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Abstract The authors first construct an explicit minimal projective bimodule resolution
(P,0) of the Temperley-Lieb algebra A, and then apply it to calculate the Hochschild
cohomology groups and the cup product of the Hochschild cohomology ring of A based
on a comultiplicative map A : P — P ®4 P. As a consequence, the authors determine the
multiplicative structure of Hochschild cohomology rings of both Temperley-Lieb algebras
and representation-finite g-Schur algebras under the cup product by giving an explicit
presentation by generators and relations.
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1 Introduction

The Temperley-Lieb algebras were first introduced in 1971 in [24] to study the single bond
transfer matrices for the ice model and the Potts model. Later they were independently found
by Jones when he characterized the algebras arising from the tower construction of semisimple
algebras in the study of subfactors (see [18]). These algebras have played a central role in the
discovery by Jones of his new polynomial invariant of knots and links (see [19]), and in the sub-
sequent developments over the past four decades relating to knot theory, topological quantum
field theory, and statistical physics (see [20]). Their relationship with knot theory comes from
their role in the definition of the Jones polynomial. The theory of quantum invariants of links
nowadays involves many research fields. Thus, many important kinds of algebras related to the
invariants of braids or links, such as Birman Wenzl algebras (see [5]), Hecke algebras and Brauer
algebras, have been of great interest in mathematics and physics. They are all deformations of
certain group algebras or other well-known algebras.

Let K be a field and m a positive integer. Recall that the Temperley-Lieb algebra A,,(¢)
for 6 € K is defined to be a K-algebra with identity generated by tq,t2, - ,t,—1 subject to
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the relations:

titit, =t;, if|j—i| =1,

f,itj:tjti, if |j—i|>1,

t?zéti forl1<i<m-—1.

It was shown in [25] that a block of a non-semisimple Temperley-Lieb algebra is Morita equiv-
alent to the quotient algebra A = A,,, = KQ/I given by the quiver

B B Bm—1
Q= e ° o .- T )
1 Qg 2 Qs 3 m—1 Qm_1 ™M
and the relations I = (1104, Bifit1, Bit10it1 — Qiiy @m—10m—1 | 1 =1,2,--- ;m—2). As was

shown in [26], the non-trivial block of the representation-finite g-Schur algebras S, (n,r) with
n > r is also Morita equivalent to an algebra of the form A,,.

Hochschild cohomology HH*(A, M) of A with coefficients in M was introduced in [16] in
order to classify, up to equivalence, all extensions of A with Kernel M, which is one-to-one
correspondence with HH? (A, M). Many other applications of this cohomology have been dis-
covered since then (see [15]). For example, separable algebras are characterized by the fact that
their Hochschild (cohomology) dimension is zero, that is, HH' (A, M) = 0 for every bimodule M
(see [16]); the deformation theory of an algebra is controlled by its Hochschild cohomology as
a graded Lie algebra under the Gerstenhaber bracket (see [11]); Hochschild cohomology is also
closely related to simple connectedness, formal smoothness (or quasi-freeness in literature) (see

[1, 22]) and so on. It is well known that HH*(A) = @ HH'(A) is endowed with the so-called
i=0

Gerstenhaber algebra structure under the cup product
—: HH"(A) x HH™(A) — HH"T™(A)
and the Gerstenhaber Lie bracket
[—,—]: HH"(A) x HH™(A) — HH" ™™ 1(A).

However, for most finite dimensional algebras, little is known about the Hochschild cohomology
groups and even less about the Hochschild cohomology rings (see [2, 4, 7-10, 13, 27]).

Since Hochschild cohomology is invariant under Morita equivalence (see [15]), to describe the
Hochschild cohomology rings of both the Temperley-Lieb algebras and the representation-finite
g-Schur algebras Sy (n,r) for n > r, it is sufficient to deal with the basic algebra A defined as
above. The K-dimensions of Hochschild cohomology groups of A were obtained in [17] by a long
exact sequence of cohomology groups relating to a homological epimorphism of K-algebras, but
there K-bases were not given. We begin the paper by giving a minimal projective resolution
of A as an A°-module, and then apply it to obtain K-bases of the cohomology groups in terms
of parallel paths. In Section 4 we give an explicit description of the “comultiplicative” map
A:P —P®4 P to determine the cup product of HH*(A) using the composition

P—-PuP— A4 A— A.

