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Abstract In this paper, the authors are concerned with the forced isochronous oscillators
with a repulsive singularity and a bounded nonlinearity

x′′ + V ′(x) + g(x) = e(t, x, x′),

where the assumptions on V , g and e are regular, described precisely in the introduction.
Using a variant of Moser’s twist theorem of invariant curves, the authors show the existence
of quasi-periodic solutions and boundedness of all solutions. This extends the result of Liu
to the case of the above system where e depends on the velocity.
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1 Introduction

In this paper, we consider the existence of quasi-periodic solutions and the boundedness of
all solutions for forced isochronous oscillators with a repulsive singularity. We also assume that
the equation we considered depends on the velocity.

Consider the second-order ordinary differential equation

x′′ + V ′(x) = 0,

in which the potential function V is continuous. We call x = 0 an isochronous center if

V ′(0) = 0, xV ′(x) > 0 for x �= 0,

and there is a fixed number T > 0 such that every solution is periodic with period T . If x = 0
is an isochronous center, we call the equation above an isochronous system. A typical example
of the isochronous system is

x′′ + ω2x = 0.
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It is easy to see that every solution of this equation is 2π
ω -periodic in t. Another important class

of isochronous systems is the asymmetric equation

x′′ + ax+ − bx− = 0,

where x+ = max(x, 0), x− = x− x+. This is because all solutions are periodic with the period
π( 1√

a
+ 1√

b
). In the above examples, the equations are both defined on the whole real line.

People also consider the system

x′′ +
x + 1

4
− 1

4(1 + x)3
= 0.

Obviously, all solutions are 2π-periodic. The difference between this equation and the first
two equations is that, this equation is not defined on R, and the potential tends to infinity as
x → −1. More information of isochronous centers can be found in [3].

In 1969, Lazer and Leach studied the equation

x′′ + m2x + g(x) = p(t), m ∈ Z
+,

with a 2π-periodic function p. They showed in [12] that, if g(±∞) = lim
x→±∞ g(x) exists and

2 |g(+∞) − g(−∞)| >
∣∣∣ ∫ 2π

0

p(t)eimtdt
∣∣∣,

then this equation has at least one 2π-periodic solution. The above inequality is called the
Lazer-Landesman condition.

Since then, many mathematicians investigated the existence of periodic solutions for the
equations

x′′ + V ′(x) + g(x) = p(t), (1.1)

where p is periodic with period 2π (see [4–5, 7–11] and the references therein). In their works,
they assumed the function V ′ to be of the form V ′(x) = m2x or V ′(x) = ax+ − bx−. So the
equation (1.1) can be viewed as a perturbation of an isochronous system. They showed that
the type of Lazer-Landesman condition always plays a key role for the existence of periodic
solutions.

Bonheure, Fabry and Smets [1] studied the forced isochronous oscillators with jumping non-
linearities and a repulsive singularity. The Lazer-Landesman-type condition is a key assumption
to guarantee the existence of periodic solutions in their work. In the following, we briefly go
over their result.

Assume that the function g is smooth and bounded, and the function V satisfies

lim
x→+∞

2V (x)
x2

=
m2

4
, lim

x→a+
V (x) = +∞, (1.2)

where m ∈ Z
+, a ∈ (−∞, 0) and V is defined on (a, +∞). We also assume that all solutions of

the unperturbed equation

x′′ + V ′(x) = 0 (1.3)
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are 2π
m -periodic, that is, (1.3) is an isochronous oscillator with period 2π

m . In this case, the
equation (1.1) is a bounded perturbation of isochronous oscillators at resonance. The second
condition in (1.2) means that the equation (1.3) has a repulsive singularity at a.

Let

g∗(ρ) =
∫ 2π

0

g
(
ρ
∣∣∣ sin (mt

2

)∣∣∣)∣∣∣ sin (mt

2

)∣∣∣dt, p∗(θ) =
∫ 2π

0

p(t + θ)
∣∣∣ sin

(mt

2

)∣∣∣dt.

Then (1.1) has at least one 2π-periodic solution if there is g0 ∈ [g−∗ , g+
∗ ], which is a regular value

of p∗, and the number of zeros of p∗ − g0 in [0, 2π
m ) is different from 2, where

g−∗ = lim inf
ρ→+∞ g∗(ρ), g+

∗ = lim sup
ρ→+∞

g∗(ρ).

In particular, as a corollary, if the limit lim
x→+∞ g(x) = g+ exists, then the condition of the

Lazer-Landesman type

4g+ > max
θ

p∗(θ) (1.4)

guarantees the existence of 2π-periodic solutions of (1.1).
In [17], Ortega considered the boundedness of solutions and the existence of quasi-periodic

solutions for asymmetric oscillators. Following his result, there are several results (see [14,
18–19] and the references therein) on the boundedness of solutions for (1.1). However, in these
works, the function V is globally defined in R. That is, they do not include the case of the
oscillators with a singularity.

In [18], Ortega also proved a variant of Moser’s small twist theorem. Under some reasonable
assumptions, he showed that a C6 small twist area-preserving mapping has invariant curves.
Moreover, he used the variant of Moser’s small twist theorem to obtain the boundedness of a
piecewise linear equation

x′′ + n2x + hL(x) = p(t),

where p(t) is a 2π-periodic function of class C5, hL(x) is of the following form:

hL(x) =

⎧⎨
⎩

L, if x ≥ 1,
Lx, if |x| < 1,
−L, if x ≤ −1,

and p(t) satisfies
1
2π

∣∣∣ ∫ 2π

0

p(t)e−intdt
∣∣∣ <

2L

π
.

In 2009, Capietto, Dambrosio and Liu [2] studied (1.1) with g(x) = 0 and

V =
1
2
x2

+ +
1

(1 − x2−)γ
− 1,

where γ is a positive integer. They showed the boundedness of solutions and the existence
of quasi-periodic solutions via Moser’s twist theorem. Here, V has a singularity −1. As far
as we know, this is the first example of the boundedness of solutions for the equations with
singularities. However, this equation is not isochronous.
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In [15], Liu showed that, under the condition (1.4) and other regular assumptions on V , g and
p, the equation (1.1) has many quasi-periodic solutions and all solutions are bounded. It seems
that this is the first result on the existence of quasi-periodic solutions and the boundedness of
all solutions for isochronous oscillators with a singularity.

