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Abstract The authors first construct an explicit minimal projective bimodule resolution
(P, δ) of the Temperley-Lieb algebra A, and then apply it to calculate the Hochschild
cohomology groups and the cup product of the Hochschild cohomology ring of A based
on a comultiplicative map Δ : P → P ⊗A P. As a consequence, the authors determine the
multiplicative structure of Hochschild cohomology rings of both Temperley-Lieb algebras
and representation-finite q-Schur algebras under the cup product by giving an explicit
presentation by generators and relations.
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1 Introduction

The Temperley-Lieb algebras were first introduced in 1971 in [24] to study the single bond
transfer matrices for the ice model and the Potts model. Later they were independently found
by Jones when he characterized the algebras arising from the tower construction of semisimple
algebras in the study of subfactors (see [18]). These algebras have played a central role in the
discovery by Jones of his new polynomial invariant of knots and links (see [19]), and in the sub-
sequent developments over the past four decades relating to knot theory, topological quantum
field theory, and statistical physics (see [20]). Their relationship with knot theory comes from
their role in the definition of the Jones polynomial. The theory of quantum invariants of links
nowadays involves many research fields. Thus, many important kinds of algebras related to the
invariants of braids or links, such as Birman Wenzl algebras (see [5]), Hecke algebras and Brauer
algebras, have been of great interest in mathematics and physics. They are all deformations of
certain group algebras or other well-known algebras.

Let K be a field and m a positive integer. Recall that the Temperley-Lieb algebra Am(δ)
for δ ∈ K is defined to be a K-algebra with identity generated by t1, t2, · · · , tm−1 subject to
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the relations:

titjti = ti, if |j − i| = 1,

titj = tjti, if |j − i| > 1,

t2i = δti for 1 � i � m − 1.

It was shown in [25] that a block of a non-semisimple Temperley-Lieb algebra is Morita equiv-
alent to the quotient algebra A = Am = KQ/I given by the quiver

Q = • �
� •�

�• •�
�• · · ·

1 2 3 m − 1 mαm−1α2α1

β1 βm−1β2

and the relations I = 〈αi+1αi, βiβi+1, βi+1αi+1−αiβi, αm−1βm−1 | i = 1, 2, · · · , m−2〉. As was
shown in [26], the non-trivial block of the representation-finite q-Schur algebras Sq(n, r) with
n � r is also Morita equivalent to an algebra of the form Am.

Hochschild cohomology HH∗(A, M) of A with coefficients in M was introduced in [16] in
order to classify, up to equivalence, all extensions of A with Kernel M , which is one-to-one
correspondence with HH2(A, M). Many other applications of this cohomology have been dis-
covered since then (see [15]). For example, separable algebras are characterized by the fact that
their Hochschild (cohomology) dimension is zero, that is, HH1(A, M) = 0 for every bimodule M

(see [16]); the deformation theory of an algebra is controlled by its Hochschild cohomology as
a graded Lie algebra under the Gerstenhaber bracket (see [11]); Hochschild cohomology is also
closely related to simple connectedness, formal smoothness (or quasi-freeness in literature) (see

[1, 22]) and so on. It is well known that HH∗(A) =
∞⊕

i=0

HHi(A) is endowed with the so-called

Gerstenhaber algebra structure under the cup product

�: HHn(A) × HHm(A) → HHn+m(A)

and the Gerstenhaber Lie bracket

[−,−] : HHn(A) × HHm(A) → HHn+m−1(A).

However, for most finite dimensional algebras, little is known about the Hochschild cohomology
groups and even less about the Hochschild cohomology rings (see [2, 4, 7–10, 13, 27]).