As a consequence, we will give an explicit presentation of the multiplicative structure of HH*(A)
under the cup product by generators and relations.
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2 The Minimal Projective Bimodule Resolution

Throughout the paper we always assume that A is the algebra defined as in the introduction.
We denote by e; the trivial path at the vertex i. Given a path p in @, we denote by o(p) and
t(p) the origin and the terminus of p respectively.

We will employ the strategy due to Green et al in [12, 14] to construct a minimal projective
A¢-module resolution of A. Set 9871 =e¢;, 1 =1,2,--- ,m. For 1 <n < 2m — 2, one defines the
following elements recursively:

gy =907 Bivn—ar—1 + (=1)" 90 j0tign_or. (2.1)

Noticing that gl.dim A = 2m — 2, one takes g;'; = 0 if n > 2m — 2. Note that g;!; is just an
algebraic sum of paths of length n with the original ¢ and containing exactly r arrows of type
a. Denote by g" the set of elements of the form g;;. Then,

gO = {61762a"' 76WI}a
gl = {_ah_aQa"' 7_am—1;ﬁ17625"' aﬁm—1}7
9> = {—qis104, BiBis1, Bisripr — i | 1 < i <m — 2} U{—m—18m—1}-
For 3 < n < 2m — 2, when n = 2k,
9" ={g i |0<r<k—Lr+1<i<m—(n—-2r}U{g, | k<r<nr+1<i<mp
when n =2k + 1,
9" ={gri |0<r<kr+1<i<m—(n—-2r)}U{g,; |k+1<r<n,r+1<i<m}.
In particular, we have

g [ =3k 2kt =2,
TUZ 20k + ym —3k2 — 5k — 2, ifn=2k+1.

In order to define the differential §, we need the following lemma so that we have two
different ways of expressing the elements of the set g” in terms of the elements of the set g" .
The proof of Lemma 2.1 is straightforward and therefore omitted.

Lemma 2.1 Forn > 1, we have

g1 =907 Bisn—or 1+ (1)1 j@inar = (1) Bigr i + (=) gl

Denote ® := ® . Define

P, = @ Ao(gr;) @ t(gy;)A,

gn egn
and for 1 <n<2m—2, 6, : P, — P,_1 is given by
O(Qﬁi)(@t(gﬁ,i) — ((—1)"€;®Bitn—2r—1+€;@01n—2r)+((—1)" Bi®€isn—or+(—1) @i 1@€i4n_2r).

The following theorem follows immediately from Lemma 2.1 and [12, Theorem 2.1].
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Theorem 2.1 With the above notation, the complex
O2m—2 Ont2 On+1 S 123 81 3o
(P,6): 0—=Poypo — «++ 5 Ppyg = P23 3P =P —=>A—-0

18 a minimal projective A¢-resolution of A, where &g : Py — A is the multiplication map.

Proof Let X = ¢g' and R = g? be the set of generators of I as above. Since A4 is a
Koszul algebra, by [3, Sect. 9], it suffices to show that g™ is a K-basis of the K-vector space

K,:= () XPRX?%forn>2.
prq=n—2

We first show that all the g;'; belong to K, inductively. It is trivial for n = 2. Assume
that the assertion holds for n — 1 and we prove it for n. By the induction hypothesis and the
formula (2.1), gri € RX" 2N K,_1X. The induction hypothesis and Lemma 2.1 show that
9ri € X" 2RN XK, _,. The assertion follows from the fact that K, = RX" 2N X" 2R N
XK, 1NK,1X.

Next, g™ is K-linearly independent since they have distinct supports. Also, the quadratic
duality A' = kQ/I+ of A is isomorphic to the Yoneda algebra F(A) of A, where I is the ideal
of KQ generated by R+ = {B1a1, Bit1ciy1 + ;B |i=1,2,--- ,m —2}. So the Betti number
of the minimal projective resolution of A over A€ is

(2k + 1)m — 3k? — 2k, if n = 2k,

dim K,, =
2k +1)m — 3k2 — 5k — 2, if n =2k + 1.

Hence g™ is a K-basis of K,,. Then the result follows.

3 Hochschild Cohomology Groups

This section is devoted to finding K-bases of the Hochschild cohomology groups of A based
on the minimal projective A¢-resolution constructed in the previous section.
Applying Hom ge (—, A) to the minimal resolution (P,¢), we have the complex

o7 [ O3m—2

0 — Hom e (P, A) = Homue (Py, A) = -+ ™" Homae(Popm—_2, A) — 0.

