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1 Introduction

Let m be an irreducible, automorphic, cuspidal representation of SOy4p42k(A), where A is
the Adele ring of a number field F', and SOy, 1ok is the split special orthogonal group in 4n+ 2k
variables, regarded as an algebraic group over F'. Langlands functoriality predicts that 7 lifts
to an irreducible automorphic representation II of GLyy, o2, (A). Moreover, II is expected to lie
inside a parabolic induction from a tensor product of Speh blocks (see [1]). In particular, there
will be irreducible, automorphic, cuspidal representations 7 of GL,,_(A), such that L (7 x T, 5)
(the partial L-function) has a pole at a positive half integer. For example, if n, = 4n + 2k,
then this pole should be at s = 1, and one expects that IT = 7. Otherwise, when n, < 4n + 2k
and the largest (real) pole of L (7 x 7,s) is strictly larger than 1, one expects that 7 should
be a CAP representation, with 7 figuring in the cuspidal data of II.

In this paper and its sequel (see [6]), we will consider m with the property that there exists
an irreducible, automorphic, cuspidal representation 7 of GLa, (A), such that L¥(7 x 7, s) has a
pole at s = %, and L°(7 x 7, 5) is holomorphic at R(s) > %, that is, s = % is the right most pole
of L¥(mx 7, s). The conjecture is then that II is nearly equivalent to an irreducible automorphic
representation, which is parabolically induced from A(7,2) ® I', where A(7,2) is a Speh block
of length two (this is an irreducible, square integrable representation of GLy4,(A)) and II' is an
irreducible, automorphic representation of GLax(A), lifted from an irreducible, automorphic,
cuspidal representation o of SO9(A). We will add one more assumption on 7, namely,

O(m) =[(2n+ 2k - 1)(2n + 1)],
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where O(m) is the set of all unipotent orbits O in SOy4y, 421, such that 7 has a non-trivial Fourier
coefficient corresponding to O, and for all @' > O, 7 has no non-trivial Fourier coefficients
corresponding to O (see [8] and [11, Section 4] for more detailed discussions of these notions).
We remark that in the spirit of Conjecture 4.1 in [11], [(2n+2k—1)(2n+1)] catches the maximal
possible partition of 4n+2k, whose corresponding unipotent orbits in SOy, 425 support non-zero
Fourier coefficients for the irreducible cuspidal automorphic representations m of SO, 12k (A)
with the above L-function conditions. With this additional assumption, we will be able to prove
that o above can be taken to be (cuspidal and) generic. Moreover, we can construct such a
representation o by use of a generalized descent construction, as is called the endoscopy descent
in [11], starting with 7 and 7 as above. We remark that the work of Arthur on the endoscopy
classification of the discrete spectrum in [1] provides each cuspidal automorphic representation
7 a global Arthur parameter, while the work presented here and in [11] in general is to give (to
construct) explicitly the corresponding global Arthur parameter for 7 based on the conditions
on L-functions and on Fourier coefficients (i.e., invariants) attached to .

Let us outline the construction of . The full details will appear in a sequel to this paper
(see [6]), where we will also show that 7 above must be of symplectic type, namely, its exterior
square L-function has a pole at s = 1. Then it follows that the Eisenstein series on (split)
SOu4pn(k+1)(A) corresponding to the parabolic induction from A(7,k + 1)|det-|* has a simple
pole at s = % Denote the residual representation by ©,. The representation A(r, k + 1)
is the Speh block (corresponding to 7) of length k + 1, which is the residual representation of
GLap(r41)(A) generated by the residues of the Eisenstein series on GLay,(441)(A) corresponding
to the parabolic induction from

T|det-|g ®T|det-|§_1 ®7’|det-|§_2 ®---®T|det-|_%.

We apply to the elements of ©. a Fourier coefficient corresponding to the orthogonal partition
[(2n — 1)2k147+2K) of 4n(k + 1) (see [8, 11]). The corresponding unipotent group turns out to
be the unipotent radical Z,, x of the standard parabolic subgroup @ ajyn-1 0of SOy, (1) Whose

Levi part is isomorphic to GLQXk(n_l) X SOy4(n+k)- It is clear that

Zn g/ Zn ks Znie]) = Mgez(fg_;f) @ Mopxontt © Mopxor © Magxontk, (1.1)

where M,,«, denotes the space of matrices of size m x n. Denote a typical element of the
right-hand side by

(X17"' )XH—Q;Y1)}/27Y:3)- (12)
Let 7 be a non-trivial additive character of F'\A, and define a character of Z,, x(A) by
Yz, () = Pr(Xy + -+ Xp 2 +Y2)), (1.3)

where v € Z,, 1,(A) projects to (1.2). This character is left Z,, j,(F')-invariant, and it corresponds

to the partition above. It is easy to check that the connected part of the stabilizer of ¢z, , in

the Levi subgroup GLQX,C(nfl) X SO4(n+k) is isomorphic to SO2x X SO4py2r. The element

hi h
(g,h) = (97 (h;, hi) ) € SO2; X SOypn 2k (1.4)
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corresponds to

hl h2 1
(QA(nfl)7 g ) € GL;" ™ x S04ty (1.5)
hg h4
where
A(n—1)

g = diag(g, -+ ,9) (n—1 times).

We denote the group of elements (1.5) by SO5™ X SOupny2r. The Fourier coefficient corre-
sponding to the partition [(2n — 1)26147+2k] of ¢ € ©, is defined as a function of (g,h) €
SOQk(A) X SO4n+2k(A) by

Fon, ©a )= [ (vg. )iz, (v)do. (16)
' Zk (F)\Zn 1k (A)

This is an automorphic function on SOs(A) X SO4p42k(A). We use it as a kernel function and
integrate it against cusp forms in the space of 7 to get automorphic functions in g € SOgx(A).
These functions span a space, which is invariant to right translations. We will prove in the
sequel to this paper that this space is non-trivial; its elements are cuspidal, and there exists a
Whittaker coefficient which is non-trivial on this space. This global construction is a special case
of a more general construction which also applies to other classical groups (see [4, 11]). Thus,
there exists an irreducible, automorphic, cuspidal and generic representation o of SOgx(A), such
that the following integral is not identically zero:

#ﬂnmw:/‘ / Fus (60 W)pn(h)pov (g)dhdy, (1.7)
[SO2k] /[SOun2k] '

where [SO,,] := SO, (F)\SO,,(A). The goal of this paper is to prove that the non-triviality of
(1.7) implies that 7 is a CAP representation, up to an outer conjugation, with respect to the
parabolic induction from 7| det -|% ® 0. In detail, we will prove the following theorem.

Theorem 1.1 Let 7, m and o be irreducible, automorphic, cuspidal representations of
GL2,(A), SO4pnt2k(A) and SOgx(A), respectively. Assume that T is of symplectic type (i.e.,
L5(1,A%,s) has a pole at s = 1). Assume that either (1) 7 supports a Fourier coefficient cor-
responding to the partition [(2n + 2k — 1)(2n + 1)], or (2) o is (globally) generic. Suppose that
for some choice of data, the integral (1.7) is nonzero. Then at all finite places v, where m,,
Ty, 0y, and Y, are unramified, m, is isomorphic to the unique unramified constituent of the
(normalized) induced representation

I 4 et ),

where Qay, is the standard maximal parabolic subgroup of SOyy 4o with the Levi subgroup Ma,
isomorphic to GLa, x SOag; the representation o’ is either o, or an outer conjugation of o,
depending on the parities of n and k (this will be specified in Theorem 2.1). In particular, 7 is
a CAP representation with respect to

1
(MzmT ®d, 5)
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Note that in the proof, in case (1) of the theorem, we will only use the fact that 7 supports
a Fourier coefficient corresponding to an orthogonal partition of the form [(2n + 2k —1)---].

The work of this paper and its sequel to come fit as a special case of a general conjecture.
For this, let 7 be an irreducible, automorphic, cuspidal representation of GLay,,(A), which is
self-dual and has a trivial central character. If 7 is of symplectic type, let ¢ = 2, and if 7 is
of orthogonal type, let ¢ = 1. Consider the Eisenstein series on (split) SOgp(25+c)(A) induced
from A(7,k + 1)|det|®, when ¢ = 2; and when ¢ = 1, it is induced from A(7, k)| det|® ® e,
where € is an irreducible, automorphic, cuspidal, generic representation of SOs,, (A), which lifts
to 7. It can be constructed by automorphic descent (see [7, 9]). See also [2]. The corresponding
Eisenstein series has a pole at s = k—gl Denote the corresponding residual representation by
O 2k+¢, Which is square-integrable as proved in [12].

Consider the standard parabolic subgroup of SOsy,(2x+.c), Whose Levi part is isomorphic to
GL;,C("_” X SO2petai. Denote its unipotent radical by Z, ;.. Then we have the analogue of
(1.1) with Mogxan+r replaced by Mogxnetrr. Thus, in (1.2), Y7 and Y3 lie in Magxnetr, and
Y € Mopxor. Let ¢z, , . be the character of Z,, 1 .(A) given by (1.3). Then the elements of its
stabilizer in the Levi subgroup GLQX,C(nfl) X SOapctar have the form (1.4)—(1.5) with SOyp ok
replaced by SO2pcq2k, and SOy(,4r) replaced by SOgpciar (respectively). Now we can define
the Fourier coefficient fwzﬂwm(f)(g,h) by analogy to (1.6) and the integral I;ﬁk,c(T,’lT;U) by
analogy to (1.7).

Conjecture 1.1 Let 7, 0 and w be irreducible, automorphic, cuspidal representations of
GL2,(A), SO2k(A) and SOgpcq2k(A), respectively. Assume that 7 is self-dual, with trivial
central character. Let ¢ = 2, when 7 is of symplectic type, and let ¢ = 1, when 7 is of

orthogonal type. Assume that the integral I v (1,0;m) is not identically zero. Then o has a

n,k,c

global Arthur parameter 1g0,, if and only if 7 has a global Arthur parameter vso,, @ (7, ¢).

We refer to [1] for the notion of global Arthur parameters. The condition on 7, relative to
the parity of ¢, makes (7, ¢) a global Arthur parameter for SO2,.. A more general conjecture
of this type was discussed in [11].

The main results of this paper and its sequel ([6]) will be used to prove the case ¢ = 2 of
the following theorem.

Theorem 1.2 The above conjecture holds for tempered representations o, and for either
c =1, if 7 is orthogonal, or c = 2, if T is symplectic.

Note that the case ¢ = 1 was discussed in [3, 5].

The proof of Theorem 1.1 is quite complicated and technical, although the basic idea is
simple. We view (1.7) as an equivariant trilinear form at one unramified place v, replacing ©,
m and o by their local unramified components at v, and replacing the Fourier coefficient Fy, Znn
by the analogous twisted Jacquet functor. This leads to the local formulation of Theorem
1.1, which is Theorem 2.1 in Section 2. The main ingredient of our proof of Theorem 2.1 is
the Mackey theory. Since the proof and the calculations are quite involved and technical, we
prefer, for clarity of exposition (hopefully), to break it to four steps. Each of the four steps
consists of an application of the Mackey theory in order to obtain a semi-simplification of a
given induced representation, when restricted to a given subgroup. In Section 3, we calculate
the twisted Jacquet module of the unramified kernel representation on SOy (x41) and reduce
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the problem to a calculation of a certain twisted Jacquet module on GLa,,(141), which we carry
out in Section 4. The proof of Theorem 2.1 is completed in Section 5.

