). We will add one more assumption on π, namely,

O(π) = [(2n+ 2k − 1)(2n+ 1)],
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where O(π) is the set of all unipotent orbits O in SO4n+2k, such that π has a non-trivial Fourier
coefficient corresponding to O, and for all O′ > O, π has no non-trivial Fourier coefficients
corresponding to O′ (see [8] and [11, Section 4] for more detailed discussions of these notions).
We remark that in the spirit of Conjecture 4.1 in [11], [(2n+2k−1)(2n+1)] catches the maximal
possible partition of 4n+2k, whose corresponding unipotent orbits in SO4n+2k support non-zero
Fourier coefficients for the irreducible cuspidal automorphic representations π of SO4n+2k(A)
with the above L-function conditions. With this additional assumption, we will be able to prove
that σ above can be taken to be (cuspidal and) generic. Moreover, we can construct such a
representation σ by use of a generalized descent construction, as is called the endoscopy descent
in [11], starting with π and τ as above. We remark that the work of Arthur on the endoscopy
classification of the discrete spectrum in [1] provides each cuspidal automorphic representation
π a global Arthur parameter, while the work presented here and in [11] in general is to give (to
construct) explicitly the corresponding global Arthur parameter for π based on the conditions
on L-functions and on Fourier coefficients (i.e., invariants) attached to π.

Let us outline the construction of σ. The full details will appear in a sequel to this paper
(see [6]), where we will also show that τ above must be of symplectic type, namely, its exterior
square L-function has a pole at s = 1. Then it follows that the Eisenstein series on (split)
SO4n(k+1)(A) corresponding to the parabolic induction from Δ(τ, k + 1)| det ·|s has a simple
pole at s = k+1

2 . Denote the residual representation by Θτ . The representation Δ(τ, k + 1)
is the Speh block (corresponding to τ) of length k + 1, which is the residual representation of
GL2n(k+1)(A) generated by the residues of the Eisenstein series on GL2n(k+1)(A) corresponding
to the parabolic induction from

τ | det ·| k
2 ⊗ τ | det ·| k

2−1 ⊗ τ | det ·| k
2−2 ⊗ · · · ⊗ τ | det ·|− k

2 .

We apply to the elements of Θτ a Fourier coefficient corresponding to the orthogonal partition
[(2n− 1)2k14n+2k] of 4n(k + 1) (see [8, 11]). The corresponding unipotent group turns out to
be the unipotent radical Zn,k of the standard parabolic subgroup Q(2k)n−1 of SO4n(k+1) whose
Levi part is isomorphic to GL×(n−1)

2k × SO4(n+k). It is clear that

Zn,k/[Zn,k, Zn,k] ∼= M
⊕(n−2)
2k×2k ⊕M2k×2n+k ⊕M2k×2k ⊕M2k×2n+k, (1.1)

where Mm×n denotes the space of matrices of size m × n. Denote a typical element of the
right-hand side by

(X1, · · · , Xn−2;Y1, Y2, Y3). (1.2)

Let ψ be a non-trivial additive character of F\A, and define a character of Zn,k(A) by

ψZn,k
(v) := ψ(tr(X1 + · · · +Xn−2 + Y2)), (1.3)

where v ∈ Zn,k(A) projects to (1.2). This character is left Zn,k(F )-invariant, and it corresponds
to the partition above. It is easy to check that the connected part of the stabilizer of ψZn,k

in
the Levi subgroup GL×(n−1)

2k × SO4(n+k) is isomorphic to SO2k × SO4n+2k. The element

(g, h) =
(
g,

(
h1 h2

h3 h4

))
∈ SO2k × SO4n+2k (1.4)
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corresponds to

(
gΔ(n−1),

⎛⎝h1 h2

g
h3 h4

⎞⎠)
∈ GL×(n−1)

2k × SO4(n+k), (1.5)

where
gΔ(n−1) = diag(g, · · · , g) (n− 1 times).

We denote the group of elements (1.5) by SOΔn
2k × SO4n+2k. The Fourier coefficient corre-

sponding to the partition [(2n − 1)2k14n+2k] of ξ ∈ Θτ is defined as a function of (g, h) ∈
SO2k(A) × SO4n+2k(A) by

FψZn,k
(ξ)(g, h) :=

∫
Zn,k(F )\Zn,k(A)

ξ(v(g, h))ψ−1
Zn,k

(v)dv. (1.6)

This is an automorphic function on SO2k(A)×SO4n+2k(A). We use it as a kernel function and
integrate it against cusp forms in the space of π to get automorphic functions in g ∈ SO2k(A).
These functions span a space, which is invariant to right translations. We will prove in the
sequel to this paper that this space is non-trivial; its elements are cuspidal, and there exists a
Whittaker coefficient which is non-trivial on this space. This global construction is a special case
of a more general construction which also applies to other classical groups (see [4, 11]). Thus,
there exists an irreducible, automorphic, cuspidal and generic representation σ of SO2k(A), such
that the following integral is not identically zero:

Iψn,k(τ, π;σ) :=
∫

[SO2k]

∫
[SO4n+2k]

FψZn,k
(ξ)(g, h)ϕπ(h)ϕσ∨ (g)dhdg, (1.7)

where [SOm] := SOm(F )\SOm(A). The goal of this paper is to prove that the non-triviality of
(1.7) implies that π is a CAP representation, up to an outer conjugation, with respect to the
parabolic induction from τ | det ·| 12 ⊗ σ. In detail, we will prove the following theorem.

Theorem 1.1 Let τ , π and σ be irreducible, automorphic, cuspidal representations of
GL2n(A), SO4n+2k(A) and SO2k(A), respectively. Assume that τ is of symplectic type (i.e.,
LS(τ,Λ2, s) has a pole at s = 1). Assume that either (1) π supports a Fourier coefficient cor-
responding to the partition [(2n+ 2k − 1)(2n+ 1)], or (2) σ is (globally) generic. Suppose that
for some choice of data, the integral (1.7) is nonzero. Then at all finite places ν, where πν ,
τν , σν and ψv are unramified, πν is isomorphic to the unique unramified constituent of the
(normalized) induced representation

IndSO4n+2k(Fν)

Q2n(Fν) (τν | det | 12 ⊗ σ′
ν),

where Q2n is the standard maximal parabolic subgroup of SO4n+2k with the Levi subgroup M2n

isomorphic to GL2n × SO2k; the representation σ′ is either σ, or an outer conjugation of σ,
depending on the parities of n and k (this will be specified in Theorem 2.1). In particular, π is
a CAP representation with respect to (

M2n, τ ⊗ σ′,
1
2

)
.
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Note that in the proof, in case (1) of the theorem, we will only use the fact that π supports
a Fourier coefficient corresponding to an orthogonal partition of the form [(2n+ 2k − 1) · · · ].

The work of this paper and its sequel to come fit as a special case of a general conjecture.
For this, let τ be an irreducible, automorphic, cuspidal representation of GL2n(A), which is
self-dual and has a trivial central character. If τ is of symplectic type, let c = 2, and if τ is
of orthogonal type, let c = 1. Consider the Eisenstein series on (split) SO2n(2k+c)(A) induced
from Δ(τ, k + 1)| det |s, when c = 2; and when c = 1, it is induced from Δ(τ, k)| det |s ⊗ ε,
where ε is an irreducible, automorphic, cuspidal, generic representation of SO2n(A), which lifts
to τ . It can be constructed by automorphic descent (see [7, 9]). See also [2]. The corresponding
Eisenstein series has a pole at s = k+1

2 . Denote the corresponding residual representation by
Θτ,2k+c, which is square-integrable as proved in [12].

Consider the standard parabolic subgroup of SO2n(2k+c), whose Levi part is isomorphic to
GL×(n−1)

2k × SO2nc+4k. Denote its unipotent radical by Zn,k,c. Then we have the analogue of
(1.1) with M2k×2n+k replaced by M2k×nc+k. Thus, in (1.2), Y1 and Y3 lie in M2k×nc+k, and
Y2 ∈M2k×2k. Let ψZn,k,c

be the character of Zn,k,c(A) given by (1.3). Then the elements of its
stabilizer in the Levi subgroup GL×(n−1)

2k × SO2nc+4k have the form (1.4)–(1.5) with SO4n+2k

replaced by SO2nc+2k, and SO4(n+k) replaced by SO2nc+4k (respectively). Now we can define
the Fourier coefficient FψZn,k,c

(ξ)(g, h) by analogy to (1.6) and the integral Iψn,k,c(τ, π;σ) by
analogy to (1.7).

Conjecture 1.1 Let τ , σ and π be irreducible, automorphic, cuspidal representations of
GL2n(A), SO2k(A) and SO2nc+2k(A), respectively. Assume that τ is self-dual, with trivial
central character. Let c = 2, when τ is of symplectic type, and let c = 1, when τ is of
orthogonal type. Assume that the integral Iψn,k,c(τ, σ;π) is not identically zero. Then σ has a
global Arthur parameter ψSO2k

if and only if π has a global Arthur parameter ψSO2k
⊕ (τ, c).

We refer to [1] for the notion of global Arthur parameters. The condition on τ , relative to
the parity of c, makes (τ, c) a global Arthur parameter for SO2nc. A more general conjecture
of this type was discussed in [11].

The main results of this paper and its sequel ([6]) will be used to prove the case c = 2 of
the following theorem.

Theorem 1.2 The above conjecture holds for tempered representations σ, and for either
c = 1, if τ is orthogonal, or c = 2, if τ is symplectic.

Note that the case c = 1 was discussed in [3, 5].
The proof of Theorem 1.1 is quite complicated and technical, although the basic idea is

simple. We view (1.7) as an equivariant trilinear form at one unramified place ν, replacing Θτ ,
π and σ by their local unramified components at ν, and replacing the Fourier coefficient FψZn,k

by the analogous twisted Jacquet functor. This leads to the local formulation of Theorem
1.1, which is Theorem 2.1 in Section 2. The main ingredient of our proof of Theorem 2.1 is
the Mackey theory. Since the proof and the calculations are quite involved and technical, we
prefer, for clarity of exposition (hopefully), to break it to four steps. Each of the four steps
consists of an application of the Mackey theory in order to obtain a semi-simplification of a
given induced representation, when restricted to a given subgroup. In Section 3, we calculate
the twisted Jacquet module of the unramified kernel representation on SO4n(k+1) and reduce



On CAP Representations for Even Orthogonal Groups I: Unramified Correspondence 489

the problem to a calculation of a certain twisted Jacquet module on GL2n(k+1), which we carry
out in Section 4. The proof of Theorem 2.1 is completed in Section 5.

2 The Set-up and Formulation of the Main Theorem

From now on, let F be a p-adic local field of characteristic zero. Let SO2m be the F -split
special orthogonal group of rank m. We will realize it with respect to the standard anti-
diagonal matrix of size 2m. To simplify notation, for an F -algebraic group G, we will keep
denoting by G its group of F -rational points. Let m1, · · · ,mr be positive integers, such that
m1 + · · · + mr ≤ m. We will denote by Qm1,··· ,mr the standard parabolic subgroup of SO2m,
whose Levi part is isomorphic to

GLm1 × · · · × GLmr × SO2(m−(m1+···+mr)).

If necessary, we will add the superscript (m), Q(m)
m1,··· ,mr , to stress the fact that this is a parabolic

subgroup of SO2m. If m1 = · · · = mr = 
, we will denote Q(m)
m1,··· ,mr = Q(�)r . Similarly, when

m1+ · · ·+mr = m we will denote by Pm1,··· ,mr the standard parabolic subgroup of GLm, whose
Levi part is isomorphic to

GLm1 × · · · × GLmr .

We will similarly use the notation P
(m)
m1,··· ,mr . When m1 = · · · = mr = 
 (so that r
 = m), we

will denote Pm1,··· ,mr = P(�)r .
Consider the standard parabolic subgroup Q(2k)n−1 of SO4n(k+1). Its unipotent radical Zn,k

consists of elements of the following type:

z =

⎛⎝X E C
I4(n+k) E′

X ′

⎞⎠ ∈ SO4n(k+1), (2.1)

where X is a 2k(n− 1) × 2k(n− 1) upper triangular matrix of the form

X =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

I2k X1 ∗ · · · ∗ ∗
I2k X2 · · · ∗ ∗

I2k · · · ∗ ∗
. . .

...
...

I2k Xn−2

I2k

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Write the 2k(n−1)×4(n+k) matrix E in the form E =
(∗
Y

)
, with Y having size 2k×4(n+k),

and also write Y = (Y1, Y2, Y3), with Y1 and Y3 being of size 2k× (2n+ k) and Y2 being of size
2k × 2k. Fix a non-trivial character ψ of F . The character ψZn,k

of Zn,k analogous to (1.3) is
given by

ψZn,k
(z) = ψ(tr(X1 +X2 + · · · +Xn−2 + Y2)), (2.2)

where z is of the form (2.1). The connected component of the stabilizer of ψZn,k
in the Levi

subgroup GL×(n−1)
2k × SO4(n+k) is easily computed to be the subgroup SOΔn

2k × SO4n+2k of
elements of the form (1.5).
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Let τ be an irreducible, unitary, self-dual, generic, unramified representation of GL2n(F ),
having a trivial central character. Thus, τ has the form

τ = IndGL2n

BGL2n
(χ1 ⊗ · · · ⊗ χn ⊗ χ−1

n ⊗ · · · ⊗ χ−1
1 ). (2.3)

Here BGL2n
is the standard Borel subgroup of GL2n. We know, by a theorem of Jacquet-Shalika

[10] that if we write, for i = 1, · · · , n, χi = ui| · |αi , where ui is a unitary character, and αi is
real, then − 1

2 < αi <
1
2 . Re-ordering the characters χ±1

1 , · · · , χ±1
n , if necessary, we may assume

that

0 ≤ αi <
1
2
, i = 1, · · · , n. (2.4)

Let Δ(τ, k + 1) be the representation of GL2n(k+1), which is the unramified constituent of the
parabolic induction from

τ | det ·| k
2 ⊗ τ | det ·| k

2−1 ⊗ τ | det ·| k
2−2 ⊗ · · · ⊗ τ | det ·|− k

2 .