Since Hochschild cohomology is invariant under Morita equivalence (see [15]), to describe the
Hochschild cohomology rings of both the Temperley-Lieb algebras and the representation-finite
q-Schur algebras Sq(n, r) for n � r, it is sufficient to deal with the basic algebra A defined as
above. The K-dimensions of Hochschild cohomology groups of A were obtained in [17] by a long
exact sequence of cohomology groups relating to a homological epimorphism of K-algebras, but
there K-bases were not given. We begin the paper by giving a minimal projective resolution
of A as an Ae-module, and then apply it to obtain K-bases of the cohomology groups in terms
of parallel paths. In Section 4 we give an explicit description of the “comultiplicative” map
Δ : P → P ⊗A P to determine the cup product of HH∗(A) using the composition

P → P ⊗A P → A ⊗A A → A.

As a consequence, we will give an explicit presentation of the multiplicative structure of HH∗(A)
under the cup product by generators and relations.
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2 The Minimal Projective Bimodule Resolution

Throughout the paper we always assume that A is the algebra defined as in the introduction.
We denote by ei the trivial path at the vertex i. Given a path p in Q, we denote by o(p) and
t(p) the origin and the terminus of p respectively.

We will employ the strategy due to Green et al in [12, 14] to construct a minimal projective
Ae-module resolution of A. Set g0

0,i = ei, i = 1, 2, · · · , m. For 1 � n � 2m − 2, one defines the
following elements recursively:

gn
r,i = gn−1

r,i βi+n−2r−1 + (−1)ngn−1
r−1,iαi+n−2r. (2.1)

Noticing that gl.dimA = 2m − 2, one takes gn
r,i = 0 if n > 2m − 2. Note that gn

r,i is just an
algebraic sum of paths of length n with the original i and containing exactly r arrows of type
α. Denote by gn the set of elements of the form gn

r,i. Then,

g0 = {e1, e2, · · · , em},
g1 = {−α1,−α2, · · · ,−αm−1, β1, β2, · · · , βm−1},
g2 = {−αi+1αi, βiβi+1, βi+1αi+1 − αiβi | 1 ≤ i ≤ m − 2} ∪ {−αm−1βm−1}.

For 3 � n � 2m− 2, when n = 2k,

gn = {gn
r,i | 0 � r � k − 1, r + 1 � i � m − (n − 2r)} ∪ {gn

r,i | k � r � n, r + 1 � i � m};

when n = 2k + 1,

gn = {gn
r,i | 0 � r � k, r + 1 � i � m − (n − 2r)} ∪ {gn

r,i | k + 1 � r � n, r + 1 � i � m}.

In particular, we have

|gn| =

{
(2k + 1)m − 3k2 − 2k, if n = 2k,

2(k + 1)m − 3k2 − 5k − 2, if n = 2k + 1.

In order to define the differential δ, we need the following lemma so that we have two
different ways of expressing the elements of the set gn in terms of the elements of the set gn−1.
The proof of Lemma 2.1 is straightforward and therefore omitted.

Lemma 2.1 For n � 1, we have

gn
r,i = gn−1

r,i βi+n−2r−1 + (−1)ngn−1
r−1,iαi+n−2r = (−1)rβig

n−1
r,i+1 + (−1)rαi−1g

n−1
r−1,i−1.

Denote ⊗ := ⊗K . Define

Pn =
⊕

gn
r,i∈gn

Ao(gn
r,i) ⊗ t(gn

r,i)A,

and for 1 � n � 2m − 2, δn : Pn → Pn−1 is given by

o(gn
r,i)⊗t(gn

r,i) 	→ ((−1)nei⊗βi+n−2r−1+ei⊗αi+n−2r)+((−1)rβi⊗ei+n−2r+(−1)rαi−1⊗ei+n−2r).

The following theorem follows immediately from Lemma 2.1 and [12, Theorem 2.1].
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Theorem 2.1 With the above notation, the complex

(P, δ) : 0 → P2m−2
δ2m−2→ · · · δn+2→ Pn+1

δn+1→ Pn
δn→ · · · δ2→ P1

δ1→ P0
δ0→ A → 0

is a minimal projective Ae-resolution of A, where δ0 : P0 → A is the multiplication map.

Proof Let X = g1 and R = g2 be the set of generators of I as above. Since A is a
Koszul algebra, by [3, Sect. 9], it suffices to show that gn is a K-basis of the K-vector space
Kn :=

⋂
p+q=n−2

XpRXq for n ≥ 2.