In this paper, we extend the results in [15] to the case of the equation where e depends on
the velocity. More precisely, we study the equation

x′′ + Vx(x) + g(x) = e(t, x, x′), (1.5)

where the functions V , g and e satisfy the following assumptions:
(1) The function V is defined in the interval (−1, +∞) and V (0) = V ′(0) = 0, V ′′(x) > 0

for x �= 0, and the condition (1.2) holds.
(2) The function

W (x) :=
V (x)
V ′(x)

(1.6)

is smooth in (−1,∞) and the limit lim
x→−1

W (x) exists. Furthermore, we assume that the follow-

ing estimates hold: For each 1 ≤ k ≤ 6, there is a constant c0, such that

|W (x)| ≤ c0(1 + x), |W (k)(x)| ≤ c0 for x ∈ [−1,∞).

(3) The positive function V is smooth and for 0 ≤ k ≤ 6,

|(1 + x)kV (k)(x)| ≤ c′0V (x) for x ∈ (−1, +∞),

where c′0 is a positive constant.
(4) The function g is bounded on the interval [−1, +∞) and g(x) > 0 for x > 0. Moreover,

the following equalities hold:

lim
x→+∞(1 + x)k dk

dxk
g(x) = 0 for k > 0.

(5) For x > 0, let Φ(x) = V (x) − m2

8 x2, and the function Φ satisfies

lim
x→+∞xk−2Φ(k)(x) = 0,

for every positive integer k.
(6) There is a constant M > 0, such that |e(t, x, y)| ≤ M , and for 1 ≤ j + i + l ≤ 7,

lim
x→+∞
y→∞

xiyl ∂
j+i+le(t, x, y)
∂tj∂xi∂yl

= 0.

Furthermore, there exists a function e(t), such that

lim
x→+∞
y→∞

e(t, x, y) = e(t), lim
x→+∞
y→∞

e′t(t, x, y) = e′(t).

Moreover, the function e is 2π-periodic in t, and

e(−t, x,−y) = e(t, x, y).

Then we have the following theorem.
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Theorem 1.1 Under the hypotheses (1)–(6) above, for a smooth function e = e(t, x, y),
if the Lazer-Landesman-type condition

4g+ > max
θ

e∗(θ)

holds, where e∗(θ) =
∫ 2π

0
e(t + θ)

∣∣ sin
(

mt
2

)∣∣dt, then all solutions of (1.5) are bounded, i.e., for
each solution x, we have

sup
t∈R

(|x(t)| + |x′(t)|) < +∞, inf
t∈R

x(t) > −1.

Furthermore, in this case, the equation (1.5) has infinite many quasi-periodic solutions.

The idea for proving our theorem is that, under the hypothesis (1)–(6) of our theorem, we
can obtain that the Poincaré map of (1.5) satisfies the assumptions of a variant of Moser’s twist
theorem in [16]. These conditions are analogous to those in [13].

In the following, for simplicity and brevity, we assume that m = 1, i.e., the solutions of the
equation x′′ + Vx(x) = 0 are 2π-periodic, and m = 1 in (1.2) and the assumption (5). The
proof of our statements for general m (the function e is also 2π-periodic in t) can be treated
analogously.

The paper is organized as follows. In Section 2, we introduce action and angle variables.
After that we state and prove some technical lemmas in Section 3, which are employed in the
proof of our main result. In Sections 4–6, we will give an asymptotic expression of the Poincaré
map and prove the main result by the twist theorem in [16].

2 Action and Angle Variables

The equation (1.5) can be written in the following form:

x′ = y, y′ = −V ′(x) − g(x) + e(t, x, y). (2.1)

In order to introduce action and angle variables, we consider the auxiliary autonomous system

x′ = y, y′ = −V ′(x). (2.2)

From our assumptions, we know that all solutions of this system are 2π-periodic in t. For
every h > 0, we denote by I(h) the area enclosed by the (closed) curve 1

2y2 + V (x) = h. Let
−1 < −αh < 0 < βh be such that V (−αh) = V (βh) = h. Then by (1.2) it follows that

lim
h→+∞

αh = 1, lim
h→+∞

βh = +∞.

Moreover, it is easy to see that

I(h) = 2
∫ βh

−αh

√
2(h − V (s)) ds, ∀h > 0. (2.3)

Let

T−(h) = 2
∫ 0

−αh

1√
2(h − V (s))

ds, T+(h) = 2
∫ βh

0

1√
2(h − V (s))

ds. (2.4)
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Then

I ′(h) = T−(h) + T+(h).

Because all the solutions of the auxiliary equation (2.2) are 2π-periodic, we have

T−(h) + T+(h) ≡ 2π (2.5)

which yields that I(h) = 2πh.

For every (x, y) ∈ (−1, +∞)× R, let us define the angle and action variables (θ, I) by

θ(x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ x

−αh

1√
2(h(x, y) − V (s))

ds, if y ≥ 0,

−
∫ x

−αh

1√
2(h(x, y) − V (s))

ds, if y < 0,
(2.6)

I(x, y) = 2
∫ βh

−αh

√
2(h(x, y) − V (s))ds, (2.7)

where

h(x, y) =
1
2
y2 + V (x).

Obviously, we have
d
dt

h(x, y)
∣∣∣
(2.1)

= y(−g(x) + e(t, x, y))

and

x(−θ, I) = x(θ, I), y(−θ, I) = −y(θ, I).