Consider the unramified constituent Θτ of the parabolic induction

IndSO4n(k+1)

Q2n(k+1)
Δ(τ, k + 1)| det ·| k+1

2 .

Using a conjugation by a suitable Weyl element within the Levi part of Q2n(k+1), it is clear that
Θτ is the unramified constituent of the representation induced from the following character of
the Borel subgroup

n⊗
i=1

[(χi| · | 2k+1
2 ⊗ χi| · | 2k−1

2 ⊗ · · · ⊗ χi| · | 12 ) ⊗ (χ−1
i | · | 12 ⊗ χ−1

i | · | 32 ⊗ · · · ⊗ χ−1
i | · | 2k+1

2 )]. (2.5)

Let αn,k be the Weyl element in O4n(k+1), which flips the character (2.5) to the character

n⊗
i=1

[χi| · | 2k+1
2 ⊗ χi| · | 2k−1

2 ⊗ · · · ⊗ χi| · | 12 ⊗ χi| · |− 1
2 ⊗ χi| · |− 3

2 ⊗ · · · ⊗ χi| · |− 2k+1
2 )]. (2.6)

Note that det(αn,k) = (−1)n(k+1). The i-th factor in (2.6) is

(χi ◦ det)
∣∣∣
BGL2k+2

· δ 1
2
BGL2k+2

.

Therefore the unramified constituent of the representation of GL2k+2 induced from the i-th
factor in (2.6) is χi ◦ detGL2k+2 . Thus, it follows that the unramified constituent of the repre-
sentation of SO4n(k+1), parabolically induced from (2.6), is equal to the unramified constituent
of

IndSO4n(k+1)
Q(2k+2)n

(χ1 ◦ det⊗ · · · ⊗ χn ◦ det), (2.7)

where det denotes the determinant of GL2k+2. By induction in stages, we write this induced
representation as

IndSO4n(k+1)

Q2n(k+1)
(τ ′)

with
τ ′ := IndGL2n(k+1)

P(2k+2)n
(χ1 ◦ det⊗ · · · ⊗ χn ◦ det).
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Denote

ω0 = ω0,m =

⎛⎜⎜⎝
Im−1

0 1
1 0

Im−1

⎞⎟⎟⎠ ∈ O2m. (2.8)

We will drop the indexm whenm is clear from the context. Denote by Θω0
τ the outer conjugation

of Θτ by ω0. Then we conclude that Θω
n(k+1)
0
τ is the unramified constituent of IndSO4n(k+1)

Q2n(k+1)
(τ ′).

The local counter part of the global Fourier coefficient (1.6) is the twisted Jacquet module
JψZn,k

(Θτ ) of Θτ , with respect to (Zn,k, ψZn,k
).

Let σ and π be irreducible, unramified representations of SO2k and SO4n+2k, respectively.
The local analogue of the family of global integrals (1.7) is the following Hom-space:

HomSO2k×SO4n+2k
(JψZn,k

(Θτ ) ⊗ σ∨ ⊗ π, 1). (2.9)

Note that for any element ω′ ∈ O4n(k+1) − SO4n(k+1), and any (smooth) representation θ

of SO4n(k+1), θω0 ∼= θω
′
. Consider the element ω′

0 defined by the image of (12k, ω0,2n+k) ∈
O2k × O4n+2k inside O4n(k+1), via (1.5). Then the conjugation by this element preserves Zn,k
and ψZn,k

. Thus, it is clear that, as modules over SO2k × SO4n+2k,

JψZn,k
(θω

′
0) ∼= (JψZn,k

(θ))(12k ,ω0,2n+k).

For the formulation of our main local theorem, we will use the notion of degenerate Whittaker
models for π. These were defined and studied by Moeglin and Waldspurger in [14] and are the
local analogs of Fourier coefficients corresponding to nilpotent orbits. Degenerate Whittaker
models of π are obtained by considering twisted Jacquet modules, applied to π, with respect
to certain characters of unipotent subgroups, which correspond to nilpotent orbits in the Lie
algebra of SO4n+2k, and hence correspond to orthogonal partitions. Therefore we will speak
about orbits of degenerate Whittaker models of π, corresponding to orthogonal partitions.
In particular, since there exists a partial order among partitions, we may speak of maximal
degenerate Whittaker models of π, namely, their corresponding partitions are not majorized by
other orthogonal partitions which support degenerate Whittaker models of π. Theorem 1.1 will
follow from the following theorem.

Theorem 2.1 Let τ be an irreducible, unitary, self-dual, unramified, generic representation
of GL2n, with a trivial central character. Let σ and π be irreducible, unramified representations
of SO2k and SO4n+2k, respectively. Assume that either (1) π has a degenerate Whittaker model
corresponding to an orthogonal partition of 4n+ 2k of the form [(2n+ 2k− 1) · · · ] (e.g., [(2n+
2k − 1)(2n+ 1)]), or (2) σ is unitary and generic. If

HomSO2k×SO4n+2k
(JψZn,k

(IndSO4n(k+1)

Q2n(k+1)
(τ ′)) ⊗ σ∨ ⊗ πω

n(k+1)
0 , 1) 
= 0,

then π is isomorphic to the unique unramified constituent of

IndSO4n+2k

Q2n
(τ | det | 12 ⊗ σω

(n+1)k
0 ).

The proof of Theorem 2.1 is quite technical and will be given in the following sections. The
most technical part is a detailed analysis of the twisted Jacquet module JψZn,k

(IndSO4n(k+1)

Q2n(k+1)
(τ ′)).
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3 Analysis of the Twisted Jacquet Module JψZn,k (Ind
SO4n(k+1)

Q2n(k+1)
(τ ′)): A

First Reduction

We study the twisted Jacquet module

JψZn,k
(IndSO4n(k+1)

Q2n(k+1)
(τ ′))

by a series of applications of the Mackey theory. We start by considering the restriction of
Ind

SO4n(k+1)

Q2n(k+1)
(τ ′) to the standard maximal parabolic subgroup Q2k(n−1) of SO4n(k+1). Note that

its Levi part is isomorphic to GL2k(n−1) × SO4(n+k), and the restriction

ResQ2k(n−1)(IndSO4n(k+1)
Q2n(k+1)

(τ ′)) (3.1)

is of finite length, with subquotients parameterized by the double cosets

Q2n(k+1)\SO4n(k+1)/Q2k(n−1). (3.2)

Here it is a set of representatives for this set of double cosets. For 0 ≤ r ≤ m = 2k(n− 1),

wr := ωm−r
0 ·

⎛⎜⎜⎜⎜⎝
Ir

0 0 Im−r
0 I4(n+k) 0

Im−r 0 0
Ir

⎞⎟⎟⎟⎟⎠ . (3.3)

See [9, Chapter 4] for an elementary proof. The contribution of the double coset of wr to the
semi-simplification of (3.1) is

indQm

Q(r)(σ(r)), (3.4)

where the notation, ind, denotes non-normalized compact induction,

Q(r) := Qm ∩ w−1
r ·Q2n(k+1) · wr,

and σ(r) is the representation of Q(r) given by

x �→ δ
1
2
Q2n(k+1)

· τ ′(wrxw−1
r ), x ∈ Q(r).

The elements of Q(r) are of the form⎛⎜⎜⎜⎜⎜⎜⎝
a1 a2 y1 y2 z1 z2
0 a4 0 y4 0 z′1

d v y′4 y′2
0 d∗ 0 y′1

a∗4 a′2
0 a∗1

⎞⎟⎟⎟⎟⎟⎟⎠

ωr
0

, (3.5)

where a1 ∈ GLr, a4 ∈ GLm−r, and d ∈ GL2(n+k). The representation σ(r) assigns to an element
of the form (3.5) the operator∣∣∣∣det(d) · det(a1)

det(a4)

∣∣∣∣
2n(k+1)−1

2

· τ ′
(⎛⎝a1 z1 y1

0 a∗4 0
0 y′4 d

⎞⎠)
. (3.6)
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Next, we consider the restriction

ResQ(2k)n−1 (indQm

Q(r)(σ(r))), (3.7)

and analyze it by the Mackey theory. Again, we need to consider the set of double cosets

Q(r)\Qm/Q(2k)n−1 .

It has the following set of representatives:

ε̂ := diag(ε, I4(n+k), ε
∗),

where ε varies in a set of Weyl elements, which form a set of representatives for

Pr,m−r\GL2k(n−1)/P(2k)n−1 .

Then, up to semi-simplification, we have

ResQ(2k)n−1 (indQm

Q(r)(σ(r))) ≡
⊕
ε

ind
Q(2k)n−1

Q(2k)n−1∩ε̂−1Q(r) ε̂
(σε(r)). (3.8)

The representation σε(r) is obtained by composing σ(r) with conjugation by ε̂ (on Q(2k)n−1 ∩
ε̂−1Q(r)ε̂). Let L(2k)n−1 be the subgroup of the Levi part of Q(2k)n−1 , consisting of all matrices

diag(g1, · · · , gn−1, I4(n+k), g
∗
n−1, · · · , g∗1),

where gi ∈ GL2k, for i ≤ n− 1. Denote

Rn,k = (SOΔn
2k × SO4n+2k)Zn,k,

where SOΔn
2k × SO4n+2k is embedded in SO4n(k+1) via (1.5). For each ε, restrict the represen-

tation

ind
Q(2k)n−1

Q(2k)n−1∩ε̂−1Q(r) ε̂
(σε(r)) (3.9)

to L(2k)n−1Rn,k. For this, we need, once again, to consider the set

Q(2k)n−1 ∩ ε̂−1Q(r)ε̂\Q(2k)n−1/L(2k)n−1Rn,k, (3.10)

which is in one-to-one correspondence with the set

[Q(2(n+k))
2(n+k) ]ω

r
0\SO4(n+k)/(SO2k × SO4n+2k). (3.11)

We choose the following set of representatives gω
r
0

l of (3.10), where

gl :=

⎛⎝I2k(n−1)

g′l
I2k(n−1)

⎞⎠ (3.12)
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with the g′l, 0 ≤ l ≤ k, given by

g′l :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ik−l
I2n+l

Il
Ik−l

−Ik−l Ik−l
0 Il

0 I2n+l

Ik−l Ik−l

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (3.13)

and the elements (g′l)
ωr

0 form a set of representatives for (3.11).
To prove this, it is enough to show that the elements g′l form a set of representatives for

Q
(2(n+k))
2(n+k) \SO4(n+k)/(SO2k × SO4n+2k), since SO2k × SO4n+2k is invariant to conjugation by

ωr0. Denote by V the column space F 4(n+k), and consider the left action of SO4(n+k) on V ,
preserving the symmetric form (u, v) = tuJ4(n+k)v (J� is the standard anti-diagonal matrix of
size 
× 
). Let

e1, · · · , e2(n+k), e−2(n+k), · · · , e−1

be the standard basis of V . For 
 ≤ 2(n + k), denote by V ±
� the span of e1, · · · , e�, and

of e−1, · · · , e−�, respectively. These are dual isotropic subspaces of dimension 
. Denote by
W2k the ortho-complement of V +

2n+k + V −
2n+k inside V . Note that the subgroup of elements in

SO4(n+k) that preserve W2k is given, as in (1.5), by

(g, h) =

⎛⎝h1 h2

g
h3 h4

⎞⎠ ∈ SO4(n+k), (3.14)

where g ∈ O2k, h =
(
h1 h2

h3 h4

)
∈ O4n+2k and det(g) = det(h). Denote by H the connected

component of the subgroup of elements (3.14). Then H is naturally identified with SO2k ×
SO4n+2k. Let us realizeQ2(n+k)\SO4(n+k) as the variety Y of all (maximal) 2(n+k)-dimensional
isotropic subspaces of V , which are in the orientation class of V +

2(n+k) (i.e., in the SO4(n+k)-orbit
of V +

2(n+k)). Note that we dropped the superscript (2(n+ k)) from the notation Q2(n+k). Thus,
the coset Q2(n+k)g is identified with X = g−1V +

2(n+k). We consider the action of H on Y. Given
X,Y ∈ Y in a given H-orbit O, it is clear that

dim(X ∩W2k) = dim(Y ∩W2k).

Denote this number by dO.

Lemma 3.1 The number dO is the only invariant of the orbit O.

