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Abstract The authors consider the partially linear model relating a response Y to predic-
tors (x, T ) with a mean function xTβ0 + g(T ) when the x′s are measured with an additive
error. The estimators of parameter β0 are derived by using the nearest neighbor-generalized
randomly weighted least absolute deviation (LAD for short) method. The resulting esti-
mator of the unknown vector β0 is shown to be consistent and asymptotically normal. In
addition, the results facilitate the construction of confidence regions and the hypothesis
testing for the unknown parameters. Extensive simulations are reported, showing that the
proposed method works well in practical settings. The proposed methods are also applied
to a data set from the study of an AIDS clinical trial group.
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1 Introduction

Consider a partially linear errors-in-variables (EV for short) model as follows:{
Yi = xT

i β0 + g(Ti) + εi,
Xi = xi + ui,

i = 1, 2, · · · , n, (1.1)

where xi ∈ Rp are unobservable explanatory variables, Xi ∈ Rp are manifest variables, β0 ∈ Rp

is an unknown parameter vector, Ti is a scalar co-variate, the function g(·) is unknown, Yi ∈ R

are responses, and (ε, uT)T ∈ Rp+1 are independent with a common error distribution that is
spherically symmetric. Spherical symmetry implies that εi and each component of ui have the
same distribution, which ensures model identifiability and means that (ε, uT)T =d RUp+1 (R is
a nonnegative random variable, Up+1 is a uniform random vector on Ωp = {a : a ∈ Rp+1, ‖a‖ =
1}, R and Up+1 are independent), and (ε, uT)T and x are independent. A detailed coverage
of linear errors-in-variables models can be found in [7]. More work on nonlinear models with
measurement errors can be found in [2]. Recently, the model (1.1) has been studied by Cui
and Li [5], Liang et al. [13], Zhu and Cui [24] and so on. Cui and Li [5] and Liang et al.
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[13] discussed the least square estimators for the parametric and nonparametric components
by the nearest neighbor estimation and the general kernel smoothing for the nonparametric
component, respectively. The quantile estimate of the slope parameter β0 has been studied by
He and Liang [8].

It is well known that the least square (LS for short) method is one of the oldest and most
widely used statistical tools for linear models. But, the LS estimate can be sensitive to outliers
and therefore, non-robust. Unlike the LS method, the least absolute deviation (LAD for short)
method is not sensitive to outliers and produces robust estimates. Due to the developments
in theoretical aspects and the availability of computing power, the LAD method has become
increasingly popular. In particular, it has many applications in econometrics and biomedical
studies (see [1, 10]), among many others.

However, the asymptotic distribution of the estimators by the LAD method is generally
related to nuisance parameter that can not be conveniently estimated. The randomly weighted
method can provide a way of assessing the distribution of the estimators without estimating
the nuisance parameter. The random weighting method was first proposed by Zheng [23]. An
advantage of the random weighting method is that no observation is repeatedly used within
each replicate of the random weighting, though each observation may be weighted unequally.
This method has been used in many applications as an alternative to the bootstrap method.
For example, Rao and Zhao [16] used this method to derive the approximate distribution of the
M-estimator in the linear regression model. Cui et al. [6] proposed a random weighting method
for the proportional hazards model. Wang et al. [19] extended the method to the censored
regression model. Jiang et al. [9] discussed randomly weighted least square estimators for the
unknown parameters in semi-linear EV model. A statistical analysis of the LAD method used
in the partially linear regression model (1.1) with additive measurement errors, however, still
seems to be missing. The objective of the present paper is to fill this gap.

In this paper, our objective is to apply the randomly weighted LAD-estimation (RWLADE
for short) to partially linear EV models, and establish the asymptotic normality of the RWLADE
for the parameter. These results can be used to construct confidence intervals for β0. Further-
more, we propose a LAD-test for partially linear EV models. The LAD-test has been used by
Zhao and Chen [22] to test linear hypotheses in the linear model. But the critical values of
the test statistic are related to estimators of nuisance parameters. Chen et al. [3] proposed an
easy and convenient randomly weighting resampling method to determine the critical values for
testing linear hypotheses in the least absolute deviation regression. Motivated by this idea, we
also use the randomly weighted method to determine the critical values for testing hypotheses
in partially linear EV models.

The outline of the paper is as follows. In Section 2, we define the weighting scheme to be
used, hence the RWLADE for β0, and then the test statistics of it. Section 3 is the statement
of the main results for β0, and the chi-square distributions of test statistics of the proposed
estimators are also given in this section. In Section 4, simulations are carried out to assess
the finite sample performance of the method and also an illustration of the method to a real
example is given in this section. Some concluding remarks are given in Section 5. All the



Randomly Weighted LAD-Estimation for Partially Linear Errors-in-Variables Models 563

technical proofs are delayed in the appendix of Section 6.

2 Definition of the Estimators

For technical convenience we will assume that Ti are confined to the interval [0, 1]. Through-
out, we shall employ a constant C (0 < C <∞) to denote some constant not depending on n,
which however may assume different values at each appearance. In our proofs and statement
of the results, we will let the x′s be independent random variables.