In the new variables (θ, I), (2.1) becomes

θ′ = 1 + Ψ1(θ, I, t), I ′ = Ψ2(θ, I, t), (2.8)

where

Ψ1(θ, I, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−y(θ, I)(g(x) − e(t, x, y))

∂

∂h

∫ x

−αh

1√
2(h − V )

ds for y ≥ 0,

y(θ, I)(g(x) − e(t, x, y))
∂

∂h

∫ x

−αh

1√
2(h − V )

ds for y ≤ 0,

Ψ2(θ, I, t) = −2πy(θ, I)(g(x(θ, I)) − e(t, x(θ, I), y(θ, I))).

We have used the equality

2
∫ βh

−αh

1√
2(h(x, y) − V (s))

ds = 2π.

Obviously, this equation is time-reversible with respect to the involution (θ, I) 
→ (−θ, I).
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3 Some Technical Lemmas

The proof of the main theorem 1.1 is based on a variant of the small twist theorem in the
reversible system (see [16]). Therefore, we state it first and then give some technical estimates
which will be used in the next sections. More precisely, we may use these estimates to obtain
an asymptotic expression of the Poincaré map of (2.8).

3.1 A variant of the small twist theorem

In this subsection, we will state a variant of the small twist theorem (see [16]).
Let A = S

1 × [a, b] be a finite cylinder with a universal cover A = R× [a, b]. The coordinate
in A is denoted by (τ, v). Consider a map

f : A → S
1 × R.

We assume that the map is reversible with respect to the involution G : (θ, I) 
→ (−θ, I), that
is,

G ◦ f ◦ G = f
−1

.

Suppose that f : A → R × R, (τ0, v0) 
→ (τ1, v1) is a lift of f and it has the form

f :
{

τ1 = τ0 + 2Nπ + δl1(τ0, v0) + δϕ1(τ0, v0, δ),
v1 = v0 + δl2(τ0, v0) + δϕ2(τ0, v0, δ),

(3.1)

where N is an integer, δ ∈ (0, 1) is a parameter and l1, l2, ϕ1 and ϕ2 are functions satisfying

l1 ∈ C6(A), l1(τ0, v0) > 0,
∂l1
∂v0

(τ0, v0) > 0, ∀(τ0, v0) ∈ A, (3.2)

l2, ϕ1, ϕ2 ∈ C5(A), ϕ1(τ0, v0, 0) = 0. (3.3)

In addition, we assume that there exists a function I : A → R satisfying

I ∈ C6(A), I(−τ0, v0) = I(τ0, v0),
∂I
∂v0

(τ0, v0) > 0, ∀(τ0, v0) ∈ A, (3.4)

l1(τ0, v0)
∂I
∂τ0

(τ0, v0) + l2(τ0, v0)
∂I
∂v0

(τ0, v0) = 0, ∀(τ0, v0) ∈ A. (3.5)

Define the functions

Imax(v0) = max
τ0∈R

I(τ0, v0), Imin(v0) = min
τ0∈R

I(τ0, v0), v0 ∈ [a, b].

Small Twist Theorem (see [16, Theorem 2]) Let f be such that (3.1)–(3.3) hold. Assume
in addition that there exists a function I satisfying (3.4)–(3.5) and numbers ã, b̃ with

a < ã < b̃ < b, Imax(a) < Imin(ã) ≤ Imax(ã) < Imin(̃b) ≤ Imax(̃b) < Imin(b).

Then there exist ε > 0 and Δ > 0 such that if δ < Δ and ‖ϕ1‖C5(A) + ‖ϕ2‖C5(A) < ε, the map
f has an invariant curve Γ. The constant ε is independent of δ. Furthermore, if we denote by
μ(Γ, δ) ∈ S

1 the rotation number of f , then

lim
δ→0

μ(Γ, δ) = 0.
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Remark 3.1 From the last inequality in (3.2), we know that τ1 is increasing as v0 increases.
This means that (3.1) is a twist map. By the proof in [16], one can see that the conclusions of
this theorem still hold if the condition (3.2) is replaced by

l1 ∈ C6(A), l1(τ0, v0) �= 0,
∂l1
∂v0

(τ0, v0) �= 0, ∀(τ0, v0) ∈ A.

Remark 3.2 Note that l1(τ0, v0) = l1(−τ0, v0), and l2(τ0, v0) = −l2(−τ0, v0). If the func-
tion I does not satisfy I(−τ0, v0) = I(τ0, v0), we can choose J (τ0, v0) = 1

2 (I(τ0, v0)+I(−τ0, v0))
instead of I(τ0, v0).

3.2 Some technical lemmas

In order to obtain an asymptotic expression of the Poincaré map of (2.8), we must give some
estimates first. In this subsection, we will deal with some technical estimates. Throughout this
subsection, we suppose that the assumptions (1)–(5) stated in Section 1 hold.

Lemma 3.1 For every positive integer 0 ≤ k ≤ 6, there is a constant c1 > 0, such that

∣∣∣hk dkT−(h)
dhk

∣∣∣ ≤ c1T−(h).

Proof According to [13], we know that

T ′
−(h) =

2
h

∫ 0

−αh

(
W ′(s) − 1

2

)
· 1√

2(h − V (s))
ds,

T ′
+(h) =

2
h

∫ βh

0

(
W ′(s) − 1

2

)
· 1√

2(h − V (s))
ds,

(3.6)

and here and in the rest of this subsection, the function W is defined by (1.6). By the assumption
(2) in Section 1, it follows that

|hT ′
−(h)| ≤ 2

(
c0 +

1
2

) ∫ 0

−αh

1√
2(h − V (s))

ds ≤
(
c0 +

1
2

)
T−(h).

From (3.6) and the equality (the proof can be found in [13])

d
dh

∫ 0

−αh

K(s)
1√

2(h − V (s))
ds =

1
h

∫ 0

−αh

( d
ds

(W (s)K(s)) − 1
2
K(s)

) 1√
2(h − V (s))

ds,

where K is a smooth function, it follows that

h2T
(2)
− (h) = −hT ′

−(h) + 2
∫ 0

−αh

((
W ′(s) − 1

2

)2

+ W ′′(s)W (s)
) 1√

2(h − V (s))
ds,

which yields, by the assumption (2) in Section 1 and the estimate on T ′
−, that

|h2T
(2)
− (h)| ≤

(
2c0 +

1
2

+
(
c0 +

1
2

)2)
T−(h).