Proof This is a generalization of Lemma 2.1 of [15]. Let X ∈ Y be such that dim(X ∩
W2k) = l. Denote dim(X ∩ (V +

2n+k + V −
2n+k)) = c. Choose bases B1 = {x1, · · · , xl} and

B2 = {xl+1, · · · , xl+c} to X∩W2k and X∩(V +
2n+k+V −

2n+k) respectively. Choose a set of linearly
independent isotropic vectors in W2k, B−1 = {x−1, · · · , x−l}, dual to B1 (that is (xi, x−j) =
δi,j , for 1 ≤ i, j ≤ l). Similarly, choose a set of linearly independent isotropic vectors in
V +

2n+k+V −
2n+k, B−2 = {x−(l+1), · · · , x−(l+c)}, dual to B2. Denote by W ′ the ortho-complement
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of the span of B1 ∪ B−1 inside W2k, and denote by V ′ the ortho-complement of the span of
B2 ∪B−2 inside V +

2n+k +V −
2n+k. Let us choose vectors zi+w′

i+ v′i+ fi, c+ l+1 ≤ i ≤ 2(n+ k),
which complete B1∪B2 to a basis ofX , such that zi lies in the span of B1∪B2, w′

i ∈W ′, v′i ∈ V ′,
and fi lies in the span of B−1 ∪B−2. Since X is isotropic, it is easy to see that we must have
fi = 0. Also, by construction, it is easy to see that the elements B3 = {w′

c+l+1, · · · , w′
2(n+k)}

are linearly independent, as well as the elements B4 = {v′c+l+1, · · · , v′2(n+k)}. Moreover, for all
c+ l + 1 ≤ i, j ≤ 2(n+ k), we have

(w′
i, w

′
j) = −(v′i, v

′
j). (3.15)

Note that the linearly independent set B1 ∪ B2 ∪ B3 ∪ B4 ∪ B−2 ∪ B−1 contains 4(n + k)
elements, and hence it is a basis for V . We conclude that B1 ∪B3 ∪B−1 is a basis for W2k and
B2 ∪ B4 ∪ B−2 is a basis for V +

2n+k + V −
2n+k. In particular, c = 2n+ l is determined by l. We

can choose and re-denote

w′
2n+2l+1 = w(1), · · · , w′

2n+l+k = w(k − l)

and
w′

2n+l+k+1 = w(−(k − l)), · · · , w′
2(n+k) = w(−1)

with the corresponding Gram matrix J2(k−l). Note that all these make sense when l = 0 or
l = k. Similarly we can choose and re-denote

v′2n+2l+1 = v(1), · · · , v′2n+l+k = v(k − l)

and
v′2n+l+k+1 = v(−(k − l)), · · · , v′2(n+k) = v(−1)

with the corresponding Gram matrix −J2(k−l). Clearly, (3.15) is satisfied. Now, let Y ∈ Y
be such that dim(Y ∩W2k) = l. Let us construct for Y the basis of V as above. Denote the
corresponding subsets by B′

1, B
′
2, etc. For example B′

1 is a basis of Y ∩W2k and B′
−1 is a subset

of l linearly independent isotropic vectors in W2k, dual to B′
1, and so on. Denote the elements

of B′
i by the same letters and indices as for Bi, with the addition of primes. For example, we

denote the elements of B′
3 by

w′(1), · · · , w′(k − l), w′(−(k − l)), · · · , w′(−1).

Let t be the linear transformation of V to itself, which sends the elements of each subset Bi
to the corresponding elements in B′

i, i = ±1,±2, 3, 4. Then, by construction, t(X) = Y and
t(W2k) = W2k (and also t(V +

2n+k+V −
2n+k) = V +

2n+k+V −
2n+k). It is easy to correct t, if necessary,

such that the determinant of the restriction of t to W2k is one. We conclude that t ∈ H takes
X to Y , and hence X and Y lie in the same H-orbit.

Set gl,r = g
ωr

0
l and g′l,r = (g′l)

ωr
0 . Recall again that we use the same notation ω0 as an

element of O2n′ , for any n′. Up to semi-simplification, we get

ResL(2k)n−1Rn,k
(ind

Q(2k)n−1

Q(2k)n−1∩ε̂−1Q(r) ε̂
(σε(r)))

≡
k⊕
l=0

ind
L(2k)n−1Rn,k

L(2k)n−1Rn,k∩g−1
l,r (Q(2k)n−1∩ε̂−1Q(r) ε̂)gl,r

(σε(r),l), (3.16)
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where for x ∈ L(2k)n−1Rn,k ∩ g−1
l,r (Q(2k)n−1 ∩ ε̂−1Q(r)ε̂)gl,r,

σε(r),l(x) = σε(r)(gl,rxg
−1
l,r ).

We need to compute

JψZn,k
(ind

L(2k)n−1Rn,k

L(2k)n−1Rn,k∩g−1
l,r (Q(2k)n−1∩ε̂−1Q(r) ε̂)gl,r

(σε(r),l)) (3.17)

for all (r, ε, l). Let us write necessary conditions for (r, ε, l) to be relevant with respect to
ψZn,k

. More precisely, we say that (r, ε, l) is not relevant with respect to ψZn,k
if for each

h ∈ L(2k)n−1 , there exists z ∈ Zn,k ∩ h−1g−1
l,r (Q(2k)n−1 ∩ ε̂−1Q(r)ε̂)gl,rh, such that ψZn,k

(z) 
= 1
and σε(r),l(hzh

−1) = id. Clearly, in this case, the Jacquet module (3.17) is zero. Note that Rn,k
normalizes Zn,k and preserves ψZn,k

.

Proposition 3.1 Assume that (r, ε, l) is relevant with respect to ψZn,k
. Then there exists

a sequence of nonnegative integers r1, · · · , rn−1 satisfying

r1 + · · · + rn−1 = r,

r1 ≤ . . . ≤ rn−1 ≤ l,
(3.18)

such that ε can be chosen (modulo Pr,m−r from the left, and modulo P(2k)n−1 from the right) as
follows:

ε =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ir1 0 0 0 · · · 0 0
0 0 Ir2 0 · · · 0 0
...

...
...

...
...

...
0 0 0 0 · · · Irn−1 0
0 It1 0 0 · · · 0 0
0 0 0 It2 · · · 0 0
...

...
...

...
...

...
0 0 0 0 · · · 0 Itn−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (3.19)

where for 1 ≤ i ≤ n− 1,
ri + ti = 2k.

Proof Modulo Pr,m−r from the left, and modulo P(2k)n−1 from the right, we may assume
that ε is of the form (3.19), where for 1 ≤ i ≤ n− 1, ri, ti are nonnegative integers, such that
ri + ti = 2k and r1 + · · · + rn−1 = r. We want to show that (3.18) holds (for relevant (r, ε, l)).
Let h = diag(h1, · · · , hn−1), where h1, · · · , hn−1 ∈ GL2k, and denote ĥ = diag(h, I4(n+k), h

∗).
Let also y2 ∈Mr×2(n+k) and z2 ∈Mr, such that (Jrz2) is anti-symmetric. Consider

z =

⎛⎝Im X C
I4(n+k) X ′

Im

⎞⎠ ∈ Zn,k,

where

X = h−1ε−1

(
0r×2(n+k) y2

0(m−r)×2(n+k) 0(m−r)×2(n+k)

)
ωr0g

′
l,r,

C = h−1ε−1

(
0r×(m−r) z2

0m−r 0(m−r)×r

)
ε∗h∗.
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By construction,
z ∈ Zn,k ∩ h−1g−1

l,r (Q(2k)n−1 ∩ ε̂−1Q(r)ε̂)gl,rh,

and by (3.6),
σε(r),l(hzh

−1) = σ(r)(ε̂gl,rĥzĥ−1g−1
l,r ε̂

−1) = id.

Thus, for (r, ε, l) to be relevant, we must have that ψZn,k
(z) is identically one, for all y2, z2 as

above. We have

ψZn,k
(z) = ψ

(
tr
(
g′lω

r
0

⎛⎝0(2n+k)×2k(n−2) 0(2n+k)×2k

02k×2k(n−2) h−1
n−1

0(2n+k)×2k(n−2) 0(2n+k)×2k

⎞⎠ ε−1

(
0r×2(n+k) y2

0(m−r)×2(n+k) 0(m−r)×2(n+k)

)))
.

For this to be trivial for all y2, we must have

(
02(n+k)

I2(n+k)

)
ωr0g

′
l

⎛⎝0(2n+k)×2k(n−2) 0(2n+k)×2k

02k×2k(n−2) h−1
n−1

0(2n+k)×2k(n−2) 0(2n+k)×2k

⎞⎠ ε−1

(
Ir

0m−r

)
= 0.

Now, by a simple verification, we see that this means that ωr0h
−1
n−1 has the form(

A B
0 D

)
, (3.20)

where A ∈Ml×rn−1, and we conclude that

rn−1 ≤ l.

We continue in a similar fashion and obtain more conditions on ε by considering z ∈ Zn,k of
the form ζ̂i = diag(ζi, I4(n+k), ζ

∗
i ), i = 1, 2, · · · , n− 2, where

ζi = diag
(
I2k, · · · , I2k,

(
I2k Xi

I2k

)
, I2k, · · · , I2k

)
∈ GL2k(n−1).

Note that gl and ω0 commute with ζ̂i and ĥ. Let e ∈Mri×ti+1 and

Xi = h−1
i

(
0ri×ri+1 e
0ti×ri+1 0ti×ti+1

)
hi+1.

Then
ε̂glĥζ̂iĥ

−1g−1
l ε̂−1 = ε̂ĥζ̂iĥ

−1ε̂−1 ∈ Q(r),

and by (3.6), σ(r) acts as the identity on this last element. Thus, for (r, ε, l) to be relevant, we
must have that ψ(tr(Xi)) is identically trivial for all e, that is,

ψ
(
tr
(
hi+1h

−1
i

(
0ri×ri+1 e
0ti×ri+1 0ti×ti+1

)))
≡ 1. (3.21)

This means that hi+1h
−1
i is of the form

hi+1h
−1
i =

(
A B
0 D

)
, (3.22)
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where A ∈Mri+1×ri . This implies that

ri ≤ ri+1, 1 ≤ i ≤ n− 2.

This proves the proposition.

Note that (3.18) implies that

r ≤ l(n− 1) ≤ k(n− 1). (3.23)

Let us go back to the representation (3.9) for (r, ε) as in Proposition 3.1, satisfying (3.18). The
elements of Q(2k)n−1 ∩ ε̂−1Q(r)ε̂ have the form

⎛⎝A Y C
D Y ′

A∗

⎞⎠ωr
0

, (3.24)

where D ∈ SO4(n+k) has the form

D =
(
d v

d∗

)
, d ∈ GL2(n+k). (3.25)

The form of the rest of the elements is described as follows. The matrix A ∈ GLm has the form

A =

⎛⎜⎜⎜⎝
A1,1 A1,2 · · · A1,n−1

A2,2 · · · A2,n−1

. . .
...

An−1,n−1

⎞⎟⎟⎟⎠ , (3.26)

where for 1 ≤ i ≤ j ≤ n− 1, Ai,j ∈M2k and has the form

Ai,j =

(
A

(1)
i,j A

(2)
i,j

0ti×rj A
(4)
i,j

)
; (3.27)

that is A(1)
i,j ∈Mri×rj , etc. The matrix Y ∈Mm×4(n+k) has the form

Y =

⎛⎜⎜⎜⎝
Y1

Y2

...
Yn−1

⎞⎟⎟⎟⎠ , (3.28)

where for 1 ≤ i ≤ n− 1, Yi ∈M2k×4(n+k) is of the form

Yi =

(
Y

(1)
i Y

(2)
i

0ti×2(n+k) Y
(4)
i

)
. (3.29)

Write

Y ′ = (Y ′
n−1, Y

′
n−2, · · · , Y ′

1). (3.30)
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Then, for 1 ≤ i ≤ n− 1, Y ′
i ∈M4(n+k)×2k is of the form

Y ′
i =

(
(Y ′
i )

(4) Y
(2)
i

02(n+k)×ti (Y ′
i )

(1)

)
. (3.31)

Finally, C has the form

C = ε−1

(
C1 C2

0(m−r)×(m−r) C′
1

)
ε∗, (3.32)

where C1 ∈ Mr×m−r. The action of σε(r) on the element (3.24) described by (3.25)–(3.32) is
given by

∣∣∣det(d)
n−1∏
i=1

det(A(1)
i,i )

n−1∏
i=1

det(A(4)
i,i )

∣∣∣n(k+1)− 1
2
τ ′

⎛⎝A(1) C1 Y (1)

0 (A(4))∗ 0
0 (Y ′)(4) d

⎞⎠ , (3.33)

where A(1) ∈ GLr is the matrix

A(1) =

⎛⎜⎜⎜⎜⎝
A

(1)
1,1 A

(1)
1,2 · · · A

(1)
1,n−1

0 A
(1)
2,2 · · · A

(1)
2,n−1

...
...

...
0 0 · · · A

(1)
n−1,n−1

⎞⎟⎟⎟⎟⎠ . (3.34)

Similarly (A(4))∗ = Jm−r(tA(4))−1Jm−r, and A(4) ∈ GLm−r is the matrix obtained from A by
replacing in (3.34) each super index (1) by (4). The matrix Y (1) ∈Mr×2(n+k) is

Y (1) =

⎛⎜⎜⎜⎜⎝
Y

(1)
1

Y
(1)
2
...