For any t ∈ [0, 1], we arrange |T1 − t|, |T2 − t|, · · ·, |Tn − t| in an increasing order:

|TR(1,t) − t| ≤ |TR(1,t) − t| ≤ · · · ≤ |TR(1,t) − t| (2.1)

(ties are broken by comparing indices). Obviously, R(1, t), R(2, t), · · · , R(n, t) is a permutation
of {1, 2, · · · , n}. Choose a group of fixed nonnegative numbers {dni : i = 1, 2, · · · , n} and let
k ≡ kn be a natural number dependent solely on n. Suppose that {dni : i = 1, 2, · · · , n} and k

satisfy

k√
n(logn)2

→∞,
k

n
3
4
→ 0, n→∞, (2.2)

n∑
i=1

dni = 1, max dni = O
( 1

k

)
,

∑
i>k

dni = o(n− 1
2 ). (2.3)

Now we can define a probability weight vector wni(t) = wni(t; T1, T2, · · · , Tn), i = 1, 2, · · · , n
which satisfies wnR(i,t)(t) = dni, i = 1, 2, · · · , n. Obviously, 1 ≤ dni ≤ n, 1 ≤ wni(t) ≤ n for
any i = 1, 2, · · · , n, t ∈ [0, 1]. These assumptions are commonly assumed when defining weight
nonnegative functions. For example,

w1
ni(t) =

1
hn

∫ Si

Si−1

K
( t− s

hn

)
ds,

w2
ni(t) =

K
( t− Ti

hn

)
n∑

j=1

K
( t− Ti

hn

) ,

where Si = 1
2 (T(i) + T(i−1)), i = 1, · · · , n, S0 = 0, Sn = 1 for any i = 1, 2, · · · , n, t ∈ [0, 1].

In this paper, for any sequence of variables or functions (S1, · · · , Sn), we always denote

ST = (S1, · · · , Sn), S̃i = Si −
n∑

j=1

Wnj(Ti)Sj and S̃T = (S̃1, · · · , S̃n). The conversion from S

to S̃ will be applied to Yi, Xi, xi, εi, ui and g(Ti). For example, X̃T = (X̃1, · · · , X̃n), X̃i =

Xi −
n∑

j=1

Wnj(Ti)Xj ; G̃T = (g̃1, · · · , g̃n), g̃i = g(Ti) −
n∑

j=1

Wnj(Ti)g(Tj). The fact that g(t) =

E(Yi − xT
i β | Ti = t) suggests

ĝn(t) =
n∑

i=1

wni(t)(Yi − xT
i β0) =

n∑
i=1

wni(t)Yi −
( n∑

i=1

wni(t)xi

)T

β0 = ĝ1n(t)− ĝ2n(t)Tβ0 (2.4)

as the nearest neighbor pseudo-estimator of g(·).
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However, since β0 is an unknown vector, we have to estimate β0 first. Since x′
is are un-

observable, the least square method may be invalid. Instead of the generalized least square
method used in [5], we can obtain β̂n, the estimator of β0, as follows:

β̂n = arg min
β∈Rp

n∑
i=1

∣∣∣ Ỹi − X̃T
i β√

1 + ‖β‖2
∣∣∣. (2.5)

But the asymptotic covariance matrix of β̂n involves the density of the errors and nuisance
parameters and therefore is difficult to estimate reliably. To overcome this problem, we propose
the following distributional approximation based on random weighting by exogenously generated
i.i.d. random variables. The approach can be implemented with the simple LAD programming
again.

Let v1, · · · , vn be a sequence of independent and identically distributed (i.i.d.) nonnega-
tive random variables, with mean and variance both equal to 1. The standard exponential
distribution has mean and variance equal to 1. Define

β∗
n = arg min

β∈Rp

n∑
i=1

vi

∣∣∣ Ỹi − X̃T
i β√

1 + ‖β‖2
∣∣∣. (2.6)

In this paper, we are also interested in testing the hypothesis

H0 : HT(β − b0) = 0↔ H1 : HT(β − b0) 
= 0, (2.7)

where H is a known p× q matrix of rank q, and b0 ∈ Rp is a known vector (0 < q ≤ p).
To develop an analogue with the least absolute deviation, it is natural to consider the test

statistic

Mn =
n∑

i=1

∣∣∣ Ỹi − X̃T
i β̂nc√

1 + ‖β̂nc‖2
∣∣∣− n∑

i=1

∣∣∣ Ỹi − X̃T
i β̂n√

1 + ‖β̂n‖2
∣∣∣, (2.8)

where β̂nc = arg min
HT(β−b0)=0

n∑
i=1

∣∣ Ỹi−X̃T
i β√

1+‖β‖2

∣∣.
But the limiting distribution of Mn also involves the density function of the error terms.

Chen et al. [3] proposed an easy and convenient randomly weighted resampling method to
determine the critical values for testing nested linear hypotheses in the least absolute deviation
regression. Motivated by this idea, we introduce a test statistic M∗

n on randomly weighted
method and on the suitable centering adjustments. The approach can be implemented with the
simple LAD programming again. Define

M∗
n =

{ n∑
i=1

vi

∣∣∣ Ỹi − X̃T
i β∗

nc√
1 + ‖β∗

nc‖2
∣∣∣− n∑

i=1

vi

∣∣∣ Ỹi − X̃T
i β∗

n√
1 + ‖β∗

n‖2
∣∣∣}

−
{ n∑

i=1

vi

∣∣∣ Ỹi − X̃T
i β̂nc√

1 + ‖β̂nc‖2
∣∣∣− n∑

i=1

vi

∣∣∣ Ỹi − X̃T
i β̂n√

1 + ‖β̂n‖2
∣∣∣},

where β∗
nc = arg min

HT(β−b0)=0

n∑
i=1

vi

∣∣ Ỹi−X̃T
i β√

1+‖β‖2

∣∣.
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3 Main Results

Let the components be xi = (xij). Denote hi = (hi1, hi2, · · · , hip)T = xi − E(xi | Ti), 1 ≤
i ≤ n. We make the following assumptions.