The general case can be obtained by an induction argument and a direct computation.
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Lemma 3.2 There is a constant c2 > 0 such that, for each positive integer k ≤ 6,

|hkT
(k)
+ (h)| ≤ c2 · 1√

h
.

Proof Let

I−(h) = 2
∫ 0

−αh

√
2(h − V (s))ds.

Then T−(h) = I ′−(h). On the other hand, similar to the proof of (3.6), it is not difficult to see
that

I ′−(h) =
2
h

∫ 0

−αh

(1
2

+ W ′(s)
)√

2(h − V (s))ds.

From the assumption (2) in Section 1, it follows that T−(h) ≤ c0+1√
h

. By Lemma 3.1, we have,
for each positive integer k ≤ 6,

∣∣∣hk dkT−(h)
dhk

∣∣∣ ≤ c1(c0 + 1)
1√
h

.

The conclusion of this lemma follows from this inequality and the identity T−(h)+T+(h) ≡ 2π.

Define a function F

F (x, I) =
∫ x

−αh

(
W ′(s) − 1

2

) 1√
2(h − V (s))

ds (3.7)

and an operator L

L(f) =
h′

I

h

[∂(fW (x))
∂x

− 1
2
f
]

+
∂f

∂I
, (3.8)

where f = f(x, I), h = h(I) and h′
I is the derivative of h with respect to I.

The proof of the following lemma can be found in [13].

Lemma 3.3 For every smooth function g(x, I), we have

∂

∂I

∫ x

−αh

g(s, I)
1√

2(h(I) − V (s))
ds

=
∫ x

−αh

L(g)
1√

2(h(I) − V (s))
ds − W (x)g(x, I)

h′
I

h

1√
2(h(I) − V (x))

. (3.9)

Next, we give an estimate of the derivatives of x = x(θ, I) and y = y(θ, I) with respect to
the action variable I.

Proposition 3.1 There is a constant C > 0 such that, for 1 ≤ k ≤ 6,

∣∣∣Ik ∂kx

∂Ik

∣∣∣ ≤ C(1 + x),
∣∣∣Ik ∂ky

∂Ik

∣∣∣ ≤ C|y|, (3.10)

where x = x(θ, I) and y = y(θ, I) are defined implicitly by (2.6) and (2.7), respectively.
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The idea of the proof of this proposition is similar to the corresponding one in [13]. A
complete proof can be found in the appendix of [15].

Note that −1 ≤ −αh ≤ x ≤ βh and the assumption (5) in Section 1, there is a constant
c3 > 0 such that for I � 1, βh ≤ c

√
I. Hence, by Proposition 3.1, we have

∣∣∣Ik ∂kx(θ, I)
∂Ik

∣∣∣, ∣∣∣Ik ∂ky(θ, I)
∂Ik

∣∣∣ ≤ c4

√
I for 0 ≤ k ≤ 6, (3.11)

where c4 > 0 is a constant, not depending on I.

4 An Asymptotic Formula of x(θ, I)

In this section, we will give an asymptotic expression of x(θ, I) when I � 1.
From the definition of θ (cf. (2.6)), it follows that

xθ(θ, I) = y(θ, I).

Since 1
2y2 + V (x) = h = I

2π , combining with the above equality, we have

yθ(θ, I) = −V ′(x).

That is, the function x(θ, I) satisfies

xθθ + V ′(x) = 0.

Let

x̃(θ) =
1√
2h

x
(
θ +

T−(h)
2

, I
)
.

Then

x̃(0) = 0, x̃θ(0) = 1.

Obviously, there is a δ > 0 such that x̃(θ) > 0 for θ ∈ (0, δ). By the assumption (5) in Section
1, we know that, if x̃ > 0, then it is the solution of

d2u

dθ2
+

1
4
u +

1√
2h

Φ′(
√

2hu) = 0. (4.1)

Let Θ̃+(I) be the subset of the interval [0, 2π] such that for θ ∈ Θ̃+(I), x̃(θ, I) > 0.

Lemma 4.1 For θ ∈ Θ̃+(I), the function x̃ has the following expression:

x̃(θ, I) = 2 sin
θ

2
+ X̃(θ, I),

where the function X̃ satisfies

lim
I→+∞

6∑
k=0

∣∣∣Ik ∂kX̃

∂Ik

∣∣∣ = 0.
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Proof In the following, we assume that θ ∈ Θ̃+(I). Since x̃ is the solution of (4.1) with
the initial condition u(0) = 0, u′(0) = 1, we have

x̃(θ, I) = 2 sin
θ

2
+ 2

∫ θ

0

1√
2h

Φ′(
√

2hx̃(τ)) sin
θ − τ

2
dτ,

where h = I
2π . Hence, the function X̃ is determined implicitly by

X̃(θ, I) = 2
∫ θ

0

1√
2h

Φ′
(√

2h
(
2 sin

τ

2
+ X̃(τ, I)

))
sin

θ − τ

2
dτ.

From the hypothesis (5) in Section 1 and the Lebesgue dominated theorem, we have

lim
I→+∞

X̃(θ, I) = 0.

Taking the derivative with respect to I in both sides of the above equality, one has

∂X̃

∂I
(θ, I) = 2

∫ θ

0

[(
−(2h)−

3
2 Φ′+(2h)−1Φ′′·

(
2 sin

τ

2
+X̃(τ, I)

)) 1
2π

+Φ′′·∂X̃

∂I
(τ, I)

]
sin

θ − τ

2
dτ.

By the hypothesis (5) in Section 1 and the Gronwall inequality, it follows that

lim
I→+∞

∣∣∣I ∂X̃

∂I
(θ, I)

∣∣∣ = 0.

The estimates for the derivatives of higher order can be obtained in a similar way.