2 The Set-up and Formulation of the Main Theorem

From now on, let F' be a p-adic local field of characteristic zero. Let SOs,, be the F-split
special orthogonal group of rank m. We will realize it with respect to the standard anti-
diagonal matrix of size 2m. To simplify notation, for an F-algebraic group G, we will keep
denoting by G its group of F-rational points. Let mq,---,m, be positive integers, such that
my + -+ m, < m. We will denote by @y, ... m, the standard parabolic subgroup of SOg,,
whose Levi part is isomorphic to

Ger1 X X GLmT X SOQ(m,(mlJr...err)).

If necessary, we will add the superscript (m), an"i) .m.., to stress the fact that this is a parabolic
subgroup of SOg,,. If my = -+ = m, = {, we will denote Q%)mr = Q(g)r- Similarly, when
mi+---+m, = m we will denote by P,,, ... m, the standard parabolic subgroup of GL,,, whose
Levi part is isomorphic to

GLyp, X -+ X GLyy,,..

We will similarly use the notation Py(nr?) m,- When my = --- =m, = £ (so that r{ = m), we
will denote Pp, ... m, = Proyr.

Consider the standard parabolic subgroup Q(axyn—1 of SOy, k41)- Its unipotent radical Z,
consists of elements of the following type:

X E C
z= Litniry ') € SOunis1), (2.1)
X/

where X is a 2k(n — 1) x 2k(n — 1) upper triangular matrix of the form

Ly X1 * - * *
IQk XQ cee * *
ng * *
X =
IQk Xn—2
Loy,

*

()
and also write Y = (Y17,Y3, Ys), with Y7 and Y3 being of size 2k x (2n + k) and Y3 being of size
2k x 2k. Fix a non-trivial character ¢ of F'. The character vz, , of Z, j analogous to (1.3) is

Write the 2k(n—1) x 4(n+k) matrix E in the form E = , with Y having size 2k x 4(n+k),

given by
Uz, (2) =0(tr(X1 + Xo 4 -+ Xpoa + 12)), (2.2)

where z is of the form (2.1). The connected component of the stabilizer of ¢z, in the Levi
subgroup GLQXk(nfl) X SOy(nyk) is easily computed to be the subgroup SO@C" X SOy4p42r of

n,k

elements of the form (1.5).
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Let 7 be an irreducible, unitary, self-dual, generic, unramified representation of GLa, (F),
having a trivial central character. Thus, 7 has the form

r=md§" (1 - @xn O X ® - ®XT ). (2.3)

Bary,

Here Bgr,, is the standard Borel subgroup of GLa2,,. We know, by a theorem of Jacquet-Shalika

[10] that if we write, for i = 1, -+ ,n, x; = u;| - |**, where u; is a unitary character, and «; is
real, then —% < ;< % Re-ordering the characters Xfl, e ,Xfl, if necessary, we may assume
that
.
Ogai<§, i=1,---n. (2.4)

Let A(7,k+ 1) be the representation of GLgj,(;1), which is the unramified constituent of the
parabolic induction from

7| det-|? @ 7|det |2 @ 7]det |2 @ @ 7| det | 7.
Consider the unramified constituent ©.. of the parabolic induction

IndS) "V A(r, k 4 1)] det || % .

Q2n(k+1)

Using a conjugation by a suitable Weyl element within the Levi part of Qo r41), it is clear that
O, is the unramified constituent of the representation induced from the following character of
the Borel subgroup
n
Qloal- 17 @xil - 17 @ @xl- Dot e Fe-ex
i=1

.

)] (2:5)

Let ap i be the Weyl element in Oyy,(41), which flips the character (2.5) to the character

n
2k+41

2k+1 2k—1 1 1 _3 _
®[X1’|'| x| T @ oxl Pexil - Trex] e @] [T2) (26)

i=1

Note that det(ay, ;) = (—1)"*+1), The i-th factor in (2.6) is

(xi o det) (5%

"YBa )
2k+2
BGL2k+2 ket

Therefore the unramified constituent of the representation of GLogyo induced from the i-th
factor in (2.6) is x; o detqr,,.,. Thus, it follows that the unramified constituent of the repre-

sentation of SOy,(x41), parabolically induced from (2.6), is equal to the unramified constituent
of

SO4n(k+1)

IndQ(2k+2)n

(Xl Odet@"'@)XnOdet)a (27)

where det denotes the determinant of GLog 2. By induction in stages, we write this induced

representation as
SOun(k+1) /1
IndQ2n(k+1) ( )

with

/ dGLG(k+1)

7 :=In Pag42yn (Xl odet®---® xpo det)'
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Denote

Imfl

= O

€ Oam. (2.8)

O =

Wy = Wo,m =

s

Im—l

We will drop the index m when m is clear from the context. Denote by ©%° the outer conjugation
n(k+1)

of ©, by wo. Then we conclude that ©7° is the unramified constituent of Indjy *"*+ (7).

Qon(k+1)
The local counter part of the global Fourier coefficient (1.6) is the twisted Jacquet module

Ty, (O7) of O, with respect to (Z k, ¥z, ,)-
Let o and 7 be irreducible, unramified representations of SOs; and SOy, 42k, respectively.
The local analogue of the family of global integrals (1.7) is the following Hom-space:

Homso,, x804, 421 (Jyz,  (Or) @ 0¥ @, 1). (2.9)

Note that for any element w’ € Oyp(py1) — SOupn(r+1), and any (smooth) representation 6
of SOyup (1), 0°° = 6~". Consider the element wy defined by the image of (log,wo 2n+k) €
O2r X Ogpyor inside Oy, 41y, via (1.5). Then the conjugation by this element preserves Z, r
and 9z, .. Thus, it is clear that, as modules over SO2; X SO4y, 42k,

jwzn,k (9“’6) =~ ( Ty, (9))(12;6,44;0)27,,%).

n.k

For the formulation of our main local theorem, we will use the notion of degenerate Whittaker
models for 7. These were defined and studied by Moeglin and Waldspurger in [14] and are the
local analogs of Fourier coefficients corresponding to nilpotent orbits. Degenerate Whittaker
models of 7 are obtained by considering twisted Jacquet modules, applied to w, with respect
to certain characters of unipotent subgroups, which correspond to nilpotent orbits in the Lie
algebra of SOy, 4ok, and hence correspond to orthogonal partitions. Therefore we will speak
about orbits of degenerate Whittaker models of 7, corresponding to orthogonal partitions.
In particular, since there exists a partial order among partitions, we may speak of maximal
degenerate Whittaker models of 7, namely, their corresponding partitions are not majorized by
other orthogonal partitions which support degenerate Whittaker models of 7. Theorem 1.1 will
follow from the following theorem.

Theorem 2.1 Let 7 be an irreducible, unitary, self-dual, unramified, generic representation
of GLa,,, with a trivial central character. Let o and m be irreducible, unramified representations
of SOgy, and SOyp 42k, respectively. Assume that either (1) m has a degenerate Whittaker model
corresponding to an orthogonal partition of 4n+ 2k of the form [(2n+2k—1)---] (e.g., [(2n+
2k —1)(2n+1)]), or (2) o is unitary and generic. If

(D)

SOu4n
Homsozkxso4n,+2k (jll)znyk (Inszj(;iT;) (T,)) ® g’ ®mo 1) #0,

then m is isomorphic to the unique unramified constituent of
(n+1)k
Indscvg:"“’c (7] det |2 ® oo ).
The proof of Theorem 2.1 is quite technical and will be given in the following sections. The

most technical part is a detailed analysis of the twisted Jacquet module Jy, P (Indz(z:;fﬁ;) (7).
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3 Analysis of the Twisted Jacquet Module 7, k(IndZ?:?k(ﬁ)l)(T/)): A
First Reduction ’

We study the twisted Jacquet module

S
T, (Indg, w70 (1))

by a series of applications of the Mackey theory. We start by considering the restriction of
Indso4n(k+1)

Q2n(k+1)
its Levi part is isomorphic to GLag(n—1) X SO4(nk), and the restriction

(7') to the standard maximal parabolic subgroup Q2k(n—1) of SO4p(k41)- Note that

SOun
Resqu,_, (Indgy "0 (7)) (3.1)

is of finite length, with subquotients parameterized by the double cosets

Q20(k+1) \SOun (k1) / Q2r(n—1)- (3.2)

Here it is a set of representatives for this set of double cosets. For 0 < r < m = 2k(n — 1),

I
0 0 y f—
Wy 1= w{)”_’“ : 0 I4(n+k) 0 . (33)
Ly 0 0

I

See [9, Chapter 4] for an elementary proof. The contribution of the double coset of w, to the
semi-simplification of (3.1) is

indg (s, (o)), (3.4)
where the notation, ind, denotes non-normalized compact induction,
Q(r) = Qm N w;l ) QQn(k+1) * Wy

and o, is the representation of Q") given by

T (wezwy ), e QM.

2 .
6Q2n(k+1)

The elements of Q") are of the form

ar a2 Y1 Y2 21 22 “o
0 a4 0 Yy 0 Zi
d v / /
0 a0 | (3:5)
ay ah
0 aj

where a1 € GL;, ag € GLy,—r, and d € GLg(,41)- The representation o(,) assigns to an element
of the form (3.5) the operator

2n(k#2»1)71 ar 21 Y1
-T’( 0 af 0 ) (3.6)

‘ det(d) - det(ay)
0 wyy d

det(ayq)
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Next, we consider the restriction

ReSQ(zk)nfl (lndgz’;) (U(r)))a (37)

and analyze it by the Mackey theory. Again, we need to consider the set of double cosets

QUN\Qm /Qaryn—1-
It has the following set of representatives:
€= diag(e, Ly(ntr), €),
where € varies in a set of Weyl elements, which form a set of representatives for
Py mn—r\GLak(n—1)/Pakyn-1.

Then, up to semi-simplification, we have

. 1Qm _ . Qukyn—1 6
ReSQ pns (mdQ(T) (o)) = @msz:Zn_lﬂE—lQ“)?(U(T))' (3.8)

The representation O'ET) is obtained by composing o,y with conjugation by € (on Q(ax)n-1 N
€ 1QMe). Let L a1)n-1 be the subgroup of the Levi part of Q(ary»-1, consisting of all matrices

diag(gla e agn—17l4(n+k)ag:1717 U 591‘)5
where g; € GLgg, for i <n — 1. Denote
Rn,k = (SOQAkn X SO4n+2k)Zn,ka

where SO@C" % SO4pyor is embedded in SOy, 41y via (1.5). For each e, restrict the represen-
tation

. Q(Qk)7l—1
mdQ(%)%1 m%lQ(r)E(UEr)) (3.9)

to L(ogyn—1 Ry k. For this, we need, once again, to consider the set
Qeryr— N QMAQ2ryn—1 / Liakyn—1 R i (3.10)

which is in one-to-one correspondence with the set

QS 90\SO 1/ (SO2k X SO.um21). (3.11)

We choose the following set of representatives g}”g of (3.10), where
L1y

g1 = g (3.12)
Dogn-1)
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with the g;, 0 <1 < k, given by

Iy
Iopy
I
= , 3.13
g1 _Ik—l Ik—l ( )
0 I

0 Izn gy
I I

w

and the elements (g])“0 form a set of representatives for (3.11).