Let B = {e1,€2, - ,em, 01,02, -, Bm—1,01,Q2, -+ ,0m_1, fr101, P22, -+, Bn—10m—1} be a
K-basis of algebra A, and K(B//g") denote the vector space with a K-basis B//g" = {(b, g;";) |
o(b) = o(g;;),t(b) = t(g;';)}. We say that two paths o and 3 are parallel if o(a) = o(f3) and
t(a) = t(B).

The following lemma is immediate, see [6, 21] for details.

Lemma 3.1 Homae(P,, A) = K(B//g") as vector spaces.

Proof It is easy to see that

Homue (P, A) = HomAe( P (o) ® t(y))Ae,A) > (P 4o(y) @ t()

yEg™ Y€EG"

= P o(At(y) = K(B//g")

~EGT

as vector spaces.
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We fix an isomorphism ¢ : K(B//g") — Homye(P,, A) sending (b,v) € (B//g"™) to the
Af-homomorphism f, -y € Homae(P,, A), which assigns o(y) @ t(y) to b, and zero otherwise.
The cochain complex above changes into

* x O oy 0o _
0— K(B//9) % K(B/[g") % - 25" K(B/[g*"%) 552 K(B//¢™" %) =0, (3.1)
where we still denote by ¢ the induced linear maps.

m
Lemma 3.2 Ker 0} has a K-basis { (e, €;), (Bra1,e1), (B202,€2), -+, (Bn—10m—1,€m—1)}
i=1

and dimgIm 67 =m — 1.

Proof Under the K-bases,

B//g" = {(e1,e1), (e2,€2), , (em,em), (Bra1,e1), (Baca,ea), + , (Bm—10m—1,€m—1)}

and

B//gl = {(617ﬂ1); (52; 62)7 R (ﬂmflaﬂmfl)(ala _al); (0427 _042)7 Y (amfla _am71}~

It is not difficult to calculate the matrix of the linear map J;7 which is

Ay

-1 10 -0 (2m—2)x (2m—1)

with the right m — 1 columns zero. It is clear that rank A; = m — 1, and hence dimgIm §} =
rank A; = m — 1, and dimgKerd; = |B//¢°| —rank A1 = (m +m — 1) — (m — 1) = m. One
can easily check that

51‘((610417 61)) =0, 51‘((52(12’ 62)) 0, -,

(ei,ei)) =0.

-

Il
i

5 ((Bm-10m-1,em-1)) =0, 51(

(2

m
Since {Z (ei€:), (fraa,er), (Baca,e2), -+, (Bm—1m—1, em,l)} is K-linear independent and
i=1
has m elements, it is a K-basis of Ker 4.
Noticing that HH"(A) = Kerd;, ,/Imd;;, we next find out a K-basis of the kernel space
Keré; ., and the image space Imd;, for n > 0, respectively. They will be discussed in four
cases.
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Case I: n = 4t, t # 0. Set

U= {(52t+ja2t+j7ggt,2t+j) | j = 1725 e, — 2t — 1}7

V= {(a2t+j’ggtj21t+j+1) - (ﬁ2t+jaggtill,2t+j) |j=0,1,---,m—2t—1}
m
u{ Y D gh )
i=2t+1

Case II: n =4t 4+ 1, ¢t # 0. Set

U= {(a2t+j79gt+1,2t+j+1) + (ﬁ2t+jaggt,2t+j) |j=1,2,---,m—2t -1},

m

V = {(Bae+j@20455 Grapry) | 5 = 1,2, ;m =2t =1} U { Z (ei’ggtjh}'
i=20+1

Case III: n = 4t + 2. Set

U= {(ﬂ2t+ja2t+jaggt+172t+j) | ] = 2; 37 s, — 2t — 1}7
V= {(042t+j79§t111,2t+j+1) + (ﬁ2t+jvggtj21t+j) lj=1,2,---,m—2t -1}

m

U{ Z (aiflaggt:}l?i)}'

1=2t42

Case IV: n = 4t + 3. Set

U= {(a2t+j79gt+2,2t+j+1) - (62t+j79gt+1,2t+j) |j=2,3,---,m—2t—1},

V= {(ﬂ2t+ja2t+j’ggt:}l,Qt-i-j) |j=2,3,---,m—-2t—1}

m

U{ Z (—1)i(6i793t111,i)}-

i=2t+2
Lemma 3.3 U forms a K-basis of Im 9, and V' forms a K-basis of Ker¢,.