Assumption 3.1 the random weights v1, · · · , vn are i.i.d. with P (vi ≥ 0) = 1, E(vi) =
Var(vi) = 1, and the sequence vi and Yi, Xi, xi are independent.

Assumption 3.2 the distribution function F of ε1, · · · , εn is absolutely continuous, with
continuous density f uniformly bounded away from 0 and ∞ and F (0) = 1

2 .

Assumption 3.3 ER2 < +∞ and P (R = 0) = 0.

Assumption 3.4 The distribution of T1 is absolutely continuous and its density r(t)
satisfies

0 < inf
0≤t≤1

r(t) ≤ sup
0≤t≤1

r(t) <∞.

Assumption 3.5 Σ = Cov(x1 − E(x1|T1)) is a positive definite matrix.

Assumption 3.6 E(|ε1|2 + ‖x1‖2 + ‖u1‖2) < ∞; g and g2j are continuous functions on
the interval [0, 1], where g2j = E(x1j | T1 = t) is the jth component of g2(t) = E(x1 | T1 = t)
for 1 ≤ j ≤ p.

Assumption 3.7 E(|ε1|4 + ‖x1‖4 + ‖u1‖4) <∞; g and g2j satisfy the Lipschitz condition
and g2j = E(x1j | T1 = t) is a bounded function of t for 1 ≤ j ≤ p.

Remark 3.1 Assumption 3.1 is commonly assumed in the random weighting method (see
[19]). Assumptions 3.2–3.3 are often used in the LAD estimator (see [4, H1–H4]). Assumptions
3.4–3.6 are necessary for studying the optimal convergence rate of the nonparametric regression
estimates and Assumption 3.7 guarantees the asymptotic normality of

√
n(β∗

n − β), essentially
the same as the conditions 1–4 of [5].

3.1 Random weighting LAD-estimation

Theorem 3.1 Suppose that Assumptions 3.1–3.7 and (2.2)–(2.3) hold, and then

√
n(β∗

n − β0) =

√
1 + ‖β0‖2
2f(0)

Σ−1 1√
n

n∑
i=1

viAi + op(1) L−→ N(0, J−1
0 SJ−1

0 ). (3.1)

Particularly, when vi ≡ 1, we have

√
n(β̂n − β0) =

√
1 + ‖β0‖2
2f(0)

Σ−1 1√
n

n∑
i=1

Ai + op(1), (3.2)

where

Ai = sgn(εi − uT
i β0)

(
hi + ui +

(εi − uT
i β0)β0

1 + ‖β0‖2
)
,

hi = xi − E(xi | Ti),
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J0 =
2f(0)√

1 + ‖β0‖2
Σ,

S = Cov
(
sgn(ε1 − uT

1 β0)
(
h1 + u1 +

(ε1 − uT
1 β0)β0

1 + ‖β0‖2
))

.

Theorem 3.2 Suppose that the conditions of Theorem 3.1 hold, and then

√
n(β∗

n − β̂n) =

√
1 + ‖β0‖2
2f(0)

Σ−1 1√
n

n∑
i=1

(vi − 1)Ai + op(1) L∗−−→ N(0, J−1
0 SJ−1

0 ). (3.3)

Comparing (3.1) with (3.3), for the multivariate Kolmogorov-Smirnov distance between
√

n(β∗
n−

β̂n) and
√

n(β̂n − β0), we have

sup
u∈Rp

|P ∗(
√

n(β∗
n − β̂n) ≤ u)− P (

√
n(β̂n − β0)) ≤ u)| L∗−−→ 0 in probability, (3.4)

where L∗, P ∗ denote the corresponding distribution and probability conditionally on (X1, Y1, T1),
· · · , (Xn, Yn, Tn). And the approximate to the distribution of

√
n(β̂n − β0) by using random

weights is valid in the weak sense.

Remark 3.2 From Theorems 3.1–3.2, it is clear that β∗
n is a consistent estimator of β0

and the conditionally limiting distribution of β∗
n for observations given is the same as that

of β̂. Consequently, we can take the conditional distribution of β∗
n as an approximation to

that of β̂ without estimating the asymptotic covariance matrix when making the confidence
interval for parameters. In practical applications, this can be done by the Monte Carlo method.
Specifically, one can generate random weights repeatedly for (2.6) and then obtain RWLADE
of the regression parameters. Then the empirical distribution of the produced estimates is used
as an approximation to the distribution of the LAD-estimator of β0. For example, in deriving
the (1 − α)100% confidence interval for β0, one can implement the random weighting N times
to obtain the estimates β

∗(1)
n , β

∗(2)
n , · · · , β∗(N)

n and hence use the lower and upper α
2 quantiles of

these quantities as the approximation of the lower and upper limits of the confidence interval.