To prove this, it is enough to show that the elements g; form a set of representatives for

(2(n+k))
QQ(n+k)

w(. Denote by V' the column space F4n+k) “and consider the left action of SO4(n4x) on V,

\SOy4(n+#)/(SO2x X SOu4ny2r), since SO2x X SO4nq2x is invariant to conjugation by

preserving the symmetric form (u,v) = tuJ4(n+k)v (J¢ is the standard anti-diagonal matrix of
size £ x £). Let

€1, 5 €2(ntk), €—2(n+k), " ,€-1
be the standard basis of V. For ¢ < 2(n + k), denote by Vf the span of ey, -+, ep, and
of e_q,--- ,e_y, respectively. These are dual isotropic subspaces of dimension ¢. Denote by

Wy, the ortho-complement of VQ‘; 41 T Vo, inside V. Note that the subgroup of elements in
SO4(n+k) that preserve Wy is given, as in (1.5), by

hi ha

(gv h) = g € SO4(n+k)a (314)
hs hy

hi  he
hs hy
component of the subgroup of elements (3.14). Then H is naturally identified with SOgj X

where g € Ogi, h = ( € Ountor and det(g) = det(h). Denote by H the connected

SOunqak- Let us realize Qa(n41)\SO4(ntr) as the variety ) of all (maximal) 2(n+k)-dimensional

isotropic subspaces of V', which are in the orientation class of V;('n +k)

of V;(rn+k)). Note that we dropped the superscript (2(n 4 k)) from the notation Q4. Thus,

the coset Qa4 1)g is identified with X = g‘lV;(rnJrk).

X,Y € Y in a given H-orbit O, it is clear that

(i.e., in the SOy (4 1)-orbit

We consider the action of H on ). Given

dim(X N Way) = dim(Y N Way,).

Denote this number by dp.

Lemma 3.1 The number dop is the only invariant of the orbit O.

Proof This is a generalization of Lemma 2.1 of [15]. Let X € ) be such that dim(X N
Way) = I. Denote dim(X N (Vo ., + V5.,,)) = ¢. Choose bases By = {1,---,x;} and
By ={xi41, e} to XNWoy, and XN (V;{Hk + V5, 41) Tespectively. Choose a set of linearly
independent isotropic vectors in Way, B_1 = {z_1,--- ,x_;}, dual to By (that is (z;,z_;) =
i, for 1 < 4,5 < l). Similarly, choose a set of linearly independent isotropic vectors in
‘/'Qtl+k+‘/'2;+k, B s ={z_u41), - ,Z_(14+¢)}, dual to By. Denote by W' the ortho-complement
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of the span of By U B_; inside Way, and denote by V' the ortho-complement of the span of
B> U B_s inside V;H_k + V5,1 Let us choose vectors z; +wi v+ fi, e+l+1<i<2(n+k),
which complete B;UB5 to a basis of X, such that z; lies in the span of ByUBsy, w;, € W/ v, € V/,
and f; lies in the span of B_; U B_5. Since X is isotropic, it is easy to see that we must have
fi = 0. Also, by construction, it is easy to see that the elements Bz = {w/; ,"-- ,w’2<n+k)}
are linearly independent, as well as the elements By = {v,,; |, ,vé(n +k)}. Moreover, for all
c+1+1<i,j5<2(n+k), we have

(wi, wy) = —(vj, v5). (3.15)

Note that the linearly independent set By U By U B3 U B4 U B_y U B_; contains 4(n + k)
elements, and hence it is a basis for V. We conclude that By U B3 U B_1 is a basis for Wy, and
By U By U B_5 is a basis for V;{Hk + Vg, x In particular, ¢ = 2n + [ is determined by [. We
can choose and re-denote

w,2n+21+1 =w(l), - aw,2n+l+k =w(k—1)
and
Wy 41 = W(=(k = 1)), aw/2(n+k) =w(-1)

with the corresponding Gram matrix Jyx—;). Note that all these make sense when [ = 0 or
[ = k. Similarly we can choose and re-denote

Ugngorpr = 0(1), Vg = v(k — 1)
and
Vgptshpr = O(=(k = 1)), 05048y = V(1)
with the corresponding Gram matrix —Jy;_;). Clearly, (3.15) is satisfied. Now, let Y € )
be such that dim(Y N Wa) = [. Let us construct for Y the basis of V' as above. Denote the
corresponding subsets by Bf, B), etc. For example Bj is a basis of Y NWa;, and B’ ; is a subset
of [ linearly independent isotropic vectors in Way, dual to Bf, and so on. Denote the elements

of B! by the same letters and indices as for B;, with the addition of primes. For example, we
denote the elements of B} by

w'(1), -+ w' (k= 1),w' (=(k =1),- ,w(=1).

Let t be the linear transformation of V' to itself, which sends the elements of each subset B;
to the corresponding elements in BJ, i = £1,42,3,4. Then, by construction, ¢(X) =Y and
t(Way) = Wy, (and also t(V;;L_% + 2;L+k) = V;;Hrk + 2;L+k). It is easy to correct t, if necessary,
such that the determinant of the restriction of ¢ to Ws is one. We conclude that ¢t € H takes
X to Y, and hence X and Y lie in the same H-orbit.

Set g1, = glwg and g;, = (g{)“’g. Recall again that we use the same notation wy as an
element of O,/ , for any n’. Up to semi-simplification, we get

ind 2o (05,))

ReSL(zk)n—an,k( Qapyn—1NE~1QME

k
Liyyn—1Rn k
_ . (2k) 5 €
= ind _ N _ o 3.16
le% L(%)n—lRmkﬁgz,,rl(Q<2k>"—1ﬂﬁ*lQ(")f)gw( (T)’l% ( )
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1 ~ ~
where for © € Ligpyn-1 Ry N g, (Qaryn—1 N€E QMg

—1
o(n (@) = 0(y (grrag,,)-
We need to compute

Liyiyn—1Rn k
. (2k) . €
jwz"’k (lndL(%)"—l R"vkngf,:(Q(%)"—l NE~1QMe) g, (J(T)’l)) (3'17)

for all (r,e,l). Let us write necessary conditions for (r,e,l) to be relevant with respect to
Yz, .. More precisely, we say that (r,¢,[) is not relevant with respect to vz, , if for each
h € L(gpn-1, there exists z € Z, N h’lgl_m1 (Q2ryn—1 Ne Q") g h, such that Yz, . (2) #1
and o(, (hzh~1) =id. Clearly, in this case, the Jacquet module (3.17) is zero. Note that Ry

normalizes 7, y and preserves ¢z, .
Proposition 3.1 Assume that (r,¢,1) is relevant with respect to 1)z, ,. Then there exists
a sequence of nonnegative integers ry, -+ ,Tn_1 salisfying
4+ rpo1=r,

(3.18)
1 <...<rp1 <1,

such that € can be chosen (modulo Py, from the left, and modulo Piyyn—1 from the right) as

follows:

I, 0 0 0 0 0

0 0 I, 0 0 0

10 o0 o0 0 - L., 0
““lo 1, 0o 0 -~ 0 0 ’ (3.19)

0 0 0 I, 0 0

0 0 0 0 0o I,
where for 1 <i<n—1,

ri +t; = 2k.

Proof Modulo P, from the left, and modulo P4y~ from the right, we may assume
that € is of the form (3.19), where for 1 <1i < n — 1, r;,¢; are nonnegative integers, such that
ri +t; =2k and 1 + -+ - + 11 = r. We want to show that (3.18) holds (for relevant (r,€,1)).
Let h = diag(hy,- -+, hn—1), where hy,---  h,—1 € GLag, and denote h = diag(h, Ly(ntr), B*).
Let also ya € M, xo(ntx) and zz € M., such that (J,z2) is anti-symmetric. Consider

I, X C
z= Lignyry X' € Znp,
I,
where
X = h_1€_1 ( Or><2(n+k) Y2 ) W(T).gl/ ,
O(m—ryx2(n+k)  O(m—r)x2(n+k) o

C = h_1€_1 (OTX(WL—T) Z2 ) Eh*.

Om—r O(m—r)xr
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By construction,
2 € Znk N g1 (Qemyn N QMg

and by (3.6),
Ufr),z(hZh_l) =0(r) (ggl,rﬁzﬁ_lgl}le“l) =id.

Thus, for (r,¢,1) to be relevant, we must have that ¢z, , () is identically one, for all y2, 25 as

above. We have

wZ,,L,k(Z) = ’Lp(tr (gl/wg 02k><2k(n—2) -1 O(m—r)xQ(n+k) 0(m—r)><2(n+k)

O n n— O n
(2n+k)x2k(n—2) (thli)x% 6_1< 0 x2(ntk) Y2 )))
O@ntryx2k(n—2) O@ntk)x2k

For this to be trivial for all y5, we must have

0 n n— 0 n
Osniy (2n+k)x2k(n—2)  Y@n+k)x2k -1 I, L
Om—r

o ) wodr | O2kx2k(n—2) hyty
(k) O2n+k)x2k(n—2)  O(2ntk)x2k

Now, by a simple verification, we see that this means that wgh;il has the form

(g‘ g) , (3.20)

where A € My, _,, and we conclude that
Tn—1 < 1.

We continue in a similar fashion and obtain more conditions on € by considering z € Z,, . of
the form ¢; = diag(Ci, Iantr),¢;), @ = 1,2, ,n — 2, where

. I X
Ci = dlag(12k7 U 712k) ( 2k IQ;) 712k) e 512k> € GLQk(nfl)'

Note that ¢; and wg commute with @ and h. Let e € My, xt;., and

i+1

Xi _ hl_l <Om><m+1 (& ) hi+1.

0t1‘,><7"1‘,+1 Otj, Xtit1

Then
eqhGh tgr et =enGn et e QU

and by (3.6), 0(,) acts as the identity on this last element. Thus, for (r,¢,1) to be relevant, we
must have that ¢ (tr(X;)) is identically trivial for all e, that is,

"p(tr(hi—klh;l (8:;;1 otixetHl) ))

This means that hH_lh;l is of the form

1. (3.21)

_ A B
hiih ' = (0 D) : (3.22)
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where A € M, xr;. This implies that
i Srip1, 1<i<n-—2.

This proves the proposition.

Note that (3.18) implies that

r<Iln-—-1)<k(n-1).