Y
(1)
n−1

⎞⎟⎟⎟⎟⎠ . (3.35)

The matrix (Y ′)(4) ∈M2(n+k)×m−r is

(Y ′)(4) = ((Y ′
n−1)

(4) (Y ′
n−2)

(4) · · · (Y ′
1)(4)). (3.36)

Let h = diag(h1, · · · , hn−1), where hi ∈ GL2k, for 1 ≤ i ≤ n − 1, and let g ∈ SO4(n+k).
Set m(h, g) = diag(h, g, h∗), and Qn,k,r:ε = Q(2k)n−1 ∩ ε̂−1Q(r)ε̂. The following map on

ind
Q(2k)n−1

Qn,k,r:ε
(σε(r)) factors through its twisted Jacquet module with respect to ψZn,k

and induces

an injective homomorphism on the twisted Jacquet module JψZn,k
(ind

Q(2k)n−1

Qn,k,r:ε
(σε(r))):

f �→
(
(h, g) �→

∫
Z′

n,k;ε\Zn,k

Jψh,g
Zn,k;ε

(f(zm(h, g)))ψ−1
Zn,k

(m(h, g)−1zm(h, g))dz
)
, (3.37)

where
Z ′
n,k;ε = Zn,k ∩ ε̂−1Q(r)ε̂,
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Zn,k;ε is the projection to GL2n(k+1) of the subgroup wr ε̂Z ′
n,k;εε̂

−1w−1
r , and the character ψh,gZn,k;ε

is obtained by pulling back z ∈ Zn,k;ε to any element z′ ∈ wr ε̂Z
′
n,k;εε̂

−1w−1
r and then

ψh,gZn,k;ε
(z) = ψZn,k

(m(h, g)−1ε̂−1w−1
r z′wr ε̂m(h, g)).

Jψh,g
Zn,k;ε

(f(zm(h, g))) denotes the application of the twisted Jacquet functor with respect to

(Zn,k;ε, ψ
h,g
Zn,k;ε

) to the vector f(zm(h, g)) in the space of τ ′. This statement (about the map
(3.37)) is easily verified. Denote, for 0 ≤ l ≤ k,

γl,r = diag(ωr0 , · · · , ωr0 , g′l,r, ωr0, · · · , ωr0),

where ωr0 is repeated n− 1 times to the left of g′l,r and to its right.

Proposition 3.2 Let ε be as in (3.19), such that (3.18) is satisfied. Then the function on
the r.h.s. of (3.37) is supported inside

k⋃
l=0

Qn,k,r:εγl,r(SOΔn

2k × SO4n+2k).

Proof Let m(h, g) be in the support of the function on the r.h.s. of (3.37). Then by (3.33)
and the description (3.24)–(3.32) of Qn,k,r:ε, we must have

ψZn,k

(
m(h, g)−1

⎛⎝Z Y ωr0 C
I4(n+k) ωr0Y

′

Z∗

⎞⎠m(h, g)
)
≡ 1 (3.38)

for all upper unipotent Z of the form (3.26)–(3.27), with Ai,i = I2k and for i < j, A(1)
i,j =

0, A(4)
i,j = 0, and similarly, all Y , as in (3.28)–(3.29) with Y

(1)
i = 0, Y (4)

i = 0, and all C as in
(3.32) with C1 = 0. Now, we already did this calculation in the proof of Proposition 3.1. By
(3.21)–(3.22), we must have, for all 1 ≤ i ≤ n− 2,

hi+1 =
(
A B
0 D

)
hi,

where A ∈ Mri+1×ri . Note that we have already assumed that ri ≤ ri+1, 1 ≤ i ≤ n − 2.
Assume that we already proved that, modulo Qn,k,r:ε from the left, h1 = · · · = hi, 1 ≤ i ≤ n−2.

Multiplying hi+1 from the left by an element in GL2k of the form
(
A′ B′

0 D′

)
, where A′ ∈ GLri+1 ,

we may assume that A =
(

Iri

0ri+1−ri×ri

)
, so we have a relation

hi+1 =
(
Iri β
0 δ

)
hi.

Note that, for all 1 ≤ j < i, (
Iri β
0 δ

)
=

(
Irj β′

0 δ′

)
, (3.39)

where δ′ =
(
Iri−rj β2

0 δ

)
, β′ =

(
0rj×ri−rj β1

)
, and β =

(
β1

β2

)
. This shows that multiplying

from the left each one of h1 = · · · = hi by the matrix (3.39) is a result of a left multiplication
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by an element in Qn,k,r:ε. Therefore we may assume that h1 = · · · = hi+1. This shows that,
modulo Qn,k,r:ε from the left, we may assume that h1 = · · · = hn−1. As for g, we may assume
that g = g′l,r · (h0, R), 0 ≤ l ≤ k, where (h0, R) ∈ SOΔn

2k ×SO4n+2k. Then, as in (3.20), we must
have

gl

⎛⎝0(2n+k)×2k

ωr0h0

0(2n+k)×2k

⎞⎠ =
(

A B
02(n+k)×rn−1 D

)
hn−1.

Recall again that we use the same notation ω0 for the matrix obtained from an even-sized
identity matrix by interchanging the order of its two middle rows. Thus,⎛⎜⎜⎜⎜⎜⎜⎝

0 0 0
Il 0 0
0 Ik−l 0
0 0 Ik
0 0 0
0 Ik−l 0

⎞⎟⎟⎟⎟⎟⎟⎠ =
(

A B
02(n+k)×rn−1 D

)
hn−1h

−1
0 ωr0.

Here, in the first row, the zero blocks have 2n + k rows and, in the fifth row, the zero blocks
have 2n+ l rows. We deduce equalities of the form

I2k =
(

α β
0k×rn−1 γ

)
hn−1h

−1
0 ωr0 ,

(0(k−l)×l, Ik−l, 0(k−l)×k) = (0(k−l)×rn−1 , η)hn−1h
−1
0 ωr0,

(3.40)

where α ∈Mk×rn−1 and γ ∈Mk×tn−1 , η ∈Mk−l×tn−1 . Recall that we have already known that
tn−1 ≥ k. Thus γ must be of rank k. Since we may multiply from the left all h1 = · · · = hn−1

by
(
Irn−1

GLtn−1

)
, we may assume that γ = (0k×tn−1−k, Ik). Hence we may replace the first

relation in (3.40) by a relation of the form

I2k =
(
α′ β′

0 Ik

)
hn−1h

−1
0 ωr0,

where α′ ∈ GL2k. Again, we may multiply from the left all h1 = · · · = hn−1 by any upper
unipotent 2k × 2k matrix, and hence we may assume that β′ = 0. We conclude that

hn−1h
−1
0 ωr0 =

(
(α′)−1

Ik

)
,

and we have a relation of the form

(0(k−l)×l, Ik−l, 0(k−l)×k)
(
α′

I2k

)
= (0(k−l)×rn−1 , η).

This implies that α′ has the form

α′ =
(

α1 α2

0(k−l)×rn−1 α4

)
,

where α2 and α4 have k− rn−1 = tn−1 − k columns. We conclude that α4 has rank k− l. Once

again, since we may multiply from the left all h1 = · · · = hn−1 by
(
Irn−1

GLtn−1

)
, we may

assume that α4 = (0k−l×l−rn−1 , Ik−l), that is, α′ has the form

α′ =
(
α′

1 α′
2

0 Ik−l

)
,
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where α′
1 ∈ GLl, and exactly as in the previous step, we may now assume that α′

2 = 0. We get
(after modification by Qn,k,r;ε from the left) a relation of the form

I2k =
(
e

I2k−l

)
hn−1h

−1
0 ωr0,

where e ∈ GLl. Since tn−1 ≥ k ≥ l, we may multiply from the left all h1 = · · · = hn−1 by
diag(I2k−l, e∗), and hence we may assume that

ωr0

(⎛⎝e I2(k−l)
e∗

⎞⎠−1 )ωr
0
h0 = hn−1.

Finally, since

Q
ωr

0
2(n+k)g

′
l,r(h0, R) = Q

ωr
0

2(n+k)g
′
l,r

((⎛⎝e I2(k−l)
e∗

⎞⎠−1 )ωr
0
h0, R

)
,

we may assume that ωr0h0 = hn−1. Recall that (h0, R) ∈ SOΔn

2k × SO4n+2k. Therefore, m(g, h)
which lies in the support of the r.h.s. of (3.37) is equal, modulo Qn,k,r:ε from the left, and
modulo SOΔn

2k × SO4n+2k from the right, to an element of the form γl,r, for some 0 ≤ l ≤ k.
This completes the proof of the proposition.

Upon restriction of the r.h.s. of (3.37) to the support we found in Proposition 3.2, we see
that, up to semi-simplification of SOΔn

2k × SO4n+2k- modules,

JψZn,k
(ind

Q(2k)n−1

Qn,k,r:ε
(σε(r))) ≡

k⊕
l=0

indSOΔn
2k ×SO4n+2k

γ−1
l,rQn,k,r;εγl,r∩(SOΔn

2k ×SO4n+2k)
σε[r];l, (3.41)

where the representation σε[r];l is described as follows. First, γ−1
l,r Qn,k,r;εγl,r∩(SOΔn

2k ×SO4n+2k)
is the subgroup consisting of all elements of the form:

(⎡⎢⎢⎢⎣
⎛⎜⎜⎝
e1 e2 e3 e4

d4 −c3 e′3
−b2 a1 e′2

e∗1

⎞⎟⎟⎠
ωr

0
⎤⎥⎥⎥⎦

Δn

,

⎛⎜⎜⎝
a1 0 b′4 b2
a3 a4 b3 b4
0 0 a∗4 0
c3 0 a′3 d4

⎞⎟⎟⎠)
∈ SOΔn

2k × SO4n+2k, (3.42)

where
(
d4 −c3
−b2 a1

)
∈ SO2(k−l), a1 is of size (k − l) × (k − l), a4 ∈ GL2n+l, and e1 ∈ GLl has

the following form:

e1 =

⎛⎜⎜⎜⎜⎜⎝
h1 ∗ · · · ∗ ∗

h2 · · · ∗ ∗
. . .

...
...

hn−1 ∗
hn

⎞⎟⎟⎟⎟⎟⎠ , (3.43)

where h1 ∈ GLr1 , h2 ∈ GLr2−r1 , · · · , hn−1 ∈ GLrn−1−rn−2 , and hn ∈ GLl−rn−1 (see (3.24)–
(3.27)). Next, we describe (Zn,k;ε, ψ

h,g
Zn,k;ε

) which defines the inner Jacquet module in the integral
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(3.37), for h = ωr0 and g = g′l,r. The group Zn,k;ε consists of the matrices of the form

z =

⎛⎝Z1 C Y
0 Z2 0
0 S I2(n+k)

⎞⎠ , (3.44)

where Z1 ∈ GLr has the form

Z1 =

⎛⎜⎜⎜⎜⎜⎝
Ir1 x1,2 · · · x1,n−2 x1,n−1

Ir2 · · · x2,n−2 x2,n−1

. . .
...

...
Irn−2 xn−2,n−1

Irn−1

⎞⎟⎟⎟⎟⎟⎠ ; (3.45)

Z2 ∈ GL2k(n−1)−r has the form

Z2 =

⎛⎜⎜⎜⎜⎜⎝
Itn−1 vn−2,n−1 · · · v2,n−1 v1,n−1

Itn−2 · · · v2,n−2 v1,n−2

. . .
...

...
It2 v1,2

It1

⎞⎟⎟⎟⎟⎟⎠ . (3.46)

This is directly deduced from (3.33)–(3.36). Write

Y =

⎛⎜⎜⎜⎝
y1
y2
...

yn−1

⎞⎟⎟⎟⎠ , S = (sn−1, sn−2, · · · , s1), (3.47)

where yi ∈Mri×2(n+k) and si ∈M2(n+k)×ti , 1 ≤ i ≤ n− 1. Now, for z as in (3.44)–(3.46), let

z′ =
(
z

z∗

)
, and write

z∗ =

⎛⎝I2(n+k) 0 Y ′

S′ Z∗
2 C′

0 0 Z∗
1

⎞⎠ (3.48)

with

Z∗
2 = Jm−r(tZ−1

2 )Jm−r =

⎛⎜⎜⎜⎜⎜⎝
It1 v′1,2 · · · v′1,n−1

It2 · · · v′2,n−1

. . .
...

v′n−2,n−1

Itn−1

⎞⎟⎟⎟⎟⎟⎠ , (3.49)

Y ′ = −J2(n+k)(tY )Jr, C′ = −Jm−r(tC)Jr, and

S′ = −Jm−r(tS)J2(n+k) =

⎛⎜⎜⎜⎝
s′1
s′2
...

s′n−1

⎞⎟⎟⎟⎠ , (3.50)
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where s′i ∈Mti×2(n+k), 1 ≤ i ≤ n− 1. We have

w−1
r z′wr =

⎛⎜⎜⎜⎜⎜⎜⎝
Z1 0 Y 0 C 0
0 Z∗

2 0 S′ 0 C′

0 0 I2(n+k) 0 S 0
0 0 0 I2(n+k) 0 Y ′

0 0 0 0 Z2 0
0 0 0 0 0 Z∗

1

⎞⎟⎟⎟⎟⎟⎟⎠

ωr
0

. (3.51)

Now conjugate w−1
r z′wr by ε̂−1, and note that

ε−1

(
Z1

Z∗
2

)
ε =

⎛⎜⎜⎜⎜⎜⎝
I2k X1 ∗ · · · ∗

I2k X2 · · · ∗
. . .