3.2 LAD-test

Theorem 3.3 Suppose that the conditions of Theorem 3.1 hold, and under the null hypoth-
esis (2.4), then

Mn =
1

4f(0)

∥∥∥ 1√
n

n∑
i=1

HT
n Σ− 1

2 Ai

∥∥∥2

+ op(1), (3.5)

where Hn = Σ
1
2 H(HTΣH)−

1
2 , Ai = sgn(εi − uT

i β0)
(
hi + ui + (εi−uT

i β0)β0
1+‖β0‖2

)
and

1√
n

n∑
i=1

HT
n Σ− 1

2 Ai
L−→ N(0, HT

n Σ− 1
2 SΣ− 1

2 Hn), (3.6)

where “ L−→ ” denotes approximation to the corresponding distribution, S = Σ + ER2

p+1

(
Ip −

β0βT
0

1+‖β0‖2

)
.
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3.3 Random weighting LAD-test

Theorem 3.4 Suppose that the conditions of Theorem 3.1 hold, and under the null hypoth-
esis (2.4), then

M∗
n =

1
4f(0)

∥∥∥ 1√
n

n∑
i=1

(vi − 1)HT
n Σ− 1

2 Ai

∥∥∥2

+ op(1)

and
1√
n

n∑
i=1

(vi − 1)HT
n Σ− 1

2 Ai
L∗
−−→ N(0, HT

n Σ− 1
2 SΣ− 1

2 Hn). (3.7)

Further by (3.6)–(3.7), we have

L∗(M∗
n)→ L(Z)← L(Mn),

where Z is the chi-squared variable with q degrees of freedom.

Remark 3.3 Theorems 3.3–3.4 show that the limiting distribution of M∗
n under the null

hypothesis (2.7) is the same as the null limiting distribution of Mn. Therefore, we can directly
use the conditional distribution of M∗

n as an approximation to the null distribution of Mn

and determine the critical values of the test statistic Mn without estimating the nuisance
parameters. It is desired to determine a sequence cn(α) such that lim

n→∞P (Mn > cn(α)) = α

under H0, for a given level α ∈ (0, 1). As shown in the sequel, the (1 − α) quantile c∗n(α)
of the conditional distribution of M∗

n for given {Yi, Xi}ni=1 can be taken as an approximation
to cn(α), and this can be carried out by the following procedure. Take N large enough and
generate N independent replicates of random weights to obtain N randomly weighting estimates
M∗

nj, j = 1, · · · , N , so then the p-value of testing the hypothesis is approximately equal to
�{j : M∗

nj > Mn, j = 1, · · · , N}/N . A test at the nominal significance level α is to reject
H0 if Mn is larger than the sample (1 − α) quantile of M∗

n1, M
∗
n2, · · · , M∗

nN and to accept H0

otherwise. It is easy to show that, for the given nominal significant level α ∈ (0, 1), the test
Mn with the critical value c∗n(α) has the same asymptotic level and asymptotic power as the
test with the critical value cn(α) obtained by estimating nuisance parameters.

4 Simulation and Real Data Study

In this section, we conduct simulation studies to assess the finite sample performance of the
proposed procedures and illustrate the proposed methodology on AIDS clinical trials.

Example 4.1 The data are generated from model (1.1), where the explanatory variable
x is generated from uniform distribution on the interval (3, 5) and β0 = 2. ε ∼ N(0, 1), u ∼
N(0, 1), g(t) = sin(2πt), T ∼ U(0, 1). The randomly weighting variables vi are taken to be
exponential distribution and Poisson distribution with means 1 respectively (Exp(1) and P(1)).
We use the Nadaraya-Watson kernel K(u) = 15

16 (1 − u2)2I (|u| ≤ 1); and then

Wni(t) =
K

( t− ti
h

)
n∑

i=1

K
( t− ti

h

)
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is the weight function with the bandwidth h = n− 1
5 . Since the objective is to estimate β0,

our limited experience indicates that the choice of the bandwidth h here is not as critical as it
is in direct nonparametric function estimation. Sample size n is taken to be 50, 100 and 200,
respectively, and we do 500 repetitions for each sample size. The number of randomly weighting
is N = 500.

We first study the performance of parameter estimators by using our proposed method
(RWLADE for short). The mean values of parameter estimators and their standard errors are
respectively reported in Table 1. Table 1 shows that the performance of β∗

n is very close to the
true value in all terms. Moreover, β∗

n is much more accurate when sample sizes increase.

Table 1 Simulation results for β∗

n
ε w 50 100 200
N(0,1) Exp(1) 2.0108(0.1197) 2.0343(0.1101) 2.0309(0.0910)

P(1) 2.0101(0.1198) 2.0354(0.1100) 2.0305(0.0909)

t(2) Exp(1) 2.0986(0.2457) 2.0188(0.1803) 2.0343(0.1448)
P(1) 2.0981(0.2472) 2.0190(0.1804) 2.0342 (0.1455)

t(3) Exp(1) 2.0194(0.1955) 2.0089 (0.1460) 2.0351 (0.0938)
P(1) 2.0190(0.1952) 2.0084 (0.1452) 2.0345 (0.0939)

We then investigate the length of confidence intervals and empirical coverage rates by the
randomly weighted method at the nominal levels 90% and 95%. Simulation results are respec-
tively reported in Tables 2–3. From Table 2, it can be seen that the empirical coverage rates
are reasonably close to the true values in all cases, which indicates that the randomly weighted
method is valid. As expected, the coverage levels based on the different cases are much closer
to the nominal levels when sample sizes increase. Table 3 shows that the length of confidence
intervals is small. Not unexpectedly, the length of confidence intervals decreases with sample
sizes. Finally, Tables 1–3 show that the performances of Poisson weights are exactly similar to
those of exponential weights.