(3.23)

Let us go back to the representation (3.9) for (r,€) as in Proposition 3.1, satisfying (3.18). The

elements of @ (ap)n-1 Ne Q€ have the form

AY C\*
D Y| |
A*

where D € SOy(p4) has the form

d v
D= < d*> ) de GLQ(n+k)'

(3.24)

(3.25)

The form of the rest of the elements is described as follows. The matrix A € GL,, has the form

A A A1
Az A1
A= ) ,
An—l,n—l

where for 1 <i < j <n-—1, A; ; € My, and has the form

1 2
A (A AT,
3 4) >
Ot,;><7"j A"'

that is Ag}j) € My, xr;, etc. The matrix Y € My, 4(n+r) has the form

Y,
Y>

Ynfl

where for 1 <i <n —1,Y; € Mapxa(nyr) is of the form
y y 2
Yi= ' ) |
O, x2(ntk) Y5

V' = (Yrifla Yri727 T aYII)'

Write

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)



On CAP Representations for Even Orthogonal Groups I: Unramified Correspondence 499
Then, for 1 <i <n —1,Y] € My 4k)x2k is of the form
7Y(4) (2)
y/ = ( (Y7) Y; (1)>. (3.31)
O2(ntmyxts  (Y)

Finally, C has the form

o1 Ch Ca\ .
C=e¢ <O(m—7")><(m—7") cr €, (3.32)

where C1 € Myxm—r. The action of of,, on the element (3.24) described by (3.25)~(3.32) is
given by

det(d H det A(l) AM Cy y

n(k+1)—2
‘ o AWy o |, (3.33)
H det(A%) 0 (Y)W d
where A1) € GL, is the matrix
1 1 1
0 A ceooAL
AD | 22 R (3.34)

: : o
0 0 A'Elll,nfl

Similarly (A®)* = J,, .(*A®)=1],, . and AY € GL,,_, is the matrix obtained from A by
replacing in (3.34) each super index (1) by (4). The matrix Y1) ¢ M, so(nyr) is

1
N
Y.
y=1"2 |, (3.35)
1
Yal,
The matrix (Y/)® ¢ Moy xm—r 18
(Y)W = (Y- )@ (Y)W - (Y))D). (3.36)

Let h = diag(hy,--- ,hn—1), where h; € GLg, for 1 < i < n —1, and let g € SOy qp)-
Set m(h,g) = diag(h,g,h*), and Qnrrec = Qaryn—1 Nne Qe The following map on
indgfi)zl (afr)) factors through its twisted Jacquet module with respect to 1z, , and induces

an injective homomorphism on the twisted Jacquet module Jy, (mdg@’;);l (0()):

7= ((hg) = T, (FGzmlh, g))07!  (mhg) em(h,g))dz),  (3.37)
2y tose \ Lk ke
where
':L,k;e = Zn,k m/ng(T)a
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Zn,kse is the projection to GLay, (x41) of the subgroup wTEZ;L7k;€€’1w;1, and the character wgﬂgk
1 Jkie

is obtained by pulling back z € Z,, .c to any element 2’ € wTEZ;l’k;EE* w, ' and then
h, el - ~
B9 (2) = ¥z, (m(h, g) e w2, Em(h, )

Tyha (f(zm(h,g))) denotes the application of the twisted Jacquet functor with respect to
Zn k;e

(Zn,k;e,wgf,%) to the vector f(zm(h,g)) in the space of 7/. This statement (about the map
(3.37)) is easily verified. Denote, for 0 <1 <k,

My = diag(wgv T aw67g;,rvw67 T ,WS),
where w( is repeated n — 1 times to the left of gl’m and to its right.
Proposition 3.2 Let € be as in (3.19), such that (3.18) is satisfied. Then the function on

the r.h.s. of (3.37) is supported inside

k
U Qn,k,r:e’Ylm(SOQA]: X SO4n+2k)~

=0

Proof Let m(h,g) be in the support of the function on the r.h.s. of (3.37). Then by (3.33)
and the description (3.24)—(3.32) of Qn k.r:e, Wwe must have

Z  Yuw, c
V7, . (m(h,g)_1 Lynti) wgi*/' m(h,g)) =1 (3.38)
for all upper unipotent Z of the form (3.26)-(3.27), with A;; = I and for ¢ < j, Ag}j) =
O,Agjlj) = 0, and similarly, all Y| as in (3.28)—(3.29) with Yi(l) = O,Yi(4) =0, and all C as in
(3.32) with C; = 0. Now, we already did this calculation in the proof of Proposition 3.1. By
(3.21)—(3.22), we must have, for all 1 <i <n —2,

A B
hiy1 = (0 D) hi,

where A € M, ,xr. Note that we have already assumed that r; < 71, 1 <7 < n— 2.
Assume that we already proved that, modulo @y, . r.c from theleft, hy = ---=h;, 1 <i <n-2.

! !/
AT B ),Where A e GL,, ,,

Multiplying h;41 from the left by an element in GLgj, of the form ( 0 D

I,

OTi+1*7"i X1

I,
hip1 = < 0 ?) h;.

IT'i, ﬁ . Iv"j ﬁ/
(0 5) = (o 5’)’ (3.39)

where §' = <I”0TJ ﬂ;), 8 = (orjxm_,aj ﬁl), and = (gl) This shows that multiplying
: : ;

from the left each one of hy = --- = h; by the matrix (3.39) is a result of a left multiplication

we may assume that A = ( ), so we have a relation

Note that, for all 1 < j < 1,
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by an element in @, i .. Therefore we may assume that h; = --- = h;;1. This shows that,
modulo @, k. r:e from the left, we may assume that hy =--- = h,,—1. As for g, we may assume
that g = g; .- (ho, R), 0 <1 < k, where (ho, R) € SOQAk” X SO4n+2k. Then, as in (3.20), we must

have
O(2n+k)x2k A B
O2n4k)x2k Antk)xrn—1

Recall again that we use the same notation wg for the matrix obtained from an even-sized
identity matrix by interchanging the order of its two middle rows. Thus,

0 0 0

I; 0 0

0 Iy—;y O A B) 1

0 0 Ik (02(n+k) XThn—1 D Ho
0 0 0

0 Ix—; O

Here, in the first row, the zero blocks have 2n + k rows and, in the fifth row, the zero blocks
have 2n + [ rows. We deduce equalities of the form

« J6] _
I2k - (karn1 7) hn71h0 1w67

(3.40)
(Ock—1yxts To—15 0k—1y i) = (Ok—1yscr_1sMhn—1hg Wi,
where o € My, , and v € Mix+, ., N € Mp_ixt, ,. Recall that we have already known that

tp—1 > k. Thus v must be of rank k. Since we may multiply from the left all hy = --- = h;,—1

by Tras GL ) , we may assume that v = (Ogxe, ,—k, Ix). Hence we may replace the first
tn—1

relation in (3.40) by a relation of the form

o B 1 -
I2k = <0 Ik) hn—lho 1w0a

where o/ € GLgg. Again, we may multiply from the left all hy = --- = h,,_1 by any upper
unipotent 2k x 2k matrix, and hence we may assume that 3 = 0. We conclude that

-1
hn—lhalwg — ((a) Ik) ,

and we have a relation of the form
a/
(Ore—1yxt> Te—1, 0re—1y ) < ng) = (O(k—)xrn_1>M)-

This implies that o has the form

/ aq (e
o = s
O(k—t)yxry_1 Q4

where oo and a4 have k —r,,_1 = t,,_1 — k columns. We conclude that a4 has rank k —[. Once
again, since we may multiply from the left all hy = --- = h,,_1 by (Ir"‘l aL ), we may
tn—1

assume that oy = (Og—i;xi—r,_,, Ix—1), that is, o’ has the form

f (g
a(o Iy )’
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where o € GL;, and exactly as in the previous step, we may now assume that oy = 0. We get
(after modification by Q, k.r.c from the left) a relation of the form

e — ‘s
Iy, = < IQk—l) hn—1hg 'wg,

where e € GL;. Since t,_1 > k > [, we may multiply from the left all hy = --- = h,_1 by
diag(Iax—1,e*), and hence we may assume that

-1
(&

WS( Ly )wgho = hp_1.

Finally, since

-1
€

wh
u2J(On+1c)gl/m(ho’R): ;J(OnJrk)gl/ﬂ“(( Ly ) hOvR)’

*

€

we may assume that wiho = h,—1. Recall that (hg, R) € SOQAk" X SO4n12k. Therefore, m(g, h)
which lies in the support of the r.h.s. of (3.37) is equal, modulo @y k. from the left, and
modulo SO@C” X SOu4n42k from the right, to an element of the form ; ., for some 0 <[ < k.
This completes the proof of the proposition.

Upon restriction of the r.h.s. of (3.37) to the support we found in Proposition 3.2, we see
that, up to semi-simplification of SOQAk" X SOy 425~ modules,

k
. Q(2k>n—1 € . SOzAk’LxSO4,,+2k €
in = in ' 41
jwzn,k( dQn,k,r:e (U(r))) IG% d'yl_’&Qnykﬁ:(’yhrﬂ(soﬁkﬂ’XSO4n+2k)U[T];l’ (3.41)

where the representation o[er];l is described as follows. First, 'yljrlka,r;g'yl’,« N (SOQAk" X SO4n+2k)
is the subgroup consisting of all elements of the form:

wr] An
e1 ey es eq\ ° ap, 0 b, by
d4 —C3 eg as a4 b3 b4 SOA" SO (3 49
( ~by  a; € "0 0 af O )E 2k X PVdnt2k, 42)
e; es 0 afy dy

where dg —a(:3> € SOy(j—1y, a1 is of size (k — 1) x (k —1), ay € GLap 41, and e; € GL; has
—bo 1

the following form:

hi % - * *
hy %
e = '.. . . s (3.43)
hn,1 *
hy

where h; € GL,,,ha € GLyy—p,, -+ yhp—1 € GL,,_,—y, _,, and h, € GL;_, _, (see (3.24)-
(3.27)). Next, we describe (Z, k:e, wgﬂgke) which defines the inner Jacquet module in the integral
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(3.37), for h = wg and g = g; .. The group Z,, j;e consists of the matrices of the form
Z, C Y
c=l0 2z 0 |, (3.44)
0 5 IDnyr
where Z; € GL, has the form
I, 12 Tin-2 Tin-1
La T2 n—2 T2 n—1
Irn_Q Tpn—2,n—1
Irn—l
Z3 € GLag(n—1)—r has the form
L",l Un—2,n—1 V2n—1 Vin-—1
Itn72 o U2p—2 VUinp—2
Zy = : (3.46)
I, V1,2
I,
This is directly deduced from (3.33)—(3.36). Write
Y1
Y2
Y = . 5 S = (Sn—175n—27"' 581)5 (347)
Yn—1

where y; € M, xo(ntk) and s; € Moginyxe,, 1 <4 <n—1. Now, for z as in (3.44)-(3.46), let
7= <Z z*>’ and write

Iynyry 0 Y

z sz (3.48)
0 0 Z
with
Iy, ”’1,2 ”’1,n—1
Ly o 09,
Zy = Jmr("Zy )T = . : : (3.49)
!
vn—Q,n—l
I, .
Y' = _J2(n+k) (tY)Jr, C/ = —Jmfr(tC)Jr, and
s
)
S = —Jmr (") Ja(nin) = , , (3.50)
5%71
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where s; € My, xo(nik), 1 <i<n—1. We have

Zi 0 Y 0o C 0\*“
0 Z; 0 s 0
0 0 I 0 S 0
-1/ _ 2(n+k)
wyFwr =g Linssy 0 Y (3.51)
0 0 0 0 Zy 0
0o 0 0 0o 0 Zz
Now conjugate w, 2w, by €1, and note that
ng X1 * *
ng X2 %
! <Zl *> €= : (3.52)
Z5 .
Xn—2
Iy
where for 1 <i<n—2,
X, = <f”“'+1 0 ) . (3.53)
0 Vi it1
Recall that z; ;11 € M;,xr,,, and U;,i+1 € My, x4, ,. Note also that
Y1 0
0 )
Y O ” y
/
! (0 5/) whp=| Y %2 | (3.54)
Yn—1 0
0 s!