Proof We only prove the case I, and the other cases are similar and their proofs are omitted
here. It is not difficult to calculate the matrix of the linear map & under the K-bases B//g"~* =

{(@2t, 95 9p11)s (@241, 91 or40)s - (Qm1, 955 ) (Bats 95 20)s (B2t 1, 9 S aesn)s > (Bt
93;11,77%1)} and B//!JW1 = {(62t+lvggt,2t+1)ﬂ (€2t+2ag§t,2t+2)a T 7(emvggt,m)v (Bat 102641,
ggt,Qt-i—l)v (ﬂ2t+2a2t+2vggt,2t+2)ﬂ B (5m71am—179§t,m—1)}~ The matrix Ay is

0 0

0 0

11 11

A, = 1 1 1 1
11 11
11 11 (2m—4t—1)x (2m—4t)

whose first m—2¢ rows are zero. The rank of A4,, is m—2t—1 and hence dimgIm ¢} =rank 4, =
m —2t —1 and dimgKer §% = |B//¢g" | —dimgIm 6} = 2(m —2t) — (m—2t —1) = m — 2t + 1.
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It is easy to see that

(Batr102i11, ggt,QtJrl) = 0, ((@at, 95{2%%11)), .
(ﬂ2t+2a2t+2aggt,2t+2) = 52((042t+1793521t+2) - (aQtaggtTQtJrll))’ )
(Bot+302t43, Gt ar43) = O (26415 957 2043) — (2041, 927 2142) T (28, G5 2141))5

(Bm—10m—1, 5, 1) = 05, ((Qm—2, 9y n—1) = (Cm—3, 951 o) + -+ (=)™ (020, g5y 2041))-
Since the set {(B2t+102641, 95 2141)s (B2t4202042, 951 0042)s 5 (Bm—-10m—1,9% m—1)} C (B//9")
is K-linear independent and has m — 2t — 1 elements, it is a K-basis of Im d;;.

Clearly,

52((04215,93;21&1) (Bat, 91— 12t)) 0,

5:((042#1,93{21#2) - (ﬂ2t+1ag2t71,2t+1)) =0,

5 ((Qvm— 17g2tm) (B~ 15 92— 1m 1) =0,

m

o > (D' gih) =0,

i=2t+1
It follows that

{(Oé2t+j’ggtj21t+j+1) - (ﬂ2t+jvggtill,2t+j) | ] = Oa 17 e, — 2t — 1}
m

U{ > (—1)"(ai_1,g§tj)} C Kerd}:

1=2t41

which is obviously K-linear independent and has m — 2t + 1 elements, so it is a K-basis of
Ker d;;. The proof is finished.

Now it is a position to give a K-basis of the Hochschild cohomological space HH" (A).

Theorem 3.1 Let A = KQ/I be the K-algebra defined as in the introduction. Then we

have
. m, 1=020,
(1) dimgHH (A) ={1, 1<i<2m—2,
0, ©>2m—2.

(2) HH°(A) has a basis Y. (e;,€;), (Biai,e1), (Boaa,e2), -, (Bm—10m—1,€m—1); and

i=1
HH*(A) has a basis Z (ei,gég,i) fort #0,
i=2t+1
m
HHY*(A) has a basis Z (vi— 1a9§€ﬁ i);
i=2t+2
m
HHY""2(A) has a basis Z (-=1) (ez,ggﬁ;%l)
i=2t+2
HHY""3(A) has a basis Z (=1)% (o 1,g§€i§z)
i=2t+3

Here these basis elements represent the representatives of the corresponding elements in HH" (A).
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Proof It follows from Lemmas 3.2-3.3 and the fact that HH'(A) = Ker 8%, /Im 6} directly.

Remark 3.1 The dimension of the Hochschild cohomological space HH"(A) was obtained
by de la Pena and Xi in [17] in a different way.

4 The Cup Product

In this section we will describe the multiplicative structure of the Hochschild cohomology
ring of A in terms of parallel paths. In [23] it was shown that for any projective A¢-resolution PP of
a finite dimensional algebra A, there exists a unique (up to homotopy) chain map A : P — P 4P
lifting the identity. P gives rise to a “cup product” of two elements n in HH™(A) and 6 in
HH"(A) by using the composition

PAPo P A A% A

coinciding with the ordinary cup product and being independent of the projective resolution P
of A and the chain map A.

The following lemma provides an explicit description of the so-called “comultiplicative struc-
ture” of the generators of each P, in (IP,§), which is key to defining a chain map A.