Table 2 Simulation results for coverage probability of confidence intervals

0.90 0.95
ε w 50 100 200 50 100 200
N(0,1) Exp(1) 0.8902 0.8980 0.8970 0.9295 0.9387 0.9411

P(1) 0.8881 0.8973 0.8966 0.9313 0.9399 0.9418

t(2) Exp(1) 0.8957 0.8886 0.8920 0.9392 0.9389 0.9374
P(1) 0.8962 0.8878 0.8942 0.9410 0.9367 0.9407

t(3) Exp(1) 0.8913 0.8934 0.8994 0.9323 0.9391 0.9441
P(1) 0.8884 0.8956 0.8956 0.9367 0.9376 0.9376

Next, the approximation of the null distribution of the LAD-test statistics Mn, by its ran-
domly weighted version M∗

n, is evaluated under the null hypotheses. We also study the empiri-
cal significance level and the powers of the M-test with the critical values given by the random
weighting method. Throughout our simulation study, the convex function is taken as ρ(u) = |u|.
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The null hypothesis is H0 : β0 = 0. Here, the randomly weighted variables are only taken to be
the exponential distribution with means 1.

Table 3 Simulation results for length of confidence intervals

0.90 0.95
ε w 50 100 200 50 100 200
N(0,1) Exp(1) 0.1499 0.1002 0.0830 0.1726 0.1200 0.0994

P(1) 0.1449 0.0993 0.0834 0.1706 0.1238 0.0995

t(2) Exp(1) 0.2434 0.1390 0.0873 0.2814 0.1640 0.1044
P(1) 0.2443 0.1384 0.0849 0.2830 0.1641 0.1018

t(3) Exp(1) 0.1785 0.1066 0.0799 0.2110 0.1079 0.0954
P(1) 0.1806 0.1245 0.0796 0.2143 0.1290 0.0924

Table 4 lists the power functions at significance levels α = 0.10 and 0.05 for various choices
of error distributions (N(0, 1), t(2) and t(3)), different sample sizes n = 100 and 200, and
different β values 0, 0.1, 0.2 and 0.5. Note that the empirical significant levels when the true
β = 0 are close to the nominal levels, implying that the randomly weighted LAD-test is a valid
test. As expected, the test has a bigger power for the larger sample sizes.

Table 4 Empirical significant levels and power values

N(0,1) t(2) t(3)
n β2 0.10 0.05 0.10 0.05 0.10 0.05
100 0 0.0880 0.0540 0.0660 0.0340 0.0900 0.0410

0.1 0.4780 0.1500 0.4100 0.2900 0.3300 0.2260
0.2 0.9800 0.4800 0.7300 0.6100 0.7680 0.6700
0.5 1.0000 0.9900 0.9600 0.9500 0.9980 0.9940

200 0 0.0980 0.0520 0.0880 0.0380 0.0943 0.0482
0.1 0.9000 0.3300 0.6900 0.6100 0.5100 0.4160
0.2 1.0000 0.8100 1.0000 0.9700 0.9460 0.9060
0.5 1.0000 1.0000 1.0000 0.9700 1.0000 1.0000

Figure 1 shows quantile-quantile plots of Mn with respect to M∗
n for various choices of error

distributions (N(0, 1), t(2) and t(3)), and different sample sizes n = 100 and 200, in which the
straight lice indicates that M∗

n approximates well to the distribution of Mn. It shows that,
when the sample size is increased from 100 to 200, the distribution approximation for the larger
size is much more accurate than that for the small one.

Example 4.2 In this section, we model the relationship between viral load and CD4+ cell
counts in HIV-infected individuals during potent antiviral treatments based on the data from
ACTG 315 study. In general, it is believed that the virologic response RNA (measured by viral
load) and immunologic response (measured by CD4+ cell counts) are negatively correlated
during antiviral treatment (see [12, 21]). And also the discordance between virologic and
immunologic responses has been observed from several recent clinical studies (see [14–15, 17,
20]) which model the relationship between viral load and CD4+ cell counts by the mixed-effect
varying-coefficient model based on these data. In their studies, exact tests and confidence
intervals for parameters are not available. Instead, we present these analysis results by model
(1.1). Here, we also focus on the data for the first 24 weeks of treatment, since virological
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or immunologic responses during this period are popular endpoints for many AIDS clinical
trials. So both viral load and CD4+ cell counts were scheduled to be measured on days t =
0, 2, 7, 10, 14, 28, 56, 84, 168 after initiation of an antiviral therapy. We obtained 441 complete
paries of viral load and CD4+ cell count observations from 48 evaluable patients. Let Yi be
the viral load and let xi be the CD4+ cell count for subject i. To reduce the marked skewness
of CD4+ cell counts and to make treatment times equal space, we take log-transformations of
both variables (this is commonly used in AIDS clinical trials (see [14])). The xi are measured
with error. The model we used is

Y = β0 + xβ1 + g(T ) + ε, X = x + u,

where X is the observed CD4 cell counts and T is time.

(a) ε ∼ N(0, 1), n = 100 (b) ε ∼ N(0, 1), n = 200

(c) ε ∼ t(2), n = 100 (d) ε ∼ t(2), n = 200

(e) ε ∼ t(3), n = 100 (f) ε ∼ t(3), n = 200

Figure 1 Q-Q plot of M∗
n v.s. Mn

The parameter estimators, by using our proposed methods, are (β0, β1) = (2.7234,−0.1301).
The 95% confidence interval of β0 is (2.6496, 2.7924) and that of β1 is (−0.1498,−0.1085). It
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can be seen that the length of confidence intervals is small. Furthermore, we test the linear
hypothesis H0 : β1 = 0. The resulting p-value is 0, suggesting that β1 is significant.