Now it is straight-forward to compute ’yljrl/e\_lwflz’w,«@yl,r € Z, 1, and get, using (3.44)—(3.54),

that

w9y,
Zopr ()

—1~—1
= wzn,k (r}/l}r €

1

— 12 ~
w, 2 weey,,)

O(2n-+k)x2k

S (T 0\ y 0
:w(Ztr( sira ) )w(trwg( e )g;wg Li |). (355)
i=1

,U/
1,1+ 1
bt O2n+k)x2k
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This product can be expressed as a product of the following four terms:

n—2

To(( (o, ) o)
n—2

H 1/1*1 (tr( <0( Itwl > vi,iJrl)),
=1

ti—tit1)Xtip1

0(2n+k) XTp—1

ol [ " V),

O(k*Tnfl)XTnf1
. Ok (k-1 Okx (2n41) p
(Il (tr( Iy Ok—1)x (2n+D) Ok—1yxk 5n—1>)-
O—rn_)xk=0)  O=r,_)x@n+) O@=r._1)xk

Let us re-denote

i !’
lr %0591
Ve =Vt -

n,k;e
The integrand in (3.37) depends on the twisted Jacquet module of 7/ with respect to
L
(Z’n,k:;sa ,lZ)Z:JC;E); jﬂ)lz’;yk‘ (7—/).
Now, the ﬁepresentation (T[Er];l is obtained, up to a certain positive character, by applying afr)
to Y2y, s for
S 7;r1Qn,k,r;e'Yl,r N (SOQA]: X So4n+2k)7

and applying J L (7').  The precise form of the positive character can be determined
zZ

n,k;e

from (3.33) and from an appropriate Jacobian resulting from conjugation on Z,’l’k;e\ka in
(3.37). At the moment, this is not important to us. Thus we reduce the calculation of

SOun(k+1) (1 : /
Tz, (IndQ%(kH) (7)) to that of the twisted Jacquet modules jwl’;,k;e ("), for 0 <1 < k

and (r, €) as in Proposition 3.1. This we will do in the next section. It will be more convenient
to apply to the last Jacquet module a conjugation by

I,
I
= . 3.56
v Topy it (3.56)
Im—""

Denote Z; , = W2y g ew ™, and let wlZ’C . be the character of Z7 ; given by

L, z, -
ng,k(z) = 1/’Z:,m(’ttJ Law).

The elements of Z; ; have the form

A Y C
z= Ly S| (3.57)
Z3

where 71, Z5,Y, S, C are as in (3.44)—(3.47), and with the same notation, the character wlZ’C . (2)
is equal to the product of the following two terms: Y

-2
7 A OO E)) o CIC P KTt B
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and
0(2n+l)><7"n_1 0 I
" (tr( L ynfl)) Wl(m« <0 (2k—1)x (2n-+1) 2]51> SH)).
O(Qk;flfr, 71)><r . (tn,172k+l)><(2n+l)

In the next section, we will study Ju.. (7).
25k

4 Analysis of J .- (77)
Zy K
We apply the Mackey theory once again, and consider the set of double cosets
P(2k+2)"\GLQn(k—i-l)/P[;Q(n-i-k);p (41)

where we denote
r= (7’1, e ;Tnfl); t= (tnfla Ce 7t1).

By [16, p. 170], we can choose a set of representatives for (4.1) as follows. Consider n x (2n—1)
matrices k = (k; j), with k; ; being non-negative integers, satisfying the following conditions:

n
> kij=r;, 1<j<n-1
i=1

n
> kim =2(n+k);
i=1

, (42)
 kimij=tnj, 1<j<n-—1
i=1
2n—1
Sokiy=2k+1), 1<i<n.
j=1
For such a matrix k = (k; ;), consider the Weyl element
w = (wij) € GLap(k+1), (4.3)
where 1 <i<n, 1<j<2n-—1,and for i =1,2,--- ,n, w;; are matrices of sizes 2(k+1) x r;

when 1 < j <n—1, and of size 2(k + 1) x 2(n + k) when j = n, and finally, w; ,,+; is of size
2(k+1) x ty—j, when 1 < j < n — 1. Each matrix w;; is divided into blocks: The rows in

w; ; are divided into 2n — 1 blocks of sizes k; 1, k2, - , ki2n—1, respectively; and the columns
in w; ; are divided into n blocks of sizes ki j, k2 j,- -+, kn, j, respectively. Thus, w; ; is a block
matrix (wlfj), where 1 < f <2n—1, 1 < s < n; the matrix wi’; is of size k; y X kg ;. Finally,

Jyt
4,57
semi-simplification of the restriction of 7" to Ppo(s4k);¢ is the direct sum of the representations

all blocks wfj of w; ; are zero, except the (j,4)-th block, w;’;, where we have wf; = I, ;. The

. Promgr);e w
ind s k 4.4
Pz;g(n,+k);10wﬁ1P(2k+2)nwﬁ ’ ( )

-1
where for € Pramqr);e N wy,~ Plagy2)n Wk,

1

X"E(x) =0 (x10det® -+ @ yp o det) (wrzwy '),

2
(2k+2)7
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as wy, varies over the Weyl elements (4.3) described above, with the matrix k as in (4.2). Asin
the previous section, only relevant wy, contributes to our Jacquet module. That is, for irrelevant
wg, the Jacquet module of the representation (4.4) with respect to wlZ’C . is zero. Here wy, is

called irrelevant (with respect to wlz’: k) if for each 7y in the Levi part of P..o(,41);, there exists
z € Zy, 1, such that wyzwy " € Plajyz)n, and Pt . (v~'27) # 1. Note that Z;, , is the unipotent

radical of P,.5(,41);t, and that for z as above, since wﬁzwgl is a unipotent element of P,..(y4 1)t
one must have y%(z) = 1. Denote, for 1 <i<n, 1 <j<n-1,

/ f— . .
ki,j - kz,Qn—] .

Proposition 4.1 Assume that wy, is relevant. Then the matriz k satisfies the following
properties:

(1) Forall1<i<j<n-1,k;=0.

(2) Forall1<i<n-—2and1<j<n-—i,

!/ / !/ !/ !/ !/
Kigrivn tRipoim + T higap Skt kit R

In particular, k%—l,n—l < k;L—Q,n—Q <... < /<:§72 < I<;’171,
(3) kn,n; knfl,nfl > 2k —1.
(4) Foralll<i<n—1landl<j<n-—i, k;; =0.

(5) Forall1<i<n-—1and1<j<n-—i,
kitin—i+ - F kigjn—i < Kin—iv1 + -+ Kigj—1,n—it1-

In particular, kn—12 < kp—23 < - <kop_1 < ki

Proof Let 1 <i <mn—2 andlet 2 € Z; ; be of the form (3.57), with Z; = I, Y =0,
C =0,8 =0, and Zy be of the form (3.46), such that all blocks v; ; are zero, except the
block v; 11, which we now denote by X. Note that X € M, ¢,. Write X as a block matrix

(Xkt 0kt 1<s,e<n, where Xy € My s . Then a simple calculation shows that

s,i+1 Ve i e,i

wﬁzwﬁ_1 € Pogyo)n, if and only if Xy ok, =0 forall 1 <e < s <n-—1. If wy is relevant,
then we must have, for all X as above, and all g € GL¢,,, and h € GLy,,

ofn( (5, ", )o)xm) =1

This means that the matrix A < Tt > ¢! has the form of a block matrix
O(ti*ti+1)><ti+1

0 * % -+ %k x
0 0 = ... % =
Do N
0 00 -~ 0 =
000 -~ 00
where the rows are of sizes, kj ;, k3 ;,--- , Ky, ;, respectively, and the columns are of sizes k1 ,, 1,
5.i+15" " Ky i1, respectively. Since the rank of this matrix is

S / /
tivr = K11 tho i+ + K,
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we must have

/
1,i4+1 — 0,

kg ipr Fhy i oo bk Sk bRy R, 1<i<n

(4.5)

From this it is easy to conclude the first two parts of the proposition. Next, we repeat the
argument with z € Z7 ; of the form (3.57), with Z; = [,, Y =0, C =0, Z2 = I, and
with s; = 0, for 1 <7 <n—2, and s,—1 = X € My 4p)xs
then we must have, for all g € GLy(,4%) and h € GLy,_,,

w(tr( ( O2k—1)x (2n+1) 12161) )quh) 1

O(t, 1 —2k+1) x (2n+1)

As before, If wy, is relevant,

n—1"

0
the rows is 2(n + k) — kpn n, kn,n. This means that

h< O@k—1)x (2n+1) IQk—l) 1
g
Ot 1 —2k4+1) x (2n+1) 0

for all X of the form <* I), where the size of the columns is k;,_; ,, 1,k ,_; and the size of

8 3 , where * is of size k;,_; ,,_1 X kp . Comparing ranks, we get the third part
of the proposition. The rest of the proposition is obtained similarly, by repeating the argument
with z of the form (3.57), with 21 = I, S =0, C =0, Zy = I,,_,, and Y with y; = 0, for
1<i<n-2andy,1 =X € M, xomtk), and next by considering z of the form (3.57),
with Zy = Iy, Y =0, C =0, S =0, and S and Z; such that all blocks z; ; are zero except

for the block ;11 € My, xr;y -

has the form

Proposition 4.1 implies that a relevant wy has the form

!
wi, = (w,w'), (4.6)
where
0 0 e 0 W
0 0 e W p—1 w2, n
w =
0 Wn—-1,2 -+ Wpn-1n-1 Wn-1n
Wn, 1 Wn,2 Wn,n—1 Wnp,n
and
0 0 e 0 W1 2n—1
0 0 T W22p-2 W2, 2n—1
w' =
0 Wp—2p+1 **° Wnp—22n—2 Wp—22n—1
Wn—1,n+1 Wn—-1,n+2 Wn—1,2n—2 Wnp—-12n-1
Wn,n+1 Wn,n+2 Wn, 2n—2 Wn,2n—1
Note that in w the columns are of sizes 1,72, ,rn—1,2(n + k) and in w’, the columns
are of sizes t,_1,tn—2, - ,t2,t1. The rows in both w and w’ are all of size 2(k + 1). Con-

sider the stabilizer Sg, of wy inside the Levi part of P..o(uqr),, namely, the subgroup of
all diag(g1, -+, gn—1,0,hn—1,---,h1), with g; € GL,, and h; € GL;; 1 < i < n—1 and
b € GLy(n4k), Whose conjugation by wy lies in Py(x11)». This stabilizer can be found directly,
using similar computations as in the last proof, so we omit the details.
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Proposition 4.2 For relevant wy,

— 72 3 L. Tn—1
SE - GL’"I X Pkn—l,27kn,2 X Pk:n—2,37k:n—1,31kn,3 X X Pk2,7z—11k3,7z—17"'7k7l,7z—1
2(n+k) tn—1 tn—2 t1
X Pklvmk?v""” sknn X Pk;Lfl,nflvk;L,nf1 X Pkit*Z,’lL*Q’kitfl,an’kit,nfz Ko x Pk/l,uké,la'” 7k:1,,1.