By the definition of x̃ and h = I
2π , we have

x(θ, I) = 2

√
I

π
sin

(θ

2
− T−(h)

4

)
+

√
I

π
X̃

(
θ − T−(h)

2
, I

)
(4.2)

and

lim
I→+∞

6∑
k=1

∣∣∣Ik− 1
2

∂k

∂Ik

(
x(θ, I) − 2

√
I

π
sin

(θ

2
− T−(h)

4

))∣∣∣ = 0. (4.3)

Now we turn to estimate the measure of the set Θ̃+(I). By the definitions of θ and x̃, we
know that

x̃(θ, I) > 0 ⇐⇒ θ ∈ (0, T+(h)) .

Hence, Θ̃+(I) = (0, T+(h)). Because (1.3) is isochronous, we have, by Lemma 3.2, that

T+(h) = 2π − T−(h).

So
μ Θ̃+(I) = 2π − T−(h) = 2π − O(I−

1
2 ),

where μ denotes the Lebesgue measure.
Let

Θ+(I) = Θ̃+(I) +
T−(h)

2
=

(T−(h)
2

,
T−(h)

2
+ T+(h)

)
=

(T−(h)
2

, 2π − T−(h)
2

)
.
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Then

μ Θ+(I) = 2π − T−(h) = 2π − O(I−
1
2 ) (4.4)

and θ ∈ Θ+(I) ⇐⇒ x(θ, I) > 0.

In the next section, we introduce a canonical transformation such that the transformed
system is a perturbation of an integrable system.

5 Another Set of Action and Angle Variables

Now we consider the system (2.8). Note that

Ψ1(θ, I, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−y(θ, I)(g(x) − e(t, x, y))

∂

∂h

∫ x

−αh

1√
2(h − V )

ds for y ≥ 0,

y(θ, I)(g(x) − e(t, x, y))
∂

∂h

∫ x

−αh

1√
2(h − V )

ds for y ≤ 0.

We have, by Lemma 3.3,

|Ψ1(θ, I, t)| ≤ (|g(x)| + |e(t, x, y)|)
√

2(h − V (x))
h

∫ x

−αh

∣∣∣W ′(s) − 1
2

∣∣∣ 1√
2(h − v(s))

ds

+ W (x)
(|g(x)| + |e(t, x, y)|)

h

≤ C
(
h− 1

2

∫ βh

−αh

1√
2(h − v(s))

ds + h− 1
2

)
≤ Ch− 1

2 .

Hence, from (2.8), we know that

dθ

dt
= 1 + Ψ1(θ, I, t) → 1 as I → +∞.

Instead of (2.8), we will consider the following system:

dt

dθ
=

1
1 + Ψ1(θ, I, t)

,
dI

dθ
=

Ψ2(θ, I, t)
1 + Ψ1(θ, I, t)

. (5.1)

The relation between (2.8) and (5.1) is that if (I(t), θ(t)) is a solution of (2.8) and the inverse
function t(θ) of θ(t) exists, then (I(t(θ)), t(θ)) is a solution of (5.1) and vice versa. Hence in
order to find quasi-periodic solutions of (2.8) and to obtain the boundedness of the solutions, it
is sufficient to prove the existence of quasi-periodic solutions and the boundedness of solutions
of (5.1). This trick was used in [13] in the proof of boundedness for superquadratic potentials.

From the definition of θ, we have, for y > 0,

θ =
∫ x

−αh

1√
2(h − V (s))

ds.

Since I = 2πh, take the derivative with respect to the action variable I in both sides of the
above equality (the angle variable θ is independent of I), it follows that

∂

∂I

∫ x

−αh

1√
2(h − V (s))

ds = 0,
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which yields that
xh√

2(h − V (x))
= − ∂

∂h

∫ x

−αh

1√
2(h − V (s))

ds.

Hence, we obtain that

Ψ1(θ, I, t) = 2πxI(g(x(θ, I)) − e(t, x(θ, I), y(θ, I))).

Definition 5.1 We say a function g(t, ρ, θ, ε) ∈ Ok(1) if g is smooth in (t, ρ) and for
k1 + k2 ≤ k, ∣∣∣ ∂k1+k2

∂tk1∂ρk2
g(t, ρ, θ, ε)

∣∣∣ ≤ C

for some constant C > 0 which is independent of the arguments t, ρ, θ and ε. Similarly, we say
a function g(t, ρ, θ, ε) ∈ ok(1) if g is smooth in (t, ρ) and for k1 + k2 ≤ k,

lim
ε→0

∣∣∣ ∂k1+k2

∂tk1∂ρk2
g(t, ρ, θ, ε)

∣∣∣ = 0, uniformly in (t, ρ, θ).

Now we introduce a new action variable ρ ∈ [1, 2] and a parameter ε > 0 by I = ε−2ρ. Then,
I � 1 ⇐⇒ 0 < ε � 1. Under this transformation, the system (5.1) is changed into the form

⎧⎪⎨
⎪⎩

dt

dθ
= 1 − Ψ̃1(θ, ρ, t, ε) + ε2O6(1),

dρ

dθ
= Ψ̃2(θ, ρ, t, ε) + ε2O6(1),

(5.2)

where

Ψ̃1(θ, ρ, t, ε) = 2πxI(θ, ε−2ρ)(g(x(θ, ε−2ρ)) − e(t, x(θ, ε−2ρ), y(θ, ε−2ρ))),

Ψ̃2(θ, ρ, t, ε) = −2πε2y(θ, ε−2ρ)(g(x(θ, ε−2ρ)) − e(t, x(θ, ε−2ρ), y(θ, ε−2ρ))).

Obviously, if ε � 1, the solution (t(θ, t0, ρ0), ρ(θ, t0, ρ0)) of (5.2) with the initial data
(t0, ρ0) ∈ R× [1, 2] is defined in the interval θ ∈ [0, 2π] and ρ(θ, t0, ρ0) ∈ [12 , 3]. So the Poincaré
map of (5.2) is well defined in the domain R × [1, 2].

Lemma 5.1 The Poincaré map of (5.2) is reversible with respect to the involution
(t, ρ) 
→ (−t, ρ).