5 Discussion

The primary goal of this paper is to provide a convenient inference and a linear hypothesis
testing for the partially linear EV model based on the LAD-estimate. The proposed inference
procedure via resampling avoids the difficulty of density estimation and is convenient to im-
plement with the availability of the standard linear programming and computing power. All
simulation studies confirm that the performance of the random weighting method works well.
We believe that the proposed statistical method is methodologically valuable. Some of the con-
ditions assumed for the main results may be dropped or relaxed and, in particular, the samples
usually may not be independent in many applications. In addition, it allows that the LAD
can be extended to the M method, and the random weighting method can be used in other
nonparametric regression models, such as the mixed-effect varying-coefficient model for AIDS
data; the censored model or longitudinal data, which are common in survival analysis, and they
are valuable subjects for future research.

6 Appendix

To prove the theorem, we first introduce the following three lemmas.

Lemma 6.1 (1) Suppose that Assumption 3.6 and (2.2)–(2.3) hold, and then

max
1≤i≤n

∣∣∣ n∑
s=1

Wns(Ti)εs

∣∣∣ = o(1) a.s., (6.1)

max
1≤i≤n

∣∣∣ n∑
s=1

Wns(Ti)hsj

∣∣∣ = o(1) a.s., 1 ≤ j ≤ p, (6.2)

max
1≤i≤n

∣∣∣ n∑
s=1

Wns(Ti)usj

∣∣∣ = o(1) a.s., 1 ≤ j ≤ p. (6.3)

(2) Suppose that (2.2)–(2.3) hold, E(|ε1|l + ‖x1‖l + ‖u1‖l) < ∞, and g and g2j satisfy the
Lipschitz condition. Then

max
1≤i≤n

∣∣∣ n∑
s=1

Wns(Ti)εs

∣∣∣ = o(n
1
l − 1

2 ) a.s., (6.4)

max
1≤i≤n

∣∣∣ n∑
s=1

Wns(Ti)hsj

∣∣∣ = o(n
1
l − 1

2 ) a.s., 1 ≤ j ≤ p, (6.5)

max
1≤i≤n

∣∣∣ n∑
s=1

Wns(Ti)usj

∣∣∣ = o(n
1
l − 1

2 ) a.s., 1 ≤ j ≤ p (6.6)

for l = 3 or 4.

Proof This result is due to Lemma 1 of [5].
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Lemma 6.2 (1) Assume that Assumption 3.2 holds and that f is a continuous function on
interval [0, 1], and k

logn →∞, k
n → 0(n→∞). Then

sup
0≤t≤1

|TR(k,t) − t| = o(1) a.s., (6.7)

max
1≤i≤n

∣∣∣f(Ti)−
n∑

s=1

Wns(Ti)f(TS)
∣∣∣ = o(1) a.s. (6.8)

(2) Assume that Assumption 2.2 holds and that f satisfies the Lipschitz condition and
k

logn →∞, k

n
3
4
→ 0 (n→∞). Then

sup
0≤t≤1

|TR(k,t) − t| = o(n− 1
4 ) a.s., (6.9)

max
1≤i≤n

∣∣∣f(Ti)−
n∑

s=1

Wns(Ti)f(TS)
∣∣∣ = o(n− 1

4 ) a.s. (6.10)

Proof This result is due to Lemma 2 of [5].

Lemma 6.3 Under the condition of Theorem 3.1, we have

1
n

x̃Tx̃→ Σ a.s. (6.11)

Proof Observe that xi = hi + g2(Ti), 1 ≤ i ≤ n, and we have

1
n

(x̃Tx̃)s,m

=
( 1

n

n∑
i=1

x̃ix̃
T
i

)
s,m

=
1
n

n∑
i=1

[(
his −

n∑
j=1

Wnj(Ti)hjs

)
+

(
g2s(Ti)−

n∑
j=1

Wnj(Ti)g2s(Tj)
)]

×
[(

him −
n∑

j=1

Wnj(Ti)hjm

)
+

(
g2m(Ti)−

n∑
j=1

Wnj(Ti)g2m(Tj)
)]

=
1
n

n∑
i=1

hishim + R1n(s, m).

By virtue of Lemmas 6.1–6.2 and the strong law of large numbers, we have

1
n

n∑
i=1

hishim → Eh1sh1m a.s., R1n(s, m)→ 0 a.s.

and therefore,
1
n

(x̃Tx̃)s,m → Eh1sh1m a.s.,

so
1
n

x̃Tx̃→ Eh1h
T
1 = Σ a.s.

Next we proceed to prove the theorems.
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Proof of Theorem 3.1 In this section, for simplicity in notation, let θ =
√

n(β − β0).

Qn(θ) =
n∑

i=1

vi

(∣∣∣ Ỹi − X̃T
i β√

1 + ‖β‖2
∣∣∣− ∣∣∣ Ỹi − X̃T

i β0√
1 + ‖β0‖2

∣∣∣)

=
n∑

i=1

vi

(∣∣∣ εi − ũT
i β√

1 + ‖β‖2 −
x̃T

i (β − β0)√
1 + ‖β‖2

∣∣∣− ∣∣∣ εi − ũT
i β0√

1 + ‖β0‖2
∣∣∣).