The proof of Proposition 4.1 shows more. It shows that, for relevant wy, if widiag(g:,
3 Gn—1,b,hn_1,- -+, h1) supports the Jacquet module of the representation (4.4) with respect

to lZ’C o then we have, in particular, the following relations:

O(2r— Iog— O 2ntk)—knn) @
hni (2k—1)x (2n+1) 2k l) — ( n—l,n—lx( (n+ n,m b’ 4.7
' (O(tn12k+l)><(2n+l) 0 0 0 (4.7)
where a € Mkikl ks

C12 €13 - Cin

O(2n+l)><r”,1 0 C2,3 C2.n
b I, =\ : : : gn—1; (4.8)

O@k—t=rn_1)xrn_s 0 0 - Cooim
0 0o - 0

where ¢; j € My, , xk;,_, for 1 <i<n—1,2<j <n. By Proposition 4.2, we may multiply
hn_1,b and g, from the left by P;}”’l K , P,?l(z—kk?n g, and P

n-1mn—1Fn n_1 kan—1,k3n—1,""kn,n-1’

respectively. Since rank(a) = 2k—1, we may multiply b and h,,_; from the left by matrices of the
and § € GLy/

v —1,n—1"

form diag(/a(n1), @) and diag(8, Iy; ), respectively, where a € GLy

vn—1 n,n

and replace (4.7) by
by ( O2k—1)x (2n+1) I2kl) _ ( O2k—1)x (2n+1) I2kl) b (4.9)
O(t, 1 —2k+1) x (2n+1) 0 O(t,_ 1 —2k41) x (2n+1) 0
Recall that kj,_q ,,_q,knn > 2k — . Note also that the above modification of b from the left

does not change the form of (4.8). The last equation implies that b has the form

b= br b2 , b1 € GLapy, by € GLggy.
0 by

Using this in (4.8), and the fact that k,,, > 2k — [, we conclude that the first 7,_1 columns
of by must be zero. Since by is invertible, this forces r,_1 to be zero! By Proposition 3.1, this
means that » = 0 and € = I,,,. This proves the following result.

Proposition 4.3 Assume that (r,¢,1) is relevant with respect to vz, . Then r = 0 and

e=1,,.

This simplifies the form of wy, in (4.6). Now 1 =--- =1,_1 = 0, and hence k; ; = 0 for all
1<i<nand1<j<n-—1. Also,t; =--- =1t,_1 = 2k. From Proposition 4.1, we have, for
1<i<n-—2,

2]€ = ti+1
= kis1i01 T Kigoae1 T i
Skt kit ks

- tl - k;l,’b - Qk - k’:’l,i'
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This implies that k;” =0 for 1 <1i <n—2. Repeating this argument, for 1 <7 < n — 3, we get
2k = ki1 i1 ko +o TR 10
Skigtkipito T kg,

=2k — k;L—l,iv

and hence k;,_, ; = 0 for 1 <4 <n — 3. We continue by induction (using Proposition 4.1) and
get that

K =0, (4.10)
when j <7 —2 and 3 <14 < n. Since
a2k, > 2k g, 22%— 1>k
let us write
K=k+j, 1<i<n-1, (4.11)
where
k=1<jn1<-- <<k (4.12)
Denote j = (j1,J2," " ,jn—1). Sometimes, it will be convenient to denote jo = k and j,, = k1.

It follows that
ki, 1 =k—jis1, 2<i<n,
kim=jic1—Ji+2, 1<i<n-1, (4.13)
klv" =k+jn-1+2

We will re-denote w(j) = wg, and also, for 1 <4, j < n,

IR _
W = Wi p-14j-

Thus w(j) has the form

wh! 0 0 0 0 - 0 0 whn
w?! 0 0 0 0 - 0 w?nt
w! 0 0 0 0 w2 gdn-l 0
w(j) = : : : : : : : o (414)
wn72,1 0 wn72,3 wn72,4 0 0 0 0
wn—l,l wn—1,2 wn—l,B 0 0o ... 0 0 0
w™! w™? 0 0 o .- 0 0 0

where the blocks w'J are described through Proposition 4.1, with r = 0 and (4.10)—(4.13).
Re-denote Zn,k = Zflk (e = I,) and wlZ L= wlze (r =0). Then ka is the subgroup of
’ n, n,k

elements of the form

Lntry S * * *
I, - * *
Zn k= ) . . , (4.15)
Iy, X, o



On CAP Representations for Even Orthogonal Groups I: Unramified Correspondence 511

and the character is given by

W Guw) =07 (X0 -+ Xoa) + b ( 0 12’61) s)). (16)

O1x (2n11)
(see (3.57)(3.58)). Denote the Levi subgroup of Pa(, 4k, (2k)n—1 by Ma(ptk),2k)n-1. We identify

X(n—1)

My (niry,c2k)n—1 = GLlig(nyr) X GLgy

Note that the stabilizer of the character 1/)12 in My(nqr),(2k)n—1 is the subgroup of GLy(y,4x) X
n,k

GL;k("_l) consisting of elements of the following type

(5 %)
0
0 a x(n=1) (4.17)

a b A(n—1) | € GL2(n+k) X GLQk )
o i)

where h; € GLay41, a € GLa,—, and d € GL;. We denote this stabilizer by S, 5. Denote by
S(w(j)) the stabilizer of Pogyoynw(j) in My(nip) 2k)n—1- By Proposition 4.2, S(w(j)) consists
of all elements of the form

h
g2
, (4.18)
In
where

h1 * *

he -0 %
h = . : € GLQ(nJ’_k) (419)

I

with Ay € GLk_j1+2; h; € GLji_l_jiJ’_Q, for2<i<n-1;h, € GL;H_jn_l_;,_Q, and, for 2 < s <n,

gs = (as ZS) € GLag, (4.20)

where a; € GLpyj,,,_,.

Proposition 4.4 Let ‘Al be the subset of elements a € My(nqpy, (2kyn—1, such that w(j)a
supports Ty (7'). Then
Zn k

Aj = Sw(f))Sn k.-

Proof Let a = diag(h, g2, -, gn) be such that w(j)a supports J,.  (7'); h € GLa(pyk),
J P

gi € GLaj, 2 < i < n. Then we see in the proof of Proposition 4.1 that we have the following
relations:

- Qg s
Gorngs) = (0 ?) , (4.21)
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where oy € My, xhijn_oi1r 2<8<n—1, and

0 (O(Qk—l)x(2n+l) I2kl> _ <O(k+j,,_1)><(2n+k—jn_1—2) 7) h, (4.22)
O1x (2n+1) 0 Ok—jn_1)x@ntk—jn_1-2) O

where v € Myt 1 shtjn_142- Since k+jn_s > k+ jn—si1, we see that rank(as) = k+ jn—st1.

We may multiply gs;1 from the left by any matrix from P2¥ by the description of

+in—s,k—Jn—s
(4.20). Thus, considering a, modulo S(w(j)) from the left, we may replace (4.21) by

Ty /
gs+1 = ( k+]675+1 gf) s,
s

where 6; € GLg_j, ., ,. Again, by (4.20), we conclude that modulo S(w(j)) from the left, we
may assume that a is such that go = g3 = -+ = g, = g. Now in (4.22), rank(y) = 2k — [,
and since k + j,—1 + 2 > 2k — [, we may multiply h from the left by an element of the form
diag(Ton+k—j,_1—-2:M), 1 € GLg1j, ,+2, and replace (4.22) by

p (0(2kz)x(2n+z) IQk—l) _ (0(2kl)><(2n+l) IQk—l) I
O1x (2n+1) O1x (2n+1)

This implies that g = (g §>’ where o € GLog_;, and h = (8

that modulo S(w(j)) from the left, a lies in S, ;. This proves the proposition.

2). By (4.17), this means

As an immediate corollary, we get the following result.

Proposition 4.5 Up to semi-simplification,

AT = )
wémk Skt Zn, kMW (k) =L Pogy2yn w(g)

~Y : Sn,,'Zn, 1 w(g
(M) =Dy, (ndg 5 R O C)
J "

where w(j) varies over all Weyl elements (4.14).

Each of the summands in (4.23) is isomorphic to

1

. S, 1 ;
mds"“}:(li”(5251(,3-)\27,,16 : (5;(2“2)” x)"D), (4.24)
where
Sw(i) & N .
Z:kl = n,kmw(l) 1P(2k+2)"w(l)
and
(w(4)) . .
Snwkll = Onk,l ﬁw(l) 1P(2k+2)"w(l)-

The isomorphism is induced by the map which sends a function f in the space of
c 1Sn k1 Znk
ind”" 2™

S,,,k,l~Z,,,kmw(g)*1P(2k+2)nw(j)(6153(2k+2>n . X)w(l) to the function on S, x,; given by

e — . f(ze)wlzhk(z_l)dz.
ok n.k

Since ‘
S = S ka1 S(w(j)),
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(w (J))

we see from (4.18)-(4.20) and (4.17) that an element in S, must be of the form

c x a b2V A(n—1)
((0 a)’(O d) )EGLQ”W X GLa,

and
diag(h; g2, gn)

(w (J))

with £ as in (4.19) and g as in (4.20) for s = 2,3,--- ,n. Hence S, is the subgroup of the

elements of the form

hi x --- * * €ntl X Aln—1)
ho €n -
( S L ) (4.25)
hy, * €y %
€Ent1 €1
in GLa(pqr) X GL, (" 1), where hy € GLg—j, 42, €1 € GLy_j,; for i = 2,3,--- -1, h; €

GL]L 1—ji+2 and €; € GL _1—jis h S GLJ,L 1 —k+1+2, €n € GLJ,L 1 —k+1, and €nt1 € GLQk 1.
Denote in (4.24)

(w(4)) 3 w(j (w(4)) w(j
miet = g0 Ohainn) D Xt = x"2. (4.26)
Proposition 4.6 The character §,, w ,ll) in (4.26) takes an element in Sfltuk(’%)) of the form
(4.25) to
n n+1
[T/ detha™ - T (4.27)
i=1 i=1

withm; =n(k+1) =20+ k)+1+ji-1, si=n+k)(2—-—n)—1—j;— 1forif12 <o ,n, and

Snt1 = —n(n —1); and the character X:jk(,j_l)) (4.26) takes an element in Sn k(jl)) of the form
(4.25) to
ﬁxi(det h; - det ey - - ~(Et\ei -+ -det €41), (4.28)
i=1
which can also be written as
sz det hy) ﬁ( Xi*+ Xn)(det €;) (Hx) (det €nq1). (4.29)

i=1 =1
Proof Let a = diag(h,g,---,g) be an element in S,(lwk(%)) of the form (4.25) (h € GLa(41),
and g € GLyy is repeated n — 1 times). Then w(j )aw(])_l € Prpqa)n. A straightforward