By (4.4) and Lemma 3.1, we know that, there is a function η such that

T−(h) = T−
( I

2π

)
= 2η(t0, ρ0, θ; ε),

where η ∈ εO6(1). By the definition of Θ+ and Θ−, we have

Θ+(I) = 2π − 2η, Θ−(I) = 2η. (5.3)
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6 Proof of the Main Result

In this section, firstly, using the estimates in Subsection 3.2, we will obtain an asymptotic
expression of the Poincaré map of (5.2) as ε � 1. After that, we can prove the main result
using a variant of Moser’s small twist theorem in [16].

We make the ansatz that the solution of (5.2) with the initial condition (t(0), ρ(0)) = (t0, ρ0)
is of the form

t = t0 + θ + εΣ1(t0, ρ0, θ; ε), ρ = ρ0 + εΣ2(t0, ρ0, θ; ε).

Then, the Poincaré map of (5.2) is

Φ : t1 = t0 + 2π + εΣ1(t0, ρ0, 2π; ε), ρ1 = ρ0 + εΣ2(t0, ρ0, 2π; ε). (6.1)

The functions Σ1 and Σ2 satisfy⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Σ1 = −2πε−1

∫ θ

0

∂x

∂I
(θ, ε−2ρ)

(
g(x(θ, ε−2ρ)) − e(t, x, y)

)
dθ + εO6(1),

Σ2 = −2πε

∫ θ

0

y(θ, ε−2ρ)(g(x(θ, ε−2ρ)) − e(t, x, y))dθ + εO6(1),
(6.2)

where ρ = ρ0 + εΣ2 and t = t0 + θ + εΣ1.
By Proposition 3.1 and the assumptions (1)–(5) in Section 1, we know that the terms in the

right-hand side of the above equations are bounded, so we have

|Σ1| + |Σ2| ≤ c8, for θ ∈ [0, 2π] (6.3)

where c8 > 0 is a constant. Hence, for ρ0 ∈ [1, 2], we may choose ε sufficiently small such that

ρ0 + εΣ2 ≥ ρ0

2
≥ 1

2
(6.4)

for (t0, θ) ∈ [0, 2π] × [0, 2π]. Similar to the proof in [6], one can obtain

Σ1, Σ2 ∈ O6(1). (6.5)

Lemma 6.1 The following estimates hold:

x(θ, ε−2ρ) − x(θ, ε−2ρ0) ∈ O6(1),
∂x

∂I
(θ, ε−2ρ) − ∂x

∂I
(θ, ε−2ρ0) ∈ ε2O6(1).

Proof Let

Δ(t0, ρ0, θ) := x(θ, ε−2ρ) − x(θ, ε−2ρ0) =
∫ 1

0

∂x

∂I
(θ, ε−2ρ0 + sε−1Σ2)ε−1Σ2ds. (6.6)

By (3.11) and (6.4), we have

|Δ| ≤ c4√
ε−2ρ0 + sε−1Σ2

· ε−1c8 ≤ 2c4c8.

Taking the derivative with respect to ρ0 in the both sides of (6.6), we have

∂Δ
∂ρ0

=
∫ 1

0

[∂2x

∂I2
·
1 + sε

∂Σ2

∂ρ0

ε2
· Σ2

ε
+

∂x

∂I
· ∂Σ2

∂ρ0
· 1

ε

]
ds.
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Using (3.11) and (6.5), one may find a constant c9 > 0 such that∣∣∣ ∂Δ
∂ρ0

∣∣∣ ≤ c9.

Analogously, one may obtain, by a direct but cumbersome computation, that∣∣∣ ∂k+lΔ
∂ρk

0∂tl0

∣∣∣ ≤ c10.

The estimates for
∂x

∂I
(θ, ε−2ρ) − ∂x

∂I
(θ, ε−2ρ0) follow from a similar argument, and we omit it

here.
Now we turn to give an asymptotic expression of the Poincaré map of (5.2), that is, we

study the behavior of the functions Σ1 and Σ2 at θ = 2π as ε → 0.
By (6.2) and Lemma 6.1, it follows that

Σ1(t0, ρ0, 2π; ε) = −2πε−1

∫ 2π

0

∂x

∂I
· (g(x) − e(t, x, y)) dθ + εO6(1)

= −2πε−1

∫ 2π

0

∂x

∂I
· (g(x) − e(t0 + θ, x, y)) dθ + εO6(1)

= −2πε−1

∫
Θ+(I)

∂x

∂I
· (g(x) − e(t0 + θ, x, y)) dθ

−2πε−1

∫
Θ−(I)

∂x

∂I
· (g(x) − e(t0 + θ, x, y)) dθ + εO6(1)

and

Σ2(t0, ρ0, 2π; ε) = −2πε

∫ 2π

0

y · (g(x) − e(t, x, y))dθ + εO6(1)

= −2πε

∫ 2π

0

y · e(t0 + θ, x, y)dθ + εO6(1)

= −2πε

∫
Θ+(I)

y · e(t0 + θ, x, y)dθ

−2πε

∫
Θ−(I)

y · e(t0 + θ, x, y)dθ + εO6(1)

with x = x(θ, ε−2ρ0), y = y(θ, ε−2ρ0). Here we have used that y(−θ, ε−2ρ0) = −y(θ, ε−2ρ0) and
x(−θ, ε−2ρ0) = x(θ, ε−2ρ0). By Proposition 3.1, we know that when θ ∈ Θ−(I),

x(θ, ε−2ρ0) ∈ O6(1), y(θ, ε−2ρ0) ∈ ε−1O6(1),

which yield that⎧⎪⎪⎨
⎪⎪⎩

Σ1(t0, ρ0, 2π; ε) = −2πε−1

∫
Θ+(I)

∂x

∂I
· (g(x) − e(t0 + θ, x, y)) dθ + εO6(1),

Σ2(t0, ρ0, 2π; ε) = −2πε

∫
Θ+(I)

y · e(t0 + θ, x, y)dθ + εO6(1)

with x = x(θ, ε−2ρ0), y = y(θ, ε−2ρ0).