Write

−Si = Bi =
εi − ũT

i β√
1 + ‖β‖2 −

x̃T
i (β − β0)√
1 + ‖β‖2 −

εi − ũT
i β0√

1 + ‖β0‖2

= − 1√
1 + ‖β0‖2

(
x̃i + ũi +

(εi − ũT
i β0)β0

1 + ‖β0‖2
)T

(β − β0) + o(1).

By virtue of Lemmas 6.1–6.2 and the strong law of large numbers, we have

−Si = Bi = − 1√
1 + ‖β0‖2

(
hi + ui +

(εi − uT
i β0)β0

1 + ‖β0‖2
)T

(β − β0) + o(1).

By applying the identity in Knight [11],

|r − s| − |r| = −s(I(r > 0)− I(r < 0)) + 2
∫ s

0

{I(r ≤ t)− I(r ≤ 0)}dt.

We have
Qn(θ) = Qn1(θ) + Qn2(θ),

where

Qn1(θ) = − 1√
1 + ‖β0‖2

n∑
i=1

vi

(
hi + ui +

(εi − uT
i β0)β0

1 + ‖β0‖2
)T

(β − β0)sgn(εi − ũT
i β0) + o(1)

= − 1√
n

n∑
i=1

viA
T
i θ√

1 + ‖β0‖2
+ op(1),

Qn2(θ) = 2
n∑

i=1

vi

∫ −Bi

0

[
I
( εi − ũT

i β0√
1 + ‖β0‖2

≤ t
)
− I

( εi − ũT
i β0√

1 + ‖β0‖2
≤ 0

)]
dt.

Since
εi − ũT

i β√
1 + ‖β‖2 =d εi − ũT

i β0√
1 + ‖β0‖2

=d εi − uT
i β0√

1 + ‖β0‖2
=d εi,

where =d stands for obeying the same distribution, we have

EQn2(θ) = EQn(θ)− EQn1(θ)

= E
n∑

i=1

(∣∣∣εi − x̃T
i (β − β0)√
1 + ‖β‖2

∣∣∣− |εi|
)

+ o(1)

=
f(0)

1 + ‖β‖2 θTE
( 1

n

n∑
i=1

x̃ix̃
T
i

)
θ + o(1)

=
f(0)

1 + ‖β0‖2 θTE
( 1

n

n∑
i=1

x̃ix̃
T
i

)
θ + o(1)

→ f(0)
1 + ‖β0‖2 θTΣθ.
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By the Schwarz’s inequality and the control limited theorem, it is easy to see that

Var(Qn2(θ))

≤ 2
n∑

i=1

E(v2
i )E

( ∫ Si

0

[
I
( εi − ũT

i β0√
1 + ‖β0‖2

≤ t
)
− I

( εi − ũT
i β0√

1 + ‖β0‖2
≤ 0

)]
dt

)2

≤ 2√
n

E
(

max
1≤i≤n

∣∣∣ x̃T
i θ√

1 + ‖β‖2
∣∣∣)E|Qn2(θ)|

and Assumption 3.2 then implies that

Qn(θ)→ Q0(θ) = − 1√
n

n∑
i=1

viA
T
i θ√

1 + ‖β0‖2
+

f(0)
1 + ‖β0‖2 θTΣθ.

The convextiy of the limiting objective function Q0(θ) assures the uniqueness of the minimizer
and consequently

√
n(β∗

n − β0) =

√
1 + ‖β0‖2
2f(0)

Σ−1 1√
n

n∑
i=1

viAi + op(1).

Furthermore,

E(
√

n(β∗
n − β0)) = 0, Var(

√
n(β∗

n − β0)) = J−1
0 SJ−1

0 ,

where

S = Cov
(
sgn(ε1 − uT

1 β0)
(
h1 + u1 +

(ε1 − uT
1 β0)β0

1 + ‖β0‖2
))

;

particularly, when v1 ≡ 1, we have

√
n(β̂n − β0) =

√
1 + ‖β0‖2
2f(0)

Σ−1 1√
n

n∑
i=1

Ai + op(1).

By the central limited theorem, we have
√

n(β∗
n − β0)→L N(0, J−1

0 SJ−1
0 ).

Proof of Theorem 3.2 By the result of Theorem 3.1, we have

√
n(β∗

n − β̂n) =

√
1 + ‖β0‖2
2f(0)

Σ−1 1√
n

n∑
i=1

(vi − 1)Ai + op(1). (6.12)

From Lemma 2.9.5 in [20], it follows that conditionally on {Yi, Xi, Ti}ni=1,

1√
n

n∑
i=1

(vi − 1)Ai
L∗−−→ N(0, S) (6.13)

for almost every sequence {Yi, Xi, Ti}ni=1. Thus, by (6.12)–(6.13), it is easy to show that (3.3)
holds true, √

n(β∗
n − β̂n) L∗−−→ N(0, J−1

0 SJ−1
0 ).

By using the similar argument as in [16], (3.4) can be shown to hold true.
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Proof of Theorem 3.3 Define K as a known p× (p− q) matrix of rank p− q (0 < q < p)
which satisfies HTK = 0. Write

Kn = Σ
1
2 K(KTΣK)−

1
2 , Hn = Σ− 1

2 H(HTΣ−1H)−
1
2

and then
KT

n Kn = Ip−q , HT
n Hn = Iq

and
HT

n Kn = 0, HnHT
n + KnKT

n = Ip

Without loss of generality, H0 : HT(β − b0) = 0 can be written as

β − β0 = Kγ

for some γ ∈ Rp−q, so √
n(β̂nc − β0) = Kγ̃.