Lemma 4.1 For any given p=0,1,---  n, we have

T

g'rr‘l,’i _ z:(_1)(rfs)(nJrlprrrfs)g?z ;Dgf sitn_p2s
s=0
Proof We use induction on p. There is nothing to prove provided that p = 0. If p = 1,
then g;!; = gﬁ;lﬁiJrn,gr,l + (—1)”9?_71171-0[””,%, which is just the defining formula of g';.
Suppose now that the formula holds true for p = k. We consider the case p =k + 1. By the
induction hypothesis and the formula (2.1), we have

T

g:},i:Z( )(r Sk S)gsz gv" s,i+n—k—2s
s=0

_Z (7“ i) [ngk 1ﬂz+n k—2s— 1+( 1)n kg? 11,1a1+” k— 25]97" syitn—k—2s

_ r—s)(n+l—k+4+r—s) n—k—1 k
*Z(— (r=e){ )9” ﬂi+n7k725719r75,i+n71€725

+Z (T s)(nt1-ktr= S)( ) _kgnflkz Ajpn—k— QSgr s,i+n—k—2s

_ (r s)(n—k+r—s) n—k—1 k+1
gsz gr s,i4+n—k—2s—1"

The result follows.

The lemma allows us to give the definition of the map A : P — P ® 4 P. First we recall the
tensor product chain complex (P® 4P, D) of (P,0). Its n-th objectis (P®aP), = @ Pi®aP;
i+j=n
n—1 .
and the differential D,, : (P@4P),, — (P@aP),—1 isgivenby D,, = > (0;41®@14+(—1)"1®5,_;).

=0



Hochschild Cohomology Rings of Temperley-Lieb Algebras 621

By abuse of notations, we denote by o(g,";) (vesp. t(g,;)) the corresponding idempotent e, )
(resp. ey(yn )), and by €}, the generator o(g;’;) ® t(g,.;) of Py.

Definition 4.1 The A-A-bimodule map A = (A,,) : P — P®4 P is defined by

n T
An(??:},i) = Z Z(_1)(r—8)(n+1—p+r—8)€;;p R €f—s,i+n—p—23
p=0 s=0

for 0 <n <2m — 2 and the other A, are all zero.
Lemma 4.2 The map A : (P,§) — (P®4a P, D) defined as above is a chain map.

Proof To prove the result, it suffices to show that the diagram

On
P, —

Pn—l
| Jo.-
(P@aP)y —22 (P @4 P)py

is commutative for n > 1.

Let (An—1060(];))(t.,n—1-1) denote the element of P* © 4 P"~'~*. By the definition of A
and 0, (e7;) = (—1)"€; @ Bivn—2r—1+ € @ Qipn—2r + (=1)"Bi @ €ipn—2r + (—1)" i1 @ €iyn—2r,
we have

T

(An—l o 5n(5:~ii))(t,n717t) = (_1)n Z(_l)(r—s)(t+1+r—s)gé’i XA 5:}:31;4{15_23ﬁi+n—2r—1
s=0
T

r—s—1)(t+r—s) .t n—1-—t
+ Z(_l)( X )gs,i ®a Er—1—s,it+t—2sXitn—2r

T
+ (=) Z(_1)(r7s)(t+1+r7s)ﬁi5;i+l ®a 5?:51;&1“725
s=0
T
+(=1)" Z(_1)(7’7571)(t+r75)ai71€i7i_1 XA 6:}:31—_1t,i—1+t—23'
s=0

On the other hand, noting that

T

(An(E2 ) ity = Z(_l)w—s)(tﬂw_s)g;i R4 5?:§,i+t72s
s=0

and
i

(An(ef ) t+1,n—1-1) = Z(—l)(r_s)(“rz”_s)eiﬁl ®A Efjﬁg}rtf%ﬂ,
s=0

we can directly check that

[(_1)t®A6n*t]((An(€:},i))(t,n—t))+[6t+1 @aL((An(eri)) t+1,n—1-1)) = (Bn—108n(er ;) (tn—1—1)
and thus A,,_10,, = D, A, as desired. The proof is finished.

In order to give an explicit description of the Hochschild cohomology ring of A, we first give
the cup product on the level of cochains, which is essentially juxtaposition of parallel paths up
to sign.
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Lemma 4.3 Let A= KQ/I be the K-algebra defined as in the introduction. Then

(b1,9,1;) ~— (b2, 9,2 ) = (—1)r=ntr2) (byby, g2, if =iy — 2,
1 Iryi 1 Ira,j 0, otherwise.