...
...

Xn−2

I2k

⎞⎟⎟⎟⎟⎟⎠ , (3.52)

where for 1 ≤ i ≤ n− 2,

Xi =
(
xi,i+1 0

0 v′i,i+1

)
. (3.53)

Recall that xi,i+1 ∈Mri×ri+1 and v′i,i+1 ∈Mti×ti+1 . Note also that

ε−1

(
Y 0
0 S′

)
ωr0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1 0
0 s′1
y2 0
0 s′2
...

...
yn−1 0

0 s′n−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
ωr0. (3.54)

Now it is straight-forward to compute γ−1
l,r ε̂

−1w−1
r z′wr ε̂γl,r ∈ Zn,k, and get, using (3.44)–(3.54),

that

ψ
ωr

0 ,g
′
l,r

Zn,k;ε
(z′)

= ψZn,k
(γ−1
l,r ε̂

−1w−1
r z′wr ε̂γl,r)

= ψ
( n−2∑
i=1

tr
(
xi,i+1 0

0 v′i,i+1

)ωr
0 )
ψ
(
trωr0

(
yn−1 0

0 s′n−1

)
g′lω

r
0

⎛⎝0(2n+k)×2k

I2k
0(2n+k)×2k

⎞⎠)
. (3.55)
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This product can be expressed as a product of the following four terms:
n−2∏
i=1

ψ
(
tr
((

Iri

0(ri+1−ri)×ri

)
xi,i+1

))
,

n−2∏
i=1

ψ−1
(
tr
((

Iti+1

0(ti−ti+1)×ti+1

)
vi,i+1

))
,

ψ
(
tr
(⎛⎝ 0(2n+k)×rn−1

Irn−1

0(k−rn−1)×rn−1

⎞⎠ yn−1

))
,

ψ−1
(
tr
(⎛⎝ 0k×(k−l) 0k×(2n+l) Ik

Ik−l 0(k−l)×(2n+l) 0(k−l)×k
0(l−rn−1)×(k−l) 0(l−rn−1)×(2n+l) 0(l−rn−1)×k

⎞⎠ sn−1

))
.

Let us re-denote
ψl,rZn,k;ε

= ψ
ωr

0 ,g
′
l,r

Zn,k;ε
.

The integrand in (3.37) depends on the twisted Jacquet module of τ ′ with respect to

(Zn,k;ε, ψ
l,r
Zn,k;ε

), Jψl,r
Zn,k;ε

(τ ′).

Now, the representation σε[r];l is obtained, up to a certain positive character, by applying σε(r)
to γl,rxγ−1

l,r , for
x ∈ γ−1

l,r Qn,k,r;εγl,r ∩ (SOΔn

2k × SO4n+2k),

and applying Jψl,r
Zn,k;ε

(τ ′). The precise form of the positive character can be determined

from (3.33) and from an appropriate Jacobian resulting from conjugation on Z ′
n,k;ε\Zn,k in

(3.37). At the moment, this is not important to us. Thus we reduce the calculation of
JψZn,k

(IndSO4n(k+1)

Q2n(k+1)
(τ ′)) to that of the twisted Jacquet modules Jψl,r

Zn,k;ε
(τ ′), for 0 ≤ l ≤ k

and (r, ε) as in Proposition 3.1. This we will do in the next section. It will be more convenient
to apply to the last Jacquet module a conjugation by

w =

⎛⎜⎜⎝
Ir

Ik−l
I2n+k+l

Im−r

⎞⎟⎟⎠ . (3.56)

Denote Zεn,k = wZn,k;εw
−1, and let ψl,rZε

n,k
be the character of Zεn,k given by

ψl,rZε
n,k

(z) = ψl,rZn,k;ε
(w−1zw).

The elements of Zεn,k have the form

z =

⎛⎝Z1 Y C
I2(n+k) S

Z2

⎞⎠ , (3.57)

where Z1, Z2, Y, S, C are as in (3.44)–(3.47), and with the same notation, the character ψl,rZε
n,k

(z)
is equal to the product of the following two terms:

n−2∏
i+1

ψ
(
tr
((

Iri

0(ri+1−ri)×ri

)
xi,i+1

))
ψ−1

(
tr
((

Iti+1

0(ti−ti+1)×ti+1

)
vi,i+1

))
(3.58)
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and

ψ
(
tr
(⎛⎝ 0(2n+l)×rn−1

Irn−1

0(2k−l−rn−1)×rn−1

⎞⎠ yn−1

))
ψ−1

(
tr
((

0(2k−l)×(2n+l) I2k−l
0(tn−1−2k+l)×(2n+l) 0

)
sn−1

))
.

In the next section, we will study Jψl,r
Zε

n,k

(τ ′).

4 Analysis of Jψl,r
Zε
n,k

(τ ′)

We apply the Mackey theory once again, and consider the set of double cosets

P(2k+2)n\GL2n(k+1)/Pr;2(n+k);t, (4.1)

where we denote
r = (r1, · · · , rn−1), t = (tn−1, · · · , t1).

By [16, p. 170], we can choose a set of representatives for (4.1) as follows. Consider n× (2n−1)
matrices k = (ki,j), with ki,j being non-negative integers, satisfying the following conditions:

n∑
i=1

ki,j = rj , 1 ≤ j ≤ n− 1;

n∑
i=1

ki,n = 2(n+ k);

n∑
i=1

ki,n+j = tn−j , 1 ≤ j ≤ n− 1;

2n−1∑
j=1

ki,j = 2(k + 1), 1 ≤ i ≤ n.

(4.2)

For such a matrix k = (ki,j), consider the Weyl element

wk = (wi,j) ∈ GL2n(k+1), (4.3)

where 1 ≤ i ≤ n, 1 ≤ j ≤ 2n− 1, and for i = 1, 2, · · · , n, wi,j are matrices of sizes 2(k+ 1)× rj

when 1 ≤ j ≤ n− 1, and of size 2(k + 1) × 2(n + k) when j = n, and finally, wi,n+j is of size
2(k + 1) × tn−j , when 1 ≤ j ≤ n − 1. Each matrix wi,j is divided into blocks: The rows in
wi,j are divided into 2n− 1 blocks of sizes ki,1, ki,2, · · · , ki,2n−1, respectively; and the columns
in wi,j are divided into n blocks of sizes k1,j , k2,j , · · · , kn,j , respectively. Thus, wi,j is a block
matrix (wf,si,j ), where 1 ≤ f ≤ 2n− 1, 1 ≤ s ≤ n; the matrix wf,si,j is of size ki,f × ks,j . Finally,
all blocks wf,si,j of wi,j are zero, except the (j, i)-th block, wj,ii,j , where we have wj,ii,j = Iki,j . The
semi-simplification of the restriction of τ ′ to Pr;2(n+k);t is the direct sum of the representations

indPr;2(n+k);t

Pr;2(n+k);t∩w−1
k P(2k+2)nwk

χwk , (4.4)

where for x ∈ Pr;2(n+k);t ∩ w−1
k P(2k+2)nwk,

χwk(x) = δ
1
2
P(2k+2)n

(χ1 ◦ det⊗ · · · ⊗ χn ◦ det)(wkxw−1
k ),
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as wk varies over the Weyl elements (4.3) described above, with the matrix k as in (4.2). As in
the previous section, only relevant wk contributes to our Jacquet module. That is, for irrelevant
wk, the Jacquet module of the representation (4.4) with respect to ψl,rZε

n,k
is zero. Here wk is

called irrelevant (with respect to ψl,rZε
n,k

) if for each γ in the Levi part of Pr;2(n+k);t, there exists

z ∈ Zεn,k, such that wkzw−1
k ∈ P(2k+2)n , and ψl,rZε

n,k
(γ−1zγ) 
= 1. Note that Zεn,k is the unipotent

radical of Pr;2(n+k);t, and that for z as above, since wkzw−1
k is a unipotent element of Pr;2(n+k);t,

one must have χk(z) = 1. Denote, for 1 ≤ i ≤ n, 1 ≤ j ≤ n− 1,

k′i,j = ki,2n−j .

Proposition 4.1 Assume that wk is relevant. Then the matrix k satisfies the following
properties:

(1) For all 1 ≤ i ≤ j ≤ n− 1, k′i,j = 0.
(2) For all 1 ≤ i ≤ n− 2 and 1 ≤ j ≤ n− i,

k′i+1,i+1 + k′i+2,i+1 + · · · + k′i+j,i+1 ≤ k′i,i + k′i+1,i + · · · + k′i+j−1,i.

In particular, k′n−1,n−1 ≤ k′n−2,n−2 ≤ · · · ≤ k′2,2 ≤ k′1,1.
(3) kn,n, kn−1,n−1 ≥ 2k − l.
(4) For all 1 ≤ i ≤ n− 1 and 1 ≤ j ≤ n− i, ki,j = 0.
(5) For all 1 ≤ i ≤ n− 1 and 1 ≤ j ≤ n− i,

ki+1,n−i + · · · + ki+j,n−i ≤ ki,n−i+1 + · · · + ki+j−1,n−i+1.

In particular, kn−1,2 ≤ kn−2,3 ≤ · · · ≤ k2,n−1 ≤ k1,n.

Proof Let 1 ≤ i ≤ n − 2, and let z ∈ Zεn,k be of the form (3.57), with Z1 = Ir , Y = 0,
C = 0, S = 0, and Z2 be of the form (3.46), such that all blocks vi,j are zero, except the
block vi,i+1, which we now denote by X . Note that X ∈Mti+1×ti . Write X as a block matrix
(Xk′s,i+1,k

′
e,i

)1≤s,e≤n, where Xk′s,i+1,k
′
e,i

∈ Mk′s,i+1×k′e,i
. Then a simple calculation shows that

wkzw
−1
k ∈ P(2k+2)n , if and only if Xk′s,i+1,k

′
e,i

= 0 for all 1 ≤ e < s ≤ n − 1. If wk is relevant,
then we must have, for all X as above, and all g ∈ GLti+1 and h ∈ GLti ,

ψ
(
tr
((

Iti+1

0(ti−ti+1)×ti+1

)
g−1

)
Xh

)
= 1.

This means that the matrix h
(

Iti+1

0(ti−ti+1)×ti+1

)
g−1 has the form of a block matrix

⎛⎜⎜⎜⎜⎜⎝
0 ∗ ∗ · · · ∗ ∗
0 0 ∗ . . . ∗ ∗
...

...
...

...
...

0 0 0 · · · 0 ∗
0 0 0 · · · 0 0

⎞⎟⎟⎟⎟⎟⎠ ,

where the rows are of sizes, k′1,i, k
′
2,i, · · · , k′n,i, respectively, and the columns are of sizes k′1,i+1,

k′2,i+1, · · · , k′n,i+1, respectively. Since the rank of this matrix is

ti+1 = k′1,i+1 + k′2,i+1 + · · · + k′n,i+1,
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we must have

k′1,i+1 = 0,

k′2,i+1 + k′3,i+1 + · · · + k′j,i+1 ≤ k′1,i + k′2,i + · · · + k′j−1,i, 1 ≤ j ≤ n.
(4.5)

From this it is easy to conclude the first two parts of the proposition. Next, we repeat the
argument with z ∈ Zεn,k of the form (3.57), with Z1 = Ir , Y = 0, C = 0, Z2 = Im−r, and S

with si = 0, for 1 ≤ i ≤ n − 2, and sn−1 = X ∈ M2(n+k)×tn−1 . As before, If wk is relevant,
then we must have, for all g ∈ GL2(n+k) and h ∈ GLtn−1 ,

ψ
(
tr
((

0(2k−l)×(2n+l) I2k−l
0(tn−1−2k+l)×(2n+l) 0

))
g−1Xh

)
= 1

for all X of the form
(∗ ∗

0 ∗
)

, where the size of the columns is k′n−1,n−1, k
′
n,n−1 and the size of

the rows is 2(n+ k) − kn,n, kn,n. This means that

h

(
0(2k−l)×(2n+l) I2k−l

0(tn−1−2k+l)×(2n+l) 0

)
g−1

has the form
(

0 ∗
0 0

)
, where ∗ is of size k′n−1,n−1×kn,n. Comparing ranks, we get the third part

of the proposition. The rest of the proposition is obtained similarly, by repeating the argument
with z of the form (3.57), with Z1 = Ir, S = 0, C = 0, Z2 = Im−r , and Y with yi = 0, for
1 ≤ i ≤ n − 2, and yn−1 = X ∈ Mrn−1×2(n+k), and next by considering z of the form (3.57),
with Z2 = Im−r, Y = 0, C = 0, S = 0, and S and Z1 such that all blocks xi,j are zero except
for the block xi,i+1 ∈Mri×ri+1 .

Proposition 4.1 implies that a relevant wk has the form

wk = (w,w′), (4.6)

where

w =

⎛⎜⎜⎜⎜⎜⎝
0 0 · · · 0 w1,n

0 0 · · · w2,n−1 w2,n

...
...