Let vi ≡ 1. By Theorem 3.1, we have

Qn(γ̃) = − 1√
n

n∑
i=1

AT
i Kγ̃√

1 + ‖β0‖2
+

f(0)
1 + ‖β0‖2 γ̃TKTΣKγ̃ + op(1). (6.14)

It thus follows that

γ̃ =

√
1 + ‖β0‖2
2f(0)

(KTΣK)−1 1√
n

n∑
i=1

KTAi + op(1). (6.15)

Replacing (6.14) into (6.15), we get

Qn(γ̃) = − 1
4f(0)

∥∥∥ 1√
n

n∑
i=1

KT
n Σ− 1

2 Ai

∥∥∥2

+ op(1).

Similarly

Qn(θ̂) = − 1√
n

n∑
i=1

AT
i θ̂√

1 + ‖β0‖2
+

f(0)
1 + ‖β0‖2 θ̂TΣθ̂ + op(1)

= − 1
4f(0)

∥∥∥ 1√
n

n∑
i=1

Σ− 1
2 Ai

∥∥∥2

+ op(1),

where θ̂ =
√

n(β̂n − β0). When H0 is true,

Mn =
n∑

i=1

∣∣∣ Ỹi − X̃T
i β̂nc√

1 + ‖β̂nc‖2
∣∣∣− n∑

i=1

∣∣∣ Ỹi − X̃T
i β̂n√

1 + ‖β̂n‖2
∣∣∣

= Qn(γ̃)−Qn(θ̂)

= − 1
4f(0)

∥∥∥ 1√
n

n∑
i=1

KT
n Σ− 1

2 Ai

∥∥∥2

+
1

4f(0)

∥∥∥ 1√
n

n∑
i=1

Σ− 1
2 Ai

∥∥∥2

+ op(1)

=
1

4f(0)

∥∥∥ 1√
n

n∑
i=1

HT
n Σ− 1

2 Ai

∥∥∥2

+ op(1).
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Under the condition of Theorem 3.3. This means that the Lindeberg’s condition holds. More-
over, note that

1√
n

n∑
i=1

HT
n Σ− 1

2 Ai
L−→ N(0, HT

n Σ− 1
2 SΣ− 1

2 Hn).

Proof of Theorem 3.4 Similar to the proof of Theorem 3.3, define

Qn(θ∗) = − 1√
n

n∑
i=1

viA
T
i θ∗√

1 + ‖β0‖2
+

f(0)
1 + ‖β0‖2 θ∗T Σθ∗ + op(1),

θ∗ =

√
1 + ‖β0‖2
2f(0)

Σ−1 1√
n

n∑
i=1

viAi + op(1),

and replacing into Qn(θ∗), we have

Qn(θ∗) = − 1
4f(0)

∥∥∥ 1√
n

n∑
i=1

viΣ− 1
2 Ai

∥∥∥2

+ op(1).

Similarly, it is easy to show that

Qn(θ̂) = − 1
4f(0)

∥∥∥ 1√
n

n∑
i=1

Σ− 1
2 Ai

∥∥∥2

+ op(1),

Qn(γ̃∗) = − 1
4f(0)

∥∥∥ 1√
n

n∑
i=1

viK
T
n Σ− 1

2 Ai

∥∥∥2

+ op(1),

Qn(γ̃) = − 1
4f(0)

∥∥∥ 1√
n

n∑
i=1

KT
n Σ− 1

2 Ai

∥∥∥2

+ op(1).

So

Qn(θ∗)−Qn(θ̂) = − 1
4f(0)

∥∥∥ 1√
n

n∑
i=1

(vi − 1)Σ− 1
2 Ai

∥∥∥2

+ op(1),

Qn(γ̃∗)−Qn(γ̃) = − 1
4f(0)

∥∥∥ 1√
n

n∑
i=1

(vi − 1)KT
n Σ− 1

2 Ai

∥∥∥2

+ op(1),

where

θ∗ =
√

n(β∗
n − β0),

θ̂ =
√

n(β̂n − β0),

Kγ̃∗ =
√

n(β∗
nc − β0),

Kγ̃ =
√

n(β̂nc − β0).

Therefore

M∗
n = [Qn(γ̃∗)−Qn(θ∗)]− [Qn(γ̃)−Qn(θ̂)]

= [Qn(γ̃∗)−Qn(γ̃)]− [Qn(θ∗)−Qn(θ̂)]

= − 1
4f(0)

∥∥∥ 1√
n

n∑
i=1

(vi − 1)KT
n Σ− 1

2 Ai

∥∥∥2



Randomly Weighted LAD-Estimation for Partially Linear Errors-in-Variables Models 577

+
1

4f(0)

∥∥∥ 1√
n

n∑
i=1

(vi − 1)Σ− 1
2 Ai

∥∥∥2

+ op(1)

=
1

4f(0)

∥∥∥ 1√
n

n∑
i=1

(vi − 1)HT
n Σ− 1

2 Ai

∥∥∥2

+ op(1).

From Lemma 2.9.5 in [18], it follows that conditionally on {Yi, Xi, Ti}ni=1,

1√
n

n∑
i=1

(vi − 1)HT
n Σ− 1

2 Ai
L∗−−→ N(0, HT

n Σ− 1
2 SΣ− 1

2 Hn).
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