1

multiplication shows that the block diagonal of w(j)aw(j)™" consists of the following matrices

in GLgg4+2: The first block is

wh At 4wy, gtwh™; (4.30)
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the next n — 2 blocks are
ws,lhtw LS 9+1gtw€n s+1 LS 9+2gtw€n S-i-27 §=2,-,n—1; (431)

and the last block is

wn,lhtwn,l 4 wn,Qgtwn;Q. (432)

We used the form (4.14). Each matrix (4.30), (4.31), or (4.32) is a block upper triangular, and
its diagonal blocks are, in the notation of (4.25), for 1 < i < n,

diag(h’ia Ent1,€n, " 565, 761)'

This contributes to the character (62 5 : X)w(l) the product of the following two terms:

P yayn
| det(h;) det(er) - - - det(e;) - - - det(ep )| (P2 (EFD)

and

—

xi(det(h;) det(er) - -+ -det(e;) - -+ - det(eny1))-

w(j) (w(3)) of

1
Altogether, we get that the character (67 -x)"'Y evaluated at an element in S
n,k,l

P(2k+2)”
the form (4.25) is given by the product of

(ﬁ | det hi|”*2”1)k+1 . ﬁXi(det hi)
) =1

and
- sic1-n) T -
(H|detei| g _"> 'H(Xl"'Xi' n)(dete;) - (sz) (det €p41).
i=1 i=1 i=1
Let us describe the subgroup Z . Write an element of Zn (kl) in the form (4.15)
DLniry Z12 Z13 - Zin-1 Zin
Iy,  Zos -+ Zop—1 Zap
I, o Zap_1  Zzp
. . (4.33)
I2k anl,n
Loy

For 2 < r < n, write Z;, as a block matrix (Zg;,t))g,t of sizenx2 (1 <l <mn, t=12)
1,1)
where Zir € M(k —i142) X (k+Jn—ri1) and Z(1 2) S M(k—j1+2)><(k—jn_r+1); for 2 < ¢ < n-—
2,1 n,1
1, Z( ) ) IS M(jl—l7j£+2)><(k7jn71'+1); finally, Zir ) S

€ Mpyj,_14+2)x(k—jn_r+1)- Then these blocks must satisfy

(¢,
€ Mg, \—ji+2)x(ktjn_rsr) a0d Z7 )

n,2
M(kJrjnflJrQ)><(k+jn7rr~+1) and Zi,r )

the conditions
Z(n+2 rl) _ ZY;«H rl) fo::l) =0, 2<r<n; (4.34)

ZHs=rd) Zf”f) -0, 3<r<n. (4.35)
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The rest of the 2k x 2k matrices Z; ; in (4.33) has the following form. Let 2 <7 <n—1. Then

Zijqo =+ = L;n=0. (4.36)
Write
(1,1) (1,2)
Zijiy1 = (Zl(zﬁ)l Zz(2145)1>
Zz i+1 Z’L 1+1
where Z{ 1) € Mpj_ 1 )x(htin_s)- 4
Now we can compute the value of the character 6 5w (;) on elements diag(h,g,--- ,g) in Sr(:uk%))

n,k

of the form (4.25). The contribution of i to this character is
n
(H | det hi|2k(n—1)+(k—1i—1)> | det €, 11 |7€—Jn—17
i=1

jo = k. The contribution of g to (5~w(1> is

nk

( H | det 6i|—(n+k)(n—1)—(n—i)(k+2)+(i—2)k+j7:_1 ) | det €11 |—(n+k)(n—1)+(n—2)k+jn_1 .

i=1

Altogether, the character 521‘,@ evaluated at elements in S k. l)) of the form (4.25) is

n,k

n
| det €, 41| H | det 2R =+ (k=ji-1)] qet ¢;| (P HRI A —m)+A=n)(kt2)+(i=2)k+ji1

i=1
Now, the character . evaluated at the elements in Séw,f%)) of the above form is

|det hy - - - det hy, - det en+1|2k(”_1) -|detey - --det en+1|2("+k)(1_”).

(w(j)

Since the character 5N:f(£)\Zn (of Snkl ) is the quotient of 627% by 622,’%, we get that
) Zw0) evaluated at the elements of S (w(j)) of the above form is

Z, 5\
n
| det €541 |n(1—n) H | det, hi|2k(i—1)—(k—j1‘,—1)| det, 6i|(n+k)(1—n)+(n—i)(k+2)—(i—2)k—j11_1 )
i=1
Putting together the above calculations, we obtain the desired formula.
Summarizing the last three propositions, we obtain the following result.
Proposition 4.7 Up to semi-simplification of S, 1;-modules

n (w(j)) _ (w(§)
jwl @md <wk<f>> 5nkz "Xkl )s

k w(]) n k,l

where w(j) runs over all relevant representatives given in (4.14) and (4.10)(4.13), and the
inducing characters are given in Proposition 4.6.
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5 Proof of Theorem 2.1

By Proposition 4.3 and (3.41), we have, up to semi-simplification,

SOun(n ~ - @emn-1 I'm
jwzn,k (Ind%:(;i;) (T/)) = jwzn,k (lndejz),r:o:ezzm (U(O) ))

k

. 1SO2" XSOuntok

= @md T2k Ant2k . UIO*";l. (5.1)
prd V1.0 @k, 051, V1,0N (SO, XSO4ny2k) [0];

The subgroup 'nylQn,k,o;[m'ym N (SOQAk" X SO4pntok) is described in (3.42). Applying to the
second factor in (3.42) conjugation by

Lonyi
Ty 0
0 I |’
Iopyy O
the typical summand in (5.1) becomes
. SO5" XS04,
deif: e, (5.2)
where Ril’ i is the subgroup of elements
€1 €2 €3 () an ay as b4 b3
d4 —C3 eg 0 a1 b2 bil ) An
(| % o2 d o o & o) es0m < sOumm (53)
e} 0 0 0 aj
dy — . .
where e; € GLy, ( ; a03) € SOg(k—1), a1 is of size (k —1) x (k —1), and aq € GLa,4, as
—b2 1
before. The representation o is expressed in terms of 7, Lo (7). Taking into account the

Zn kiIm,

conjugation by the element (3.56), we get that the representation (5.2) is isomorphic to

. 1SO5" XSOun 42k
ind, ** e (5.4)
n.k
where
An
er €2 ez ey ag az by b3
! /
Ul( dy —C3 €3 0 a; by 4 )
—by a1 €} "1 0 ¢35 dy af
el 0 0 0 a

2n+4k—2nk—1

= |detay - dete; Ty ()
Zn k
a4 0 —b4 as
0 €1 €9 €3 0
0 0 d4 —C3
0 0 —=b2 a
. ( ! A(n—1) ) (5.5)
€1 €2 €3 €4
0 d4 —C3 6/3
—bg aq 6/2
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Let ¢ be the isomorphism which takes the element

An
er e ez ey as az by b3
( dy —C3 6/3 0 a1 by bﬁl )ERl
—bg ay 6/2 ’ 0 C3 d4 ag n,k
e; 0 0 0 aj
to
aa 0 —b4 as
0 €1 €2 €3 0
0 0 d4 —C3
0 0 —bg al
A(n—1)
€1 €2 €3 €4
0 d4 —C3 (3;3
—bg al €9
el

Denote by Egk C GLap(k41) the image of ¢. By (5.5) and Proposition 4.7, o; is expressed
through the representations

. 1Snka (W) (w(g))
Resﬁz; k(md (wkgl»(én,k,z “Xn,k,l ))-
b Lkl

It is clear that S,, ;= Sflfuk(%)) . Eilk Hence
B L CL€)) I (16 NN . Hw(@)  (w(g))
ResRl” k(md (&i))(‘sn’k’z “ Xkl ) = mdﬁl kms(w@)( ikl Xkl )s (5.6)
’ n,k,l n, k! 19n k1
where gflw,:ll)) and ii“’k(ll)) are the restr'iction of the characters 55:115%)) and Xf::]k(’]—'l)), respectively,
to the subgroup Sjlwk(ll)) = }A%il i ﬁS,(iU,f’ll)). The subgroup gffk(’ll)) consists of elements of the type
a4 0 —b4 as
0 €1 €9 €3 0
0 0 d4 —C3
0 0 —=by a1
A(n—1) (5.7)
€1 €2 €3
0 d4 —C3 6i3
—bg aq €9
el
with
hi x - % € k- %
h2 e * 63 R *
ag = ) .| € GLlapgy, e = ) | € GLy,
hn, €

n
where h; € GLj, ,_j,42, ¢ € GL;, ,—,, for i = 1,--- n (letting jo = k, j, = k —1). From

(4.27), the character gflwk(ll)) evaluated at elements in iwk(ll)) of the form (5.7) is

H | det hi|n(k+1)—2(i+k)+1+j¢_1 . H | det €i|(k—1)(1—n)+k—j,;_1, (5.8)

i=1 i=1
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and from (4.29), the character 5551“}1@(11)) i

n

Hxi(det hi) - [ xi ' (dete). (5.9)

i=1
Define

Shw(i) = o (S, (5.10)

This is a subgroup of Ril’k. Define also

. (w(7)) . ~(w(d))
8 (w(f) = 0,7 op and X, (w(f) =X, o (5.11)
Then the induced representation (5.6) is pulled back to
. Rl , .
1nd3;::(w(l))(&z,k(w(l)) ' Xiz,k(w(l))) (5'12)

Hence, by (5.1) and Proposition 4.7, we obtain the following proposition.

Proposition 5.1 Up to semi-simplification of SOQAk” X SO4p421-modules,

T, (Idg, 00 (7))

Q2n(k+1)

k
. SO xSOunya . RL. . .
=P {@mdm ¢ SOman (5 il 'k(w(l-))(‘siuk(w(l)) .lek(w(l))))}

n,k n,k
=0 w(j)

where § is given by

An

er e ez e ag az by b3
d4 —C3 e’ 0 a b b/ 2n+4k—2nk—1
3 1 2 4 o 2n4dk—2nk—1
5( b ; 1o d ; >f|deta4~det61 2 ,
—02 a1 €9 C3 4 ag
el 0 0 0 aj

and w(j) runs over all relevant representatives given in (4.14) and (4.10)-(4.13).