...
...

0 wn−1,2 · · · wn−1,n−1 wn−1,n

wn,1 wn,2 wn,n−1 wn,n

⎞⎟⎟⎟⎟⎟⎠
and

w′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 w1,2n−1

0 0 · · · w2,2n−2 w2,2n−1

...
...

...
...

0 wn−2,n+1 · · · wn−2,2n−2 wn−2,2n−1

wn−1,n+1 wn−1,n+2 wn−1,2n−2 wn−1,2n−1

wn,n+1 wn,n+2 wn,2n−2 wn,2n−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Note that in w the columns are of sizes r1, r2, · · · , rn−1, 2(n + k) and in w′, the columns
are of sizes tn−1, tn−2, · · · , t2, t1. The rows in both w and w′ are all of size 2(k + 1). Con-
sider the stabilizer Sk, of wk inside the Levi part of Pr;2(n+k);t, namely, the subgroup of
all diag(g1, · · · , gn−1, b, hn−1, · · · , h1), with gi ∈ GLri and hi ∈ GLti ; 1 ≤ i ≤ n − 1 and
b ∈ GL2(n+k), whose conjugation by wk lies in P2(k+1)n . This stabilizer can be found directly,
using similar computations as in the last proof, so we omit the details.
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Proposition 4.2 For relevant wk,

Sk = GLr1 × P r2kn−1,2,kn,2
× P r3kn−2,3,kn−1,3,kn,3

× · · · × P
rn−1
k2,n−1,k3,n−1,··· ,kn,n−1

× P
2(n+k)
k1,n,k2,n,··· ,kn,n

× P
tn−1
k′n−1,n−1,k

′
n,n−1

× P
tn−2
k′n−2,n−2,k

′
n−1,n−2,k

′
n,n−2

× · · · × P t1k′1,1,k
′
2,1,··· ,k′n,1

.

The proof of Proposition 4.1 shows more. It shows that, for relevant wk, if wkdiag(g1,
· · · , gn−1, b, hn−1, · · · , h1) supports the Jacquet module of the representation (4.4) with respect
to ψl,rZε

n,k
, then we have, in particular, the following relations:

hn−1

(
0(2k−l)×(2n+l) I2k−l

0(tn−1−2k+l)×(2n+l) 0

)
=

(
0k′n−1,n−1×(2(n+k)−kn,n) a

0 0

)
b, (4.7)

where a ∈Mk′n−1,n−1×kn,n
;

b

⎛⎝ 0(2n+l)×rn−1

Irn−1

0(2k−l−rn−1)×rn−1

⎞⎠ =

⎛⎜⎜⎜⎜⎜⎝
c1,2 c1,3 · · · c1,n
0 c2,3 · · · c2,n
...

...
...

0 0 · · · cn−1,n

0 0 · · · 0

⎞⎟⎟⎟⎟⎟⎠ gn−1, (4.8)

where ci,j ∈ Mki,n×kj,n−1 for 1 ≤ i ≤ n − 1, 2 ≤ j ≤ n. By Proposition 4.2, we may multiply
hn−1, b and gn−1 from the left by P tn−1

k′n−1,n−1,k
′
n,n−1

, P 2(n+k)
k1,n,k2,n,··· ,kn,n

and P
rn−1
k2,n−1,k3,n−1,··· ,kn,n−1

,
respectively. Since rank(a) = 2k−l, we may multiply b and hn−1 from the left by matrices of the
form diag(I2(n+k), α) and diag(β, Ik′n,n−1

), respectively, where α ∈ GLkn,n and β ∈ GLk′n−1,n−1
,

and replace (4.7) by

hn−1

(
0(2k−l)×(2n+l) I2k−l

0(tn−1−2k+l)×(2n+l) 0

)
=

(
0(2k−l)×(2n+l) I2k−l

0(tn−1−2k+l)×(2n+l) 0

)
b. (4.9)

Recall that k′n−1,n−1, kn,n ≥ 2k − l. Note also that the above modification of b from the left
does not change the form of (4.8). The last equation implies that b has the form

b =
(
b1 b2
0 b4

)
, b1 ∈ GL2n+l, b4 ∈ GL2k−l.

Using this in (4.8), and the fact that kn,n ≥ 2k − l, we conclude that the first rn−1 columns
of b4 must be zero. Since b4 is invertible, this forces rn−1 to be zero! By Proposition 3.1, this
means that r = 0 and ε = Im. This proves the following result.

Proposition 4.3 Assume that (r, ε, l) is relevant with respect to ψZn,k
. Then r = 0 and

ε = Im.

This simplifies the form of wk in (4.6). Now r1 = · · · = rn−1 = 0, and hence ki,j = 0 for all
1 ≤ i ≤ n and 1 ≤ j ≤ n− 1. Also, t1 = · · · = tn−1 = 2k. From Proposition 4.1, we have, for
1 ≤ i ≤ n− 2,

2k = ti+1

= k′i+1,i+1 + k′i+2,i+1 + · · · + k′n,i+1

≤ k′i,i + k′i+1,i + · · · + k′n−1,i

= ti − k′n,i = 2k − k′n,i.
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This implies that k′n,i = 0 for 1 ≤ i ≤ n− 2. Repeating this argument, for 1 ≤ i ≤ n− 3, we get

2k = k′i+1,i+1 + k′i+2,i+1 + · · · + k′n−1,i+1

≤ k′i,i + k′i+1,i + · · · + k′n−2,i

= 2k − k′n−1,i,

and hence k′n−1,i = 0 for 1 ≤ i ≤ n− 3. We continue by induction (using Proposition 4.1) and
get that

k′i,j = 0, (4.10)

when j ≤ i− 2 and 3 ≤ i ≤ n. Since

k′1,1 ≥ k′2,2 ≥ · · · ≥ k′n−1,n−1 ≥ 2k − l ≥ k,

let us write

k′i,i = k + ji, 1 ≤ i ≤ n− 1, (4.11)

where

k − l ≤ jn−1 ≤ · · · ≤ j2 ≤ j1 ≤ k. (4.12)

Denote j = (j1, j2, · · · , jn−1). Sometimes, it will be convenient to denote j0 = k and jn = k− l.
It follows that

k′i,i−1 = k − ji−1, 2 ≤ i ≤ n,

ki,n = ji−1 − ji + 2, 1 ≤ i ≤ n− 1, (4.13)

k1,n = k + jn−1 + 2.

We will re-denote w(j) = wk, and also, for 1 ≤ i, j ≤ n,

wi,j = wi,n−1+j .

Thus w(j) has the form

w(j) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w1,1 0 0 0 0 · · · 0 0 w1,n

w2,1 0 0 0 0 · · · 0 w2,n−1 w2,n

w3,1 0 0 0 0 · · · w3,n−2 w3,n−1 0
...

...
...

...
...

...
...

...
wn−2,1 0 wn−2,3 wn−2,4 0 · · · 0 0 0
wn−1,1 wn−1,2 wn−1,3 0 0 · · · 0 0 0
wn,1 wn,2 0 0 0 · · · 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4.14)

where the blocks wi,j are described through Proposition 4.1, with r = 0 and (4.10)–(4.13).
Re-denote Z̃n,k = ZIm

n,k (ε = Im) and ψl
Z̃n,k

= ψl,0
ZIm

n,k

(r = 0). Then Z̃n,k is the subgroup of

elements of the form

z̃n,k :=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

I2(n+k) S ∗ · · · ∗ ∗
I2k X1 · · · ∗ ∗

I2k · · · ∗ ∗
. . .

...
...

I2k Xn−2

I2k

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (4.15)
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and the character is given by

ψl
Z̃n,k

(z̃n,k) = ψ−1
(
tr(X1 + · · · +Xn−2) + tr

((
0 I2k−l

0l×(2n+l) 0

)
S
))
. (4.16)

(see (3.57)–(3.58)). Denote the Levi subgroup of P2(n+k),(2k)n−1 byM2(n+k),(2k)n−1 . We identify

M2(n+k),(2k)n−1 = GL2(n+k) × GL×(n−1)
2k .

Note that the stabilizer of the character ψl
Z̃n,k

in M2(n+k),(2k)n−1 is the subgroup of GL2(n+k) ×
GL×(n−1)

2k consisting of elements of the following type⎛⎜⎜⎝
(
h1 h2

0 a

)
0

0
(
a b
0 d

)Δ(n−1)

⎞⎟⎟⎠ ∈ GL2(n+k) × GL×(n−1)
2k , (4.17)

where h1 ∈ GL2n+l, a ∈ GL2n−l, and d ∈ GLl. We denote this stabilizer by Sn,k,l. Denote by
S(w(j)) the stabilizer of P(2k+2)nw(j) in M2(n+k),(2k)n−1 . By Proposition 4.2, S(w(j)) consists
of all elements of the form ⎛⎜⎜⎜⎝

h
g2

. . .
gn

⎞⎟⎟⎟⎠ , (4.18)

where

h =

⎛⎜⎜⎜⎝
h1 ∗ · · · ∗

h2 · · · ∗
. . .

...
hn

⎞⎟⎟⎟⎠ ∈ GL2(n+k) (4.19)

with h1 ∈ GLk−j1+2; hi ∈ GLji−1−ji+2, for 2 ≤ i ≤ n−1; hn ∈ GLk+jn−1+2, and, for 2 ≤ s ≤ n,

gs =
(
as bs

ds

)
∈ GL2k, (4.20)

where as ∈ GLk+jn+1−s .

Proposition 4.4 Let Aj be the subset of elements a ∈ M2(n+k),(2k)n−1 , such that w(j)a
supports Jψl

Z̃n,k

(τ ′). Then

Aj = S(w(j))Sn,k,l.

Proof Let a = diag(h, g2, · · · , gn) be such that w(j)a supports Jψl

Z̃n,k

(τ ′); h ∈ GL2(n+k),

gi ∈ GL2k, 2 ≤ i ≤ n. Then we see in the proof of Proposition 4.1 that we have the following
relations:

gs+1g
−1
s =

(
αs βs
0 δs

)
, (4.21)
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where αs ∈Mk+jn−s×k+jn−s+1 , 2 ≤ s ≤ n− 1, and

g2

(
0(2k−l)×(2n+l) I2k−l

0l×(2n+l) 0

)
=

(
0(k+jn−1)×(2n+k−jn−1−2) γ
0(k−jn−1)×(2n+k−jn−1−2) 0

)
h, (4.22)

where γ ∈Mk+jn−1×k+jn−1+2. Since k+ jn−s ≥ k+ jn−s+1, we see that rank(αs) = k+ jn−s+1.
We may multiply gs+1 from the left by any matrix from P 2k

k+jn−s,k−jn−s
by the description of

(4.20). Thus, considering a, modulo S(w(j)) from the left, we may replace (4.21) by

gs+1 =
(
Ik+jn−s+1 β′

s

0 δ′s

)
gs,

where δ′s ∈ GLk−jn−s+1 . Again, by (4.20), we conclude that modulo S(w(j)) from the left, we
may assume that a is such that g2 = g3 = · · · = gn = g. Now in (4.22), rank(γ) = 2k − l,
and since k + jn−1 + 2 > 2k − l, we may multiply h from the left by an element of the form
diag(I2n+k−jn−1−2, η), η ∈ GLk+jn−1+2, and replace (4.22) by

g

(
0(2k−l)×(2n+l) I2k−l

0l×(2n+l) 0

)
=

(
0(2k−l)×(2n+l) I2k−l

0l×(2n+l) 0

)
h.

This implies that g =
(
α β
0 δ

)
, where α ∈ GL2k−l, and h =

(
c x
0 α

)
. By (4.17), this means

that modulo S(w(j)) from the left, a lies in Sn,k,l. This proves the proposition.

As an immediate corollary, we get the following result.

Proposition 4.5 Up to semi-simplification,

Jψl

Z̃n,k

(τ ′) ∼=
⊕
j

Jψl

Z̃n,k

(indSn,k,l·Z̃n,k

Sn,k,l·Z̃n,k∩w(k)−1P(2k+2)nw(j)
(δ

1
2
P(2k+2)n

· χ)w(j)), (4.23)

where w(j) varies over all Weyl elements (4.14).

Each of the summands in (4.23) is isomorphic to

indSn,k,l

S(w(j))
n,k,l

(δ
Z̃

w(j)
n,k \Z̃n,k

· (δ 1
2
P(2k+2)n

· χ)w(j)), (4.24)

where
Z̃
w(j)

n,k = Z̃n,k ∩ w(j)−1P(2k+2)nw(j)

and
S(w(j))

n,k,l := Sn,k,l ∩ w(j)−1P(2k+2)nw(j).

The isomorphism is induced by the map which sends a function f in the space of

indSn,k,l·Z̃n,k

Sn,k,l·Z̃n,k∩w(k)−1P(2k+2)nw(j)
(δ

1
2
P(2k+2)n

· χ)w(j) to the function on Sn,k,l given by

e �→
∫
Z̃

w(j)
n,k \Z̃n,k

f(ze)ψl
Z̃n,k

(z−1)dz.