Our next task is to estimate the above two integrals.
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Lemma 6.2 If lim
x→+∞ g(x) = g+ and the assumption (4) in Section 1 holds, then, for

any function f ∈ o6(1),∫ 2π

0

g
(
2
√

ρ0

π
ε−1 sin

θ

2
+ ε−1f(ρ0, t0, θ; ε)

)
sin

θ

2
dθ =

∫ 2π

0

g+ sin
θ

2
dθ + o6(1) = 4g+ + o6(1).

Proof Let

g0(ρ0; ε) =
∫ 2π

0

g
(
2
√

ρ0

π
ε−1 sin

θ

2

)
sin

θ

2
dθ.

Note that sin θ
2 > 0 for θ ∈ (0, 2π), so by the Lebesgue dominated theorem, we have

lim
ε→0

g0(ρ0; ε) =
∫ 2π

0

g+ sin
θ

2
dθ = 4g+.

Since
∂g0(ρ0; ε)

∂ρ0
=

1
2ρ0

∫ 2π

0

[
g′

(
2
√

ρ0

π
ε−1 sin

θ

2

)
· 2

√
ρ0

π
ε−1 sin

θ

2

]
· sin θ

2
dθ,

by the assumption (4) in Section 1 and the Lebesgue dominated theorem, it follows that

lim
ε→0

∂g0(ρ0; ε)
∂ρ0

= 0.

The estimates for the derivatives of higher order can be obtained in a similar way. Hence, we
have proved the conclusion when f ≡ 0. In the general case, let

gf (ρ0, t0; ε) =
∫ 2π

0

g
(
2
√

ρ0

π
ε−1 sin

θ

2
+ ε−1f(ρ0, t0, θ; ε)

)
sin

θ

2
dθ.

Then

gf − g0 =
∫ 2π

0

∫ 1

0

g′
(
2
√

ρ0

π
ε−1 sin

θ

2
+ sε−1f(ρ0, t0, θ; ε)

)
ε−1f(ρ0, t0, θ; ε) sin

θ

2
dsdθ.

The conclusion follows from the Lebesgue dominated theorem and the assumption (4) in Section
1.

Lemma 6.3 If the assumption (6) holds, then, for any function f1, f2 ∈ o6(1),∫ 2π

0

e
(
t0 + θ, 2

√
ρ0

π
ε−1 sin

θ

2
+ ε−1f1(ρ0, t0, θ; ε),

√
ρ0

π
ε−1 cos

θ

2
+ ε−1f2(ρ0, t0, θ; ε)

)
sin

θ

2
dθ

=
∫ 2π

0

e(t0 + θ) sin
θ

2
dθ + o6(1).

Proof Let

e0(t0, ρ0; ε) =
∫ 2π

0

e
(
t0 + θ, 2

√
ρ0

π
ε−1 sin

θ

2
,

√
ρ0

π
ε−1 cos

θ

2

)
sin

θ

2
dθ.

Note that sin θ
2 > 0 for θ ∈ (0, 2π), so by Lebesgue dominated theorem, we have

lim
ε→0

e0(t0, ρ0; ε) =
∫ 2π

0

e(t0 + θ) sin
θ

2
dθ.
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Since

∂e0(t0, ρ0; ε)
∂ρ0

=
1

2ρ0

∫ 2π

0

[
e′x

(
t0 + θ, 2

√
ρ0

π
ε−1 sin

θ

2
,

√
ρ0

π
ε−1 cos

θ

2

)
· 2

√
ρ0

π
ε−1 sin

θ

2

]
· sin θ

2
dθ

+
1

2ρ0

∫ 2π

0

[
e′y

(
t0 + θ, 2

√
ρ0

π
ε−1 sin

θ

2
,

√
ρ0

π
ε−1 cos

θ

2

)

·
√

ρ0

π
ε−1 cos

θ

2

]
· sin θ

2
dθ,

∂e0(t0, ρ0; ε)
∂t0

=
∫ 2π

0

e′t
(
t0 + θ, 2

√
ρ0

π
ε−1 sin

θ

2
,

√
ρ0

π
ε−1 cos

θ

2

)
sin

θ

2
dθ,

by the assumption (6) in Section 1 and the Lebesgue dominated theorem, it follows that

lim
ε→0

∂e0(t0, ρ0; ε)
∂ρ0

= 0, lim
ε→0

∂e0(t0, ρ0; ε)
∂t0

= 0.

The estimates for the derivatives of higher order can be obtained in a similar way. Hence, we
have proved the conclusion when f1 = f2 ≡ 0. In the general case, let

ef (t0, ρ0; ε) =
∫ 2π

0

e
(
t0 + θ, 2

√
ρ0

π
ε−1 sin

θ

2
+ ε−1f1,

√
ρ0

π
ε−1 cos

θ

2
+ ε−1f2

)
sin

θ

2
dθ.

Then

ef − e0 =
∫ 2π

0

∫ 1

0

[
e′x

(
t0 + θ, 2

√
ρ0

π
ε−1 sin

θ

2

+ sε−1f1,

√
ρ0

π
ε−1 cos

θ

2
+ ε−1f2

)
· ε−1f1

]
sin

θ

2
dsdθ

+
∫ 2π

0

∫ 1

0

[
e′y

(
t0 + θ, 2

√
ρ0

π
ε−1 sin

θ

2
,

√
ρ0

π
ε−1 cos

θ

2
+ sε−1f2

)
· ε−1f2

]
sin

θ

2
dsdθ.

The conclusion follows from the Lebesgue dominated theorem and the assumption (6) in Section
1.

Similarly, we have the following Lemma.

Lemma 6.4 If the assumption (6) in Section 1 holds, then∫ 2π

0

e′t(t0 + θ, x(θ, ε−2ρ0), y(θ, ε−2ρ0)) sin
θ

2
dθ =

∫ 2π

0

e′(t0 + θ) sin
θ

2
dθ + o6(1),∫ 2π

0

e′x(t0 + θ, x(θ, ε−2ρ0), y(θ, ε−2ρ0))
∂x

∂θ
(θ, ε−2ρ0) sin

θ

2
dθ = o6(1),∫ 2π

0

e′y(t0 + θ, x(θ, ε−2ρ0), y(θ, ε−2ρ0))
∂y

∂θ
(θ, ε−2ρ0) sin

θ

2
dθ = o6(1).