Here (blbg,gﬁlli,zz’i) s viewed as 0 whenever biby € 1.

Proof Let n,, = (b1,9,;) and nn, = (b2, g, ;). Using the composition
PAPosP"™Y Aosa A,

we have

ni+mnz
77711 ~ 7777«2 (Er,k )
ni+ng

= V(Nny @ Mny)Anytn, (5r,k )
ni+nz r

_ r—s)(ni+ne+1l—p+r—s)_nit+nz—p P
o I/(nnl ® nnz) Z Z(_l)( e )Es,k ®a 6r—s,k+n1+n2—p—23
p=0 s=0

T
= ()OI (1) 1, (67—
s=0
When s # 71 or i # k, we have 1y, (¢7}) = 0. And when r — s # ry or j # k+n1 — 2s, we have
Mo (E:}is,kJrnlst) = 0. Thus, only in the caseof s =r1, it =k, r—s =rg and j = i+n; —2r; we
have 7, — N, (Ef’}jm) = (—=1)r2(m+1472))p by By the isomorphism of Lemma 3.1, it is easy
to see that in the case of j =i +ny — 2ry, we have 9y, — 1, = (—1)72("F1F72) (b by g1 n2)
and otherwise is zero.
Theorem 4.1 Let A= KQ/I be the K-algebra defined as in the introduction.

m

(1) 3 (ei, €i) is the identity of HH*(A), and for any n; = (B, e;) € HHY(A), € € HH*(A),
1

E¢ K, we have nj — & =& —n; = 0.
(2) Let nn, and n,, be the unique basis elements of HH"' (A) and HH"?(A) with ning > 0,
respectively. We have

NMnqdngs o nana =2k and ny +ng < 2m — 2,
i 2 = 0, ifning =2k +1 or ny +no > 2m — 2.

Proof It follows from Lemma 4.3 directly.

Now we can give a description of the multiplication structure of the Hochschild cohomology
ring of A by giving an explicit presentation by generators and relations. Let x1,X2,- + ,Xm_1,
v,z be the indeterminates of degree 0,0,---,0,1,2 respectively. Let A = K[x1,X2, "+ ,Xm—1,
v,2z]/J, where J is the two-sided ideal of the polynomial algebra K[xi,X2, " ,Xm-1,¥,%
generated by

m

xix; =0, xy=0 x2z=0 1<éj<m-1, y>=0, zm=0, yz" !=0.

Theorem 4.2 Let A = KQ/I be the K-algebra defined as in the introduction. Then
HH"(A) = A.
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Proof We omit the symbol of the cup product — of two elements of HH*(A) for simplicity.
Clearly > (e;,e;) is the identity of HH*(A). Denote
i=1

r1 = (fraq,e1), 22 = (feaz,e2), -, Tm-1=(Bm-10m-1,€m—1),
m m
Y= Z(ai—lvgii)v = Z(—l)z(emgii)-
i—2 i—2

By Theorem 4.1, we have

m m

Z (ei’ggii) =z, t#0, Z (O‘i—laggiiii) = 2"y,
=204 1 s

m ‘ m A

Z (_1)1(61"93;1%,1‘) = 22", Z (—1)1(0%—1,93213,1‘) =21y,
i=2042 s

Hence HH*(A) can be generated by x1,%2,-*+ ,Zm—1,Yy, 2z over K. Also, by Theorem 4.1, it is
easy to find that any two elements in HH*(A) are commutative and the following relations hold
true:

rix; =0, zy=0, zz2=0, 1<ij<m-—1, y>=0, zm=0, yz""'=0.
Then we construct an epimorphic algebra homomorphism
P K[X17X27 o 7Xm—1aY7Z] - HH*(A)

sending X1,X2," " ,Xm—1,Y,% t0 T1,T2, *+ , Tm—1,Y, 2, respectively. Clearly, J C Ker ¢ by the
relations above. Noticing that A = K[x1,X2, - ,Xm-1,¥,2]/J = @ A; as a graded algebra

satisfies that dimgA¢ = m and dimgA; = 1 for j > 1, we can immediately obtain that
HH*(A) & A by comparing the dimensions of graded algebras HH*(A) and A.

Remark 4.1 Since the Hochschild cohomology of algebras is Morita-invariant, the above
theorem describes the Hochschild cohomology rings of both the Temperley-Lieb algebras and
the representation-finite g-Schur algebras Sq(n,r) for n > r.
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