Since
S(w(j))

n,k,l = Sn,k,l ∩ S(w(j)),
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we see from (4.18)–(4.20) and (4.17) that an element in S(w(j))

n,k,l must be of the form

((
c x
0 a

)
,

(
a b
0 d

)Δ(n−1) )
∈ GL2n+2k × GLΔ(n−1)

2k

and
diag(h; g2, · · · , gn)

with h as in (4.19) and gs as in (4.20) for s = 2, 3, · · · , n. Hence S(w(j))

n,k,l is the subgroup of the
elements of the form

(
⎛⎜⎜⎜⎜⎜⎝
h1 ∗ · · · ∗ ∗

h2 · · · ∗ ∗
. . .

...
...

hn ∗
εn+1

⎞⎟⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎜⎝
εn+1 ∗ · · · ∗ ∗

εn · · · ∗ ∗
. . .

...
...

ε2 ∗
ε1

⎞⎟⎟⎟⎟⎟⎠
Δ(n−1)

)
(4.25)

in GL2(n+k) × GL×(n−1)
2k , where h1 ∈ GLk−j1+2, ε1 ∈ GLk−j1 ; for i = 2, 3, · · · , n − 1, hi ∈

GLji−1−ji+2 and εi ∈ GLji−1−ji ; hn ∈ GLjn−1−k+l+2, εn ∈ GLjn−1−k+l, and εn+1 ∈ GL2k−l.
Denote in (4.24)

δ
(w(j))

n,k,l = δ
Z̃

w(j)
n,k \Z̃n,k

(δ
1
2
P(2k+2)n

)w(j), χ
(w(j))

n,k,l = χw(j). (4.26)

Proposition 4.6 The character δ
(w(j))

n,k,l in (4.26) takes an element in S(w(j))

n,k,l of the form
(4.25) to

n∏
i=1

| dethi|mi ·
n+1∏
i=1

| det εi|si (4.27)

with mi = n(k + 1)− 2(i+ k) + 1 + ji−1, si = (n+ k)(2− n)− 1− ji−1 for i = 1, 2, · · · , n, and

sn+1 = −n(n− 1); and the character χ
(w(j))

n,k,l in (4.26) takes an element in S(w(j))

n,k,l of the form
(4.25) to

n∏
i=1

χi(dethi · det ε1 · · · d̂et εi · · ·det εn+1), (4.28)

which can also be written as
n∏
i=1

χi(det hi) ·
n∏
i=1

(χ1 · · · χ̂i · · ·χn)(det εi) ·
( n∏
i=1

χi

)
(det εn+1). (4.29)

Proof Let a = diag(h, g, · · · , g) be an element in S(w(j))

n,k,l of the form (4.25) (h ∈ GL2(n+k),
and g ∈ GL2k is repeated n − 1 times). Then w(j)aw(j)−1 ∈ P(2k+2)n . A straightforward
multiplication shows that the block diagonal of w(j)aw(j)−1 consists of the following matrices
in GL2k+2: The first block is

w1,1htw1,1 + w1,ng
tw1,n; (4.30)
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the next n− 2 blocks are

ws,1htws,1 + ws,n−s+1gtws,n−s+1 + ws,n−s+2gtws,n−s+2, s = 2, · · · , n− 1; (4.31)

and the last block is

wn,1htwn,1 + wn,2gtwn,2. (4.32)

We used the form (4.14). Each matrix (4.30), (4.31), or (4.32) is a block upper triangular, and
its diagonal blocks are, in the notation of (4.25), for 1 ≤ i ≤ n,

diag(hi, εn+1, εn, · · · , ε̂i, · · · , ε1).

This contributes to the character (δ
1
2
P(2k+2)n

· χ)w(j) the product of the following two terms:

| det(hi) det(ε1) · · · d̂et(εi) · · · det(εn+1)|(n−2i+1)(k+1)

and
χi(det(hi) det(ε1) · · · · d̂et(εi) · · · · · det(εn+1)).

Altogether, we get that the character (δ
1
2
P(2k+2)n

· χ)w(j) evaluated at an element in S(w(j))

n,k,l of
the form (4.25) is given by the product of

( n∏
i=1

| dethi|n−2i+1
)k+1

·
n∏
i=1

χi(det hi)

and ( n∏
i=1

| det εi|2i−1−n
)k+1

·
n∏
i=1

(χ1 · · · χ̂i · · ·χn)(det εi) ·
( n∏
i=1

χi

)
(det εn+1).

Let us describe the subgroup Z̃
w(j)

n,k . Write an element of Z̃
w(j)

n,k in the form (4.15)⎛⎜⎜⎜⎜⎜⎜⎜⎝

I2(n+k) Z1,2 Z1,3 · · · Z1,n−1 Z1,n

I2k Z2,3 · · · Z2,n−1 Z2,n

I2k · · · Z3,n−1 Z3,n

. . .
...

...
I2k Zn−1,n

I2k

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (4.33)

For 2 ≤ r ≤ n, write Z1,r as a block matrix (Z(�,t)
1,r )�,t of size n × 2 (1 ≤ 
 ≤ n, t = 1, 2)

where Z
(1,1)
1,r ∈ M(k−j1+2)×(k+jn−r+1) and Z

(1,2)
1,r ∈ M(k−j1+2)×(k−jn−r+1); for 2 ≤ 
 ≤ n −

1, Z(�,1)
1,r ∈ M(j�−1−j�+2)×(k+jn−r+1) and Z

(�,2)
1,r ∈ M(j�−1−j�+2)×(k−jn−r+1); finally, Z(n,1)

1,r ∈
M(k+jn−1+2)×(k+jn−r+1) and Z

(n,2)
1,r ∈ M(k+jn−1+2)×(k−jn−r+1). Then these blocks must satisfy

the conditions

Z
(n+2−r,1)
1,r = Z

(n+3−r,1)
1,r = · · · = Z

(n,1)
1,r = 0, 2 ≤ r ≤ n; (4.34)

Z
(n+3−r,2)
1,r = · · · = Z

(n,2)
1,r = 0, 3 ≤ r ≤ n. (4.35)
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The rest of the 2k× 2k matrices Zi,j in (4.33) has the following form. Let 2 ≤ i ≤ n− 1. Then

Zi,i+2 = · · · = Zi,n = 0. (4.36)

Write

Zi,i+1 =

(
Z

(1,1)
i,i+1 Z

(1,2)
i,i+1

Z
(2,1)
i,i+1 Z

(2,2)
i,i+1

)
,

where Z(1,1)
i,i+1 ∈M(k+jn−i+1)×(k+jn−i).

Now we can compute the value of the character δ
Z̃

w(j)
n,k

on elements diag(h, g, · · · , g) in S(w(j))

n,k,l

of the form (4.25). The contribution of h to this character is

( n∏
i=1

| dethi|2k(n−i)+(k−ji−1)
)
| det εn+1|k−jn−1 ,

j0 = k. The contribution of g to δ
Z̃

w(j)
n,k

is

( n∏
i=1

| det εi|−(n+k)(n−1)−(n−i)(k+2)+(i−2)k+ji−1

)
| det εn+1|−(n+k)(n−1)+(n−2)k+jn−1 .

Altogether, the character δ
Z̃

w(j)
n,k

evaluated at elements in S(w(k))
n,k,l of the form (4.25) is

| det εn+1|n(1−n)
n∏
i=1

| dethi|2k(n−i)+(k−ji−1)| det εi|(n+k)(1−n)+(1−n)(k+2)+(i−2)k+ji−1 .

Now, the character δZ̃n,k
evaluated at the elements in S(w(k))

n,k,l of the above form is

| deth1 · · · dethn · det εn+1|2k(n−1) · | det ε1 · · · det εn+1|2(n+k)(1−n).

Since the character δ
Z̃

w(j)
n,k \Z̃n,k

(of S(w(j))

n,k,l ) is the quotient of δZ̃n,k
by δ

Z̃
w(j)
n,k

, we get that

δ
Z̃

w(j)
n,k

\Z̃n,k
evaluated at the elements of S(w(j))

n,k of the above form is

| det εn+1|n(1−n)
n∏
i=1

| dethi|2k(i−1)−(k−ji−1)| det εi|(n+k)(1−n)+(n−i)(k+2)−(i−2)k−ji−1 .

Putting together the above calculations, we obtain the desired formula.

Summarizing the last three propositions, we obtain the following result.

Proposition 4.7 Up to semi-simplification of Sn,k,l-modules

Jψl

Z̃n,k

(τ ′) ∼=
⊕
w(j)

indSn,k,l

S(w(j))
n,k,l

(δ
(w(j))

n,k,l · χ(w(j))

n,k,l ),

where w(j) runs over all relevant representatives given in (4.14) and (4.10)–(4.13), and the
inducing characters are given in Proposition 4.6.
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5 Proof of Theorem 2.1

By Proposition 4.3 and (3.41), we have, up to semi-simplification,

JψZn,k
(IndSO4n(k+1)

Q2n(k+1)
(τ ′)) ∼= JψZn,k

(ind
Q(2k)n−1

Qn,k,r=0:ε=Im
(σIm

(0)))

≡
k⊕
l=0

indSOΔn
2k ×SO4n+2k

γ−1
l,0Qn,k,0;Imγl,0∩(SOΔn

2k ×SO4n+2k)
σIm

[0];l. (5.1)

The subgroup γ−1
l,0 Qn,k,0;Imγl,0 ∩ (SOΔn

2k × SO4n+2k) is described in (3.42). Applying to the
second factor in (3.42) conjugation by⎛⎜⎜⎝

I2n+l

Ik−l 0
0 Ik−l

I2n+l 0

⎞⎟⎟⎠ ,

the typical summand in (5.1) becomes

indSOΔn
2k ×SO4n+2k

Rl
n,k

σ′
l, (5.2)

where Rln,k is the subgroup of elements

(⎛⎜⎜⎝
e1 e2 e3 e4

d4 −c3 e′3
−b2 a1 e′2

e∗1

⎞⎟⎟⎠
Δn

,

⎛⎜⎜⎝
a4 a3 b4 b3
0 a1 b2 b′4
0 c3 d4 a′3
0 0 0 a∗4

⎞⎟⎟⎠)
∈ SOΔn

2k × SO4n+2k, (5.3)

where e1 ∈ GLl,
(
d4 −c3
−b2 a1

)
∈ SO2(k−l), a1 is of size (k − l) × (k − l), and a4 ∈ GL2n+l, as

before. The representation σ′
l is expressed in terms of Jψl,0

Zn,k;Im

(τ ′). Taking into account the

conjugation by the element (3.56), we get that the representation (5.2) is isomorphic to

indSOΔn
2k ×SO4n+2k

Rl
n,k

σl, (5.4)

where

σl

(⎛⎜⎜⎝
e1 e2 e3 e4

d4 −c3 e′3
−b2 a1 e′2

e∗1

⎞⎟⎟⎠
Δn

,

⎛⎜⎜⎝
a4 a3 b4 b3
0 a1 b2 b′4
0 c3 d4 a′3
0 0 0 a∗4

⎞⎟⎟⎠)

= | det a4 · det e1| 2n+4k−2nk−1
2 Jψl

Z̃n,k

(τ ′)

·
(
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎝
a4 0 −b4 a3

0 e1 e2 e3
0 0 d4 −c3
0 0 −b2 a1

⎞⎟⎟⎠ 0

0

⎛⎜⎜⎝
e1 e2 e3 e4

d4 −c3 e′3
−b2 a1 e′2

e∗1

⎞⎟⎟⎠
Δ(n−1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
)
. (5.5)
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Let ϕ be the isomorphism which takes the element

(⎛⎜⎜⎝
e1 e2 e3 e4

d4 −c3 e′3
−b2 a1 e′2

e∗1

⎞⎟⎟⎠
Δn

,

⎛⎜⎜⎝
a4 a3 b4 b3
0 a1 b2 b′4
0 c3 d4 a′3
0 0 0 a∗4

⎞⎟⎟⎠)
∈ Rln,k

to ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎝
a4 0 −b4 a3

0 e1 e2 e3
0 0 d4 −c3
0 0 −b2 a1

⎞⎟⎟⎠ 0

0

⎛⎜⎜⎝
e1 e2 e3 e4

d4 −c3 e′3
−b2 a1 e′2

e∗1

⎞⎟⎟⎠
Δ(n−1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Denote by R̂ln,k ⊂ GL2n(k+1) the image of ϕ. By (5.5) and Proposition 4.7, σl is expressed
through the representations

ResR̂l
n,k

(indSn,k,l

S(w(j))
n,k,l

(δ
(w(j))

n,k,l · χ(w(j))

n,k,l )).

It is clear that Sn,k,l = S(w(j))

n,k,l · R̂ln,k. Hence

ResR̂l
n,k

(indSn,k,l

S(w(j))
n,k,l

(δ
(w(j))

n,k,l · χ(w(j))

n,k,l )) ∼= ind
R̂l

n,k

R̂l
n,k∩S(w(j))

n,k,l

(δ̂
(w(j))

n,k,l · χ̂(w(j))

n,k,l ), (5.6)

where δ̂
(w(j))

n,k,l and χ̂
(w(j))

n,k,l are the restriction of the characters δ
(w(j))

n,k,l and χ
(w(j))

n,k,l , respectively,

to the subgroup Ŝ(w(j))

n,k,l := R̂ln,k∩S(w(j))

n,k,l . The subgroup Ŝ(w(j))

n,k,l consists of elements of the type⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎝
a4 0 −b4 a3

0 e1 e2 e3
0 0 d4 −c3
0 0 −b2 a1

⎞⎟⎟⎠ 0

0

⎛⎜⎜⎝
e1 e2 e3 e4

d4 −c3 e′3
−b2 a1 e′2

e∗1

⎞⎟⎟⎠
Δ(n−1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(5.7)

with

a4 =

⎛⎜⎜⎜⎝
h1 ∗ · · · ∗

h2 · · · ∗
. . .