From these lemmas, we have the following lemma.

Lemma 6.5 The following estimates hold:⎧⎪⎪⎨
⎪⎪⎩

Σ1(t0, ρ0, 2π; ε) = −2
√

π

ρ0

∫ 2π

0

(
g+ − e(t0 + θ)

)
sin

θ

2
dθ + o6(1),

Σ2(t0, ρ0, 2π; ε) = 4
√

πρ0

∫ 2π

0

e′(t0 + θ) sin
θ

2
dθ + o6(1).
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Proof By (4.2)–(4.3), the definition of Θ+ and (5.3), it follows that

Σ1(t0, ρ0, 2π; ε)

= −2πε−1

∫
Θ+(I)

∂x

∂I
(θ, ε−2ρ0) · g(x(θ, ε−2ρ0))dθ − 2πε−1

∫
Θ+(I)

∂x

∂I
(θ, ε−2ρ0)

· (−e(t0 + θ, x(θ, ε−2ρ0), y(θ, ε−2ρ0)))dθ + εO6(1)

= −2
√

π

ρ0

∫
Θ+(I)

(g(x(θ, ε−2ρ0)) − e(t0 + θ, x(θ, ε−2ρ0), y(θ, ε−2ρ0))) sin
θ

2
dθ + o6(1)

= −2
√

π

ρ0

(∫ 2π

0

−
∫ η

0

−
∫ 2π

2π−η

)
g(x(θ, ε−2ρ0)) sin

θ

2
dθ − 2

√
π

ρ0

(∫ 2π

0

−
∫ η

0

−
∫ 2π

2π−η

)

· (−e(t0 + θ, x(θ, ε−2ρ0), y(θ, ε−2ρ0))) sin
θ

2
dθ + o6(1)

= −2
√

π

ρ0

∫ 2π

0

(g(x(θ, ε−2ρ0)) − e(t0 + θ, x(θ, ε−2ρ0), y(θ, ε−2ρ0))) sin
θ

2
dθ + o6(1)

= −2
√

π

ρ0

∫ 2π

0

(g+ − e(t0 + θ)) sin
θ

2
dθ + o6(1),

Σ2(t0, ρ0, 2π; ε)

= 2πε

∫
Θ+(I)

2
√

ρ0

πε2
sin

(θ

2
− η

2

)∂e

∂θ
(t0 + θ, x(θ, ε−2ρ0), y(θ, ε−2ρ0))dθ + o6(1)

= 2πε

∫
Θ+(I)

2
√

ρ0

πε2
sin

(θ

2

)∂e

∂θ
(t0 + θ, x(θ, ε−2ρ0), y(θ, ε−2ρ0))dθ + o6(1)

= 4
√

πρ0

∫
Θ+(I)

sin
(θ

2

)∂e

∂θ
(t0 + θ, x(θ, ε−2ρ0), y(θ, ε−2ρ0))dθ + o6(1)

= 4
√

πρ0

(∫ 2π

0

−
∫ η

0

−
∫ 2π

2π−η

)∂e

∂θ
(t0 + θ, x(θ, ε−2ρ0), y(θ, ε−2ρ0)) sin

θ

2
dθ + o6(1)

= 4
√

πρ0

∫ 2π

0

∂e

∂θ
(t0 + θ, x(θ, ε−2ρ0), y(θ, ε−2ρ0)) sin

θ

2
dθ + o6(1)

= 4
√

πρ0

∫ 2π

0

[
e′t + e′x · ∂x

∂θ
(θ, ε−2ρ0) + e′y · ∂y

∂θ
(θ, ε−2ρ0)

]
sin

θ

2
dθ + o6(1)

= 4
√

πρ0

∫ 2π

0

e′(t0 + θ) sin
θ

2
dθ + o6(1).

Let

Ψ1(t0, ρ0) = −2
√

π

ρ0

∫ 2π

0

(
g+ − e(t0 + θ)

)
sin

θ

2
dθ,

Ψ2(t0, ρ0) = 4
√

πρ0

∫ 2π

0

e′(t0 + θ) sin
θ

2
dθ.

Then there are two functions φ1 and φ2, such that the Poincaré map of (5.2), given by (6.1), is
of the form

Φ : t1 = t0 + 2π + εΨ1(t0, ρ0) + εφ1(t0, ρ0; ε), ρ1 = ρ0 + εΨ2(t0, ρ0) + εφ2(t0, ρ0; ε),

where φ1, φ2 ∈ o6(1).
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Note that, by the Lazer-Landesman condition 4g+ > maxθ e∗(θ), we know that

Ψ1 < 0,
∂Ψ1

∂ρ0
> 0.

Let

L(t0, ρ0) =
ρ
− 1

2
0∫ 2π

0

(g+ − e(t0 + θ)) sin
θ

2
dθ

.

Then
∂L

∂t0
Ψ1(t0, ρ0) +

∂L

∂ρ0
Ψ2(t0, ρ0) ≡ 0.

The other assumptions of Ortega’s theorem are verified directly. Hence, for sufficiently small
ε, there is an invariant curve of Φ in the annulus (t0, ρ0) ∈ S1 × [1, 2]. The boundedness of
the solutions to our original equation (1.5) can be obtained by the existence of such invariant
curves, and the precise proof can be found in [14].

Moreover, the solutions starting from such curves are quasi-periodic solutions. Using the
Poincaré-Birkhoff fixed point theorem, there is a positive integer n0, such that, for any n ≥ n0,
there are at least two periodic solutions of (1.5) with the minimal period 2nπ (see [6]).

Since then, we are done with the proof of the existence of the quasi-periodic solutions
and boundedness of all solutions for reversible forced isochronous oscillators with a repulsive
singularity.
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