From now on, in order to simplify our notation, we identify
SO@cn X SO4n+2k = S0g; X SO4n+2k~

However, we still use the same notation for other data. Hence we consider the following induced

representations:

1 n : R—ln . .
mdi?% XSOu4n 2k (6 - mdsl ok i (%Jﬁ(w@) .lek(w(i))))7 (5.13)
n,k n,k( (l))

which is the same as
. 18025, xSO4n . .
indSO SO0 (551 () X (w(2))) (5.14)

Let us specify the data in (5.14). By (5.7) and the definition of ¢, the subgroup S/, ,(w(j))
consists of the elements of the form

€1 * * a4 * *
dy —c3 ay  bo
* * € SO9, x SO
( —b2 ay B 3 d4 ) 2k An+2k,
* *

€1 ay
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where e; € GL; and a4 € GLg,4; are given respectively by

€ K - % hi *
€9 e * h2
€1 = . . y Q4 = . . )
€n I

as in (5.7). By (5.8)—(5.9) and (5.11), and by the definition of ¢ in the last proposition, we
get that the character 0 - 65% (W) - le i (wi) evaluated at the elements above of the subgroup
Sfbk(w(l)) is given by

n 4(n—1i)+25; 1 +1 n 25, _1+1
[ xi(dethi) - [dethy| == - [] xi(dete;) - [dete;|~ 2.
i=1

i=1

(5.15)

In order to prove Theorem 2.1, it is enough to consider, by Proposition 5.1 and (5.13)—(5.14),
for 0 <1 <k and w(j), as above,

. 1502, XSOun+2k . X n(k+1)
HOMS 0, x50, ([Indigr (0 03 (w(7)) - X p(w())] @ 0¥ @70 7, 1),

The assumption of Theorem 2.1 implies that there are I and w(j), such that this Hom-space is
nonzero. In this case, we get, by Frobenius reciprocity, that

n(k+1)
Wo

Homsjhk(w(i))(av Q™ A (860 k(W) - Xk (w(5)) ) #0, (5.16)

where A is the modular function of the subgroup Sfl’k(w(z )) (recall that “ind” denotes non-
normalized compact induction). The character A takes an element, as above, in S! , (w(j))
to

H | det ¢; Ji—1+ji—1 H | det hi|4(n7i)+ji—1+ji+17 (5.17)

i=1 =1

jo =4k, jn =k —1. This and (5.15) show that the character
AF (88, (wn) X g (wi)) !

takes an element, as above, in S, ; (w(j)) to

n

i—di_ n
[T o ldet |2 )(ha) - JT O " o I det

i=1 i=1

Ji—Jdi—1

(). (5.18)

Thus, if the Hom-space in (5.16) is nonzero, then the irreducible, unitary, generic, unramified
representation oV of SOg (F) can be embedded inside a normalized induced representation

1

n . .
SO 1 Ji—Jdi—
Inkoi’;Nl_m_” ek (® X; oldet|T =z ® 77), (5.19)
i=1

where 7 is an irreducible, unramified representation of SOg(;,_;)(F). Recall that

Qhiy i1 ) . ) _Q(Q’f)
k—=J1,91=J2, sn—2—Jn—1Jn—1—k+l = Wk—j; 51 —jo, - Gn_2—dn—1.n—1—k+l
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denotes the standard parabolic subgroup of SOsy, whose Levi part is isomorphic to
GLk—jl X Gle_j2 X X GLjn—Q_jn—l X GLjn—1—k+l X SOQ(I{?*[)'

o n(k+1) . . . .
Similarly, 7o can be embedded inside a normalized induced representation

n o k—1
SO 1 Ji—di—1
Tndgd (@xitoldet] )0 (®8). (5:20
Qk_j1+2:j1_j2+21"'vJ7L72_jn71+21J‘7L71_k+l'+211k_l . 1X1 | | ) lgj ’ ( )
= j=

where &1, -, &—; are unramified characters of F* and

Qb= 142,51 ja+2, i —2—n—1+2,jn 1 —hHl+2, 151
denotes the standard parabolic of SOy, 42k, whose Levi part is isomorphic to

X (k—1)
GLk—ji+2 X GLj, —jp 2 X -+ X GLyj, 5,42 X GLj, _—kpig2 X GLy .

The parabolic induction (5.20) admits a unique maximal orbit (over the algebraic closure of F')
of degenerate Whittaker models, namely, the Richardson orbit of

Qk—jy 12,51 —Ga+20 jnz—dn—142,jn 1 — kL H 2,151

(see the proof of Prop. I1.1.3 in [14]). Tt is easy to see that this orbit corresponds to a partition
of the form

[(2n +2(k — 1) — 1)(2n + 1)(2us)(2us) - -] (5.21)

with u; nonnegative integers. Thus all partitions corresponding to any degenerate Whittaker
model of 7 are majorized by (5.21). Therefore, if we assume that 7 has a degenerate Whittaker
model corresponding to an orthogonal partition of the form [(2n+2k—1)---] (e.g., [(2n+ 2k —
1)(2n + 1)]) then it follows that

I +2%—1<2n+20k—1)—1,

and hence [ = 0.
We reach the same conclusion if we assume that o is unitary and generic. In this case, n must
be generic, and o is actually equal to the representation (5.19). Recall that x;(z) = w;(z)|z

a;
)

where u; is a unitary character and «; is real. Recall also that in (2.4), we made the choice
that 0 < o; < %, for 1 <i < n. If one of the integers

k_jlajl _j27"' ajn72 _jnflvjnfl —k+1

is larger than 1, then the representation (5.19) can not have a generic constituent. Since o is
generic, all these integers must be either 0, or 1, that is,

ji —jic1=0,-1, 1<i<n.

If there exists an index i, such that j; — j;_1 = —1, then the corresponding exponent in (5.19)
satisfies . . ] 1
Ji = Ji—1
B e At S
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This contradicts the main theorem in [13], which implies, in our case, that the exponents of
an irreducible, unitary, generic, unramified representation o of SOg; lie in the open interval

( - %, %) We conclude that

k:]1:]2::]n—1:k_l

In particular, I = 0. We proved that either one of the two assumptions (1) or (2) in Theorem
2.1 implies that [ = 0. We conclude that j; = jo = --- = j,—1 = k, and w(j) is determined
uniquely. In this case, the subgroup 827 i consists of the elements of the form

ag * *
(y’, g * ) € SO2; X SOun+2k; (5.22)
aj

where for g € SOg, ¢’ = ( 7 Ik) g <I _Ik>; as € GLo,, is of the form
—1I k

by ox e s
h2 *

as = . . )
hy

where h; € GLg, for i =1,2,--- ,n. By (5.18), the character A - (¢ - 52k(w(l)) -X%k(w(‘i)))_l

1S
n

85, (diag(h, -+ hn), Iox)) - [ [ xi " (det By,

i=1
where (diag(hi,- -+ ,hy), Iox) € GL3™ X SOg,. Hence the Hom-space condition (5.16) can be
written as
H s o o det od 5.23
OmQ;i"‘*'k)(ﬂ 1 YQan ® (Xl cde ) K ® (Xn o et) ® 01)7 ( : )
where o1(g) = o(¢’). By Frobenius reciprocity, the Hom-space (5.23) is isomorphic to
SOun-on [ — _
Homgo,, ., (m, Indg, " ((x; Lodet) ®---® (x;,t odet) ® 01)). (5.24)

We proved that if the Hom-space in Theorem 2.1 is nonzero, then the Hom-space in (5.24) is
non-zero. When n is even, the representation

Indgr (i Mo det) @ -+ @ (x," o det) @ 1) (5.25)
shares the same unramified constituent with the representation

Indgy "+ (7] det |¥ ® o), (5.26)

n(k41) |, . . .
and hence m = 70" is isomorphic to the spherical sub-quotient of (5.26). Note that oy &

(U)‘”g. When n is odd, the representation (5.25) shares the same unramified constituent with
the representation

k+1

Indg) " (7] det |F ® (01)“°) = Indgy " *** (7] det |¥ @ (0)0 ), (5.27)
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n(k+1)

k+1
and hence 7% = 7%

is isomorphic to the spherical sub-quotient of (5.27). Therefore 7
is isomorphic to the spherical sub-quotient of

Indy "+ (v|det |¥ © o).
In both cases, we get that 7 is isomorphic to the spherical sub-quotient of

).

k(n+1)
wo

Indgy (| det |1 @ (o)

This completes the proof of Theorem 2.1.
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References

[1] Arthur, J., The Endoscopic Classification of Representations. Orthogonal and Symplectic Groups, Ameri-
can Mathematical Society Colloquium Publications, 61, American Mathematical Society, Providence, RI,
2013.

[2] Cogdell, J. W., Kim, H. H., Piatetski-Shapiro, I. I. and Shahidi, F., Functoriality for the classical groups,
Publ. Math. Inst. Hautes Etudes Sci., 99, 2004, 163-233.

[3] Ginzburg, D., Endoscopic lifting in classical groups and poles of tensor L functions, Duke Math. Journal,
141(3), 2008, 447-503.

[4] Ginzburg, D., Constructing automorphic representations in split classical groups, Electron. Res. Announc.
Math. Sei., 19, 2012, 18-32.

[5] Ginzburg, D., Jiang, D. and Soudry, D., Periods of automorphic forms, poles of L-functions, and functorial
lifting, Science in China: Mathematics, 53(10), 2010, 2215-2238.

[6] Ginzburg, D., Jiang, D. and Soudry, D., On CAP representations for even orthogonal groups II: Global
constructions, in preparation.

[7] Ginzburg, D., Rallis, S. and Soudry, D., On explicit lifts of cusp forms from GL,, to classical groups,
Annals of Math., 150, 1999, 807-866.

[8] Ginzburg, D., Rallis, S. and Soudry, D., On Fourier coefficients of automorphic forms of symplectic groups,
Manuscripta Math., 111, 2003, 1-16.

[9] Ginzburg, D., Rallis, S. and Soudry, D., The Descent Map from Automorphic Representation of GL(n) to
Classical Groups, World Scientific, Publishing Co. Pte. Ltd., Hackensack, NJ, 2011.

[10] Jacquet, H. and Shalika J., On Euler products and classification of automorphic forms I, American J.
Math., 103, 1981, 499 588.

[11] Jiang, D., Automorphic Integral Transforms for Classical Groups I: Endoscopy Correspondences, Au-
tomorphic Forms: L-functions and Related Geometry: Assessing the Legacy of I.I. Piatetski-Shapiro.
Contemporary Mathematics, American Mathematical Society, 614, 2014, 179-242.

[12] Jiang, D., Liu, B. and Zhang, L., Poles of certain residual Eisenstein series of classical groups, Pacific
Journal of Mathematics, 264(1), 2013, 83-123.

[13] Lapid, E., Muic, G. and Tadic, M., On the generic unitary dual of quasi-split classical groups, IMRN, 26,
2004, 1335-1354.

[14] Moeglin, C. and Waldspurger, J. L., Modeles de Whittaker dégénérés pour des groupes p-adiques, Math.
Z., 196, 1987, 427-452.

[15] Piatetski-Shapiro, I. and Rallis, S., L-Functions for the Classical Groups in Explicit Constructions of
Automorphic L-Functions, Leture Notes in Mathematrics, 1254, Springer-Verlag, 1987, 1-52.

[16] Zelevinsky, A., Representations of Finite Classical Groups, Leture Notes in Mathematics, 869, Springer-
Verlag, 1981.