...
hn

⎞⎟⎟⎟⎠ ∈ GL2n+l, e1 =

⎛⎜⎜⎜⎝
ε∗1 ∗ · · · ∗

ε∗2 · · · ∗
. . .

...
ε∗n

⎞⎟⎟⎟⎠ ∈ GLl,

where hi ∈ GLji−1−ji+2, εi ∈ GLji−1−ji for i = 1, · · · , n (letting j0 = k, jn = k − l). From

(4.27), the character δ̂
(w(j))

n,k,l evaluated at elements in Ŝ(w(j))

n,k,l of the form (5.7) is

n∏
i=1

| dethi|n(k+1)−2(i+k)+1+ji−1 ·
n∏
i=1

| det εi|(k−1)(1−n)+k−ji−1 , (5.8)
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and from (4.29), the character χ̂
(w(j))

n,k,l is

n∏
i=1

χi(det hi) ·
n∏
i=1

χ−1
i (det εi). (5.9)

Define

Sln,k(w(j)) := ϕ−1(Ŝ(w(j))

n,k,l ). (5.10)

This is a subgroup of Rln,k. Define also

δln,k(w(j)) := δ̂
(w(j))

n,k,l ◦ ϕ and χln,k(w(j)) := χ̂
(w(j))

n,k,l ◦ ϕ. (5.11)

Then the induced representation (5.6) is pulled back to

ind
Rl

n,k

Sl
n,k(w(j))

(δln,k(w(j)) · χln,k(w(j))). (5.12)

Hence, by (5.1) and Proposition 4.7, we obtain the following proposition.

Proposition 5.1 Up to semi-simplification of SOΔn
2k × SO4n+2k-modules,

JψZn,k
(IndSO4n(k+1)

Q2n(k+1)
(τ ′))

≡
k⊕
l=0

[⊕
w(j)

indSOΔn
2k ×SO4n+2k

Rl
n,k

(δ · ind
Rl

n,k

Sl
n,k(w(j))

(δln,k(w(j)) · χln,k(w(j))))
]
,

where δ is given by

δ
(⎛⎜⎜⎝

e1 e2 e3 e4
d4 −c3 e′3
−b2 a1 e′2

e∗1

⎞⎟⎟⎠
Δn

,

⎛⎜⎜⎝
a4 a3 b4 b3
0 a1 b2 b′4
0 c3 d4 a′3
0 0 0 a∗4

⎞⎟⎟⎠)
= | det a4 · det e1| 2n+4k−2nk−1

2 ,

and w(j) runs over all relevant representatives given in (4.14) and (4.10)–(4.13).

From now on, in order to simplify our notation, we identify

SOΔn
2k × SO4n+2k = SO2k × SO4n+2k.

However, we still use the same notation for other data. Hence we consider the following induced
representations:

indSO2k×SO4n+2k

Rl
n,k

(δ · ind
Rl

n,k

Sl
n,k(w(j))

(δln,k(w(j)) · χln,k(w(j)))), (5.13)

which is the same as

indSO2k×SO4n+2k

Sl
n,k

(w(j))
(δ · δln,k(w(j)) · χln,k(w(j))). (5.14)

Let us specify the data in (5.14). By (5.7) and the definition of ϕ, the subgroup Sln,k(w(j))
consists of the elements of the form

(⎛⎜⎜⎝
e1 ∗ ∗

d4 −c3
−b2 a1

∗
e∗1

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
a4 ∗ ∗

a1 b2
c3 d4

∗
a∗4

⎞⎟⎟⎠)
∈ SO2k × SO4n+2k,
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where e1 ∈ GLl and a4 ∈ GL2n+l are given respectively by

e1 =

⎛⎜⎜⎜⎝
ε1 ∗ · · · ∗

ε2 · · · ∗
. . .

...
εn

⎞⎟⎟⎟⎠ , a4 =

⎛⎜⎜⎜⎝
h1 ∗ · · · ∗

h2 · · · ∗
. . .

...
hn

⎞⎟⎟⎟⎠ ,

as in (5.7). By (5.8)–(5.9) and (5.11), and by the definition of δ in the last proposition, we
get that the character δ · δln,k(wk) · χln,k(wk) evaluated at the elements above of the subgroup
Sln,k(w(j)) is given by

n∏
i=1

χi(det hi) · | dethi|
4(n−i)+2ji−1+1

2 ·
n∏
i=1

χi(det εi) · | det εi|
2ji−1+1

2 . (5.15)

In order to prove Theorem 2.1, it is enough to consider, by Proposition 5.1 and (5.13)–(5.14),
for 0 ≤ l ≤ k and w(j), as above,

HomSO2k×SO4n+2k
([indSO2k×SO4n+2k

Sl
n,k(w(j))

(δ · δln,k(w(j)) · χln,k(w(j)))] ⊗ σ∨ ⊗ πω
n(k+1)
0 , 1).

The assumption of Theorem 2.1 implies that there are l and w(j), such that this Hom-space is
nonzero. In this case, we get, by Frobenius reciprocity, that

HomSl
n,k(w(j))(σ

∨ ⊗ πω
n(k+1)
0 ,Δ · (δ · δln,k(w(j)) · χln,k(w(j)))−1) 
= 0, (5.16)

where Δ is the modular function of the subgroup Sln,k(w(j)) (recall that “ind” denotes non-
normalized compact induction). The character Δ takes an element, as above, in Sln,k(w(j))
to

n∏
i=1

| det εi|ji−1+ji−1 ·
n∏
i=1

| dethi|4(n−i)+ji−1+ji+1, (5.17)

j0 = k, jn = k − l. This and (5.15) show that the character

Δ
1
2 · (δ · δln,k(wk) · χln,k(wk))−1

takes an element, as above, in Sln,k(w(j)) to

n∏
i=1

(χ−1
i ◦ | det |

ji−ji−1
2 )(hi) ·

n∏
i=1

(χ−1
i ◦ | det |

ji−ji−1
2 )(εi). (5.18)

Thus, if the Hom-space in (5.16) is nonzero, then the irreducible, unitary, generic, unramified
representation σ∨ of SO2k(F ) can be embedded inside a normalized induced representation

IndSO2k

Qk−j1,j1−j2,··· ,jn−2−jn−1,jn−1−k+l

( n⊗
i=1

χ−1
i ◦ | det |

ji−ji−1
2 ⊗ η

)
, (5.19)

where η is an irreducible, unramified representation of SO2(k−l)(F ). Recall that

Qk−j1,j1−j2,··· ,jn−2−jn−1,jn−1−k+l = Q
(2k)
k−j1,j1−j2,··· ,jn−2−jn−1,jn−1−k+l
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denotes the standard parabolic subgroup of SO2k, whose Levi part is isomorphic to

GLk−j1 × GLj1−j2 × · · · × GLjn−2−jn−1 × GLjn−1−k+l × SO2(k−l).

Similarly, πω
n(k+1)
0 can be embedded inside a normalized induced representation

IndSO4n+2k

Q
k−j1+2,j1−j2+2,··· ,jn−2−jn−1+2,jn−1−k+l+2,1k−l

( n⊗
i=1

χ−1
i ◦ | det |

ji−ji−1
2

)
⊗

( k−l⊗
j=1

ξj

)
, (5.20)

where ξ1, · · · , ξk−l are unramified characters of F ∗ and

Qk−j1+2,j1−j2+2,··· ,jn−2−jn−1+2,jn−1−k+l+2,1k−l

denotes the standard parabolic of SO4n+2k, whose Levi part is isomorphic to

GLk−j1+2 × GLj1−j2+2 × · · · × GLjn−2−jn−1+2 × GLjn−1−k+l+2 × GL×(k−l)
1 .

The parabolic induction (5.20) admits a unique maximal orbit (over the algebraic closure of F )
of degenerate Whittaker models, namely, the Richardson orbit of

Qk−j1+2,j1−j2+2,··· ,jn−2−jn−1+2,jn−1−k+l+2,1k−l

(see the proof of Prop. II.1.3 in [14]). It is easy to see that this orbit corresponds to a partition
of the form

[(2n+ 2(k − l) − 1)(2n+ 1)(2u3)(2u4) · · · ] (5.21)

with ui nonnegative integers. Thus all partitions corresponding to any degenerate Whittaker
model of π are majorized by (5.21). Therefore, if we assume that π has a degenerate Whittaker
model corresponding to an orthogonal partition of the form [(2n+2k−1) · · · ] (e.g., [(2n+2k−
1)(2n+ 1)]) then it follows that

2n+ 2k − 1 ≤ 2n+ 2(k − l) − 1,

and hence l = 0.
We reach the same conclusion if we assume that σ is unitary and generic. In this case, η must

be generic, and σ is actually equal to the representation (5.19). Recall that χi(x) = ui(x)|x|αi ,
where ui is a unitary character and αi is real. Recall also that in (2.4), we made the choice
that 0 ≤ αi <

1
2 , for 1 ≤ i ≤ n. If one of the integers

k − j1, j1 − j2, · · · , jn−2 − jn−1, jn−1 − k + l

is larger than 1, then the representation (5.19) can not have a generic constituent. Since σ is
generic, all these integers must be either 0, or 1, that is,

ji − ji−1 = 0,−1, 1 ≤ i ≤ n.

If there exists an index i, such that ji − ji−1 = −1, then the corresponding exponent in (5.19)
satisfies

−αi + ji − ji−1

2
= −αi − 1

2
≤ −1

2
.
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This contradicts the main theorem in [13], which implies, in our case, that the exponents of
an irreducible, unitary, generic, unramified representation σ of SO2k lie in the open interval(− 1

2 ,
1
2

)
. We conclude that

k = j1 = j2 = · · · = jn−1 = k − l.

In particular, l = 0. We proved that either one of the two assumptions (1) or (2) in Theorem
2.1 implies that l = 0. We conclude that j1 = j2 = · · · = jn−1 = k, and w(j) is determined
uniquely. In this case, the subgroup S0

n,k consists of the elements of the form

(
g′,

⎛⎝a4 ∗ ∗
g ∗

a∗4

⎞⎠)
∈ SO2k × SO4n+2k, (5.22)

where for g ∈ SO2k, g′ =
(

Ik
−Ik

)
g

( −Ik
Ik

)
; a4 ∈ GL2n is of the form

a4 =

⎛⎜⎜⎜⎝
h1 ∗ · · · ∗

h2 · · · ∗
. . .

...
hn

⎞⎟⎟⎟⎠ ,

where hi ∈ GL2, for i = 1, 2, · · · , n. By (5.18), the character Δ · (δ · δ0n,k(w(j)) ·χ0
n,k(w(j)))−1

is

δ
1
2
Q2n

((diag(h1, · · · , hn), I2k)) ·
n∏
i=1

χ−1
i (det hi),

where (diag(h1, · · · , hn), I2k) ∈ GL×n
2 × SO2k. Hence the Hom-space condition (5.16) can be

written as

Hom
Q

(2n+k)
2n

(πω
n(k+1)
0 , δ

1
2
Q2n

⊗ (χ−1
1 ◦ det) ⊗ · · · ⊗ (χ−1

n ◦ det) ⊗ σ1), (5.23)

where σ1(g) = σ(g′). By Frobenius reciprocity, the Hom-space (5.23) is isomorphic to

HomSO4n+2k
(π, IndSO4n+2k

Q2n
((χ−1

1 ◦ det) ⊗ · · · ⊗ (χ−1
n ◦ det) ⊗ σ1)). (5.24)

We proved that if the Hom-space in Theorem 2.1 is nonzero, then the Hom-space in (5.24) is
non-zero. When n is even, the representation

IndSO4n+2k

Q2n
((χ−1

1 ◦ det) ⊗ · · · ⊗ (χ−1
n ◦ det) ⊗ σ1) (5.25)

shares the same unramified constituent with the representation

IndSO4n+2k

Q2n
(τ | det | 12 ⊗ σ1), (5.26)

and hence π = πω
n(k+1)
0 is isomorphic to the spherical sub-quotient of (5.26). Note that σ1

∼=
(σ)ω

k
0 . When n is odd, the representation (5.25) shares the same unramified constituent with

the representation

IndSO4n+2k

Q2n
(τ | det | 12 ⊗ (σ1)ω0) = IndSO4n+2k

Q2n
(τ | det | 12 ⊗ (σ)ω

k+1
0 ), (5.27)
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and hence πω
n(k+1)
0 = πω

k+1
0 is isomorphic to the spherical sub-quotient of (5.27). Therefore π

is isomorphic to the spherical sub-quotient of

IndSO4n+2k

Q2n
(τ | det | 12 ⊗ σ).

In both cases, we get that π is isomorphic to the spherical sub-quotient of

IndSO4n+2k

Q2n
(τ | det | 12 ⊗ (σ)ω

k(n+1)
0 ).

This completes the proof of Theorem 2.1.
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