We first show that all the gn
r,i belong to Kn inductively. It is trivial for n = 2. Assume

that the assertion holds for n − 1 and we prove it for n. By the induction hypothesis and the
formula (2.1), gn

r,i ∈ RXn−2 ∩ Kn−1X . The induction hypothesis and Lemma 2.1 show that
gn

r,i ∈ Xn−2R ∩ XKn−1. The assertion follows from the fact that Kn = RXn−2 ∩ Xn−2R ∩
XKn−1 ∩ Kn−1X .

Next, gn is K-linearly independent since they have distinct supports. Also, the quadratic
duality A! = kQ/I⊥ of A is isomorphic to the Yoneda algebra E(A) of A, where I⊥ is the ideal
of KQ generated by R⊥ = {β1α1, βi+1αi+1 + αiβi | i = 1, 2, · · · , m − 2}. So the Betti number
of the minimal projective resolution of A over Ae is

dimKn =

{
(2k + 1)m − 3k2 − 2k, if n = 2k,

2(k + 1)m − 3k2 − 5k − 2, if n = 2k + 1.

Hence gn is a K-basis of Kn. Then the result follows.

3 Hochschild Cohomology Groups

This section is devoted to finding K-bases of the Hochschild cohomology groups of A based
on the minimal projective Ae-resolution constructed in the previous section.

Applying HomAe(−, A) to the minimal resolution (P, δ), we have the complex

0 → HomAe(P0, A)
δ∗
1→ HomAe(P1, A)

δ∗
2→ · · · δ∗

2m−2→ HomAe(P2m−2, A) → 0.

Let B = {e1, e2, · · · , em, β1, β2, · · · , βm−1, α1, α2, · · · , αm−1, β1α1, β2α2, · · · , βm−1αm−1} be a
K-basis of algebra A, and K(B//gn) denote the vector space with a K-basis B//gn = {(b, gn

r,i) |
o(b) = o(gn

r,i), t(b) = t(gn
r,i)}. We say that two paths α and β are parallel if o(α) = o(β) and

t(α) = t(β).
The following lemma is immediate, see [6, 21] for details.

Lemma 3.1 HomAe(Pn, A) ∼= K(B//gn) as vector spaces.

Proof It is easy to see that

HomAe(Pn, A) ∼= HomAe

( ⊕
γ∈gn

(o(γ) ⊗ t(γ))Ae, A
) ∼=

⊕
γ∈gn

Ao(γ) ⊗ t(γ)

=
⊕
γ∈gn

o(γ)At(γ) ∼= K(B//gn)

as vector spaces.
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We fix an isomorphism φ : K(B//gn) → HomAe(Pn, A) sending (b, γ) ∈ (B//gn) to the
Ae-homomorphism f(b,γ) ∈ HomAe(Pn, A), which assigns o(γ) ⊗ t(γ) to b, and zero otherwise.
The cochain complex above changes into

0 → K(B//g0)
δ∗
1→ K(B//g1)

δ∗
2→ · · · δ∗

2m−3→ K(B//g2m−3)
δ∗
2m−2→ K(B//g2m−2) → 0, (3.1)

where we still denote by δ∗i the induced linear maps.

Lemma 3.2 Ker δ∗1 has a K-basis
{ m∑

i=1

(ei, ei), (β1α1, e1), (β2α2, e2), · · · , (βm−1αm−1, em−1)
}

and dimKIm δ∗1 = m − 1.

Proof Under the K-bases,

B//g0 = {(e1, e1), (e2, e2), · · · , (em, em), (β1α1, e1), (β2α2, e2), · · · , (βm−1αm−1, em−1)}

and

B//g1 = {(β1, β1), (β2, β2), · · · , (βm−1, βm−1)(α1,−α1), (α2,−α2), · · · , (αm−1,−αm−1}.

It is not difficult to calculate the matrix of the linear map δ∗1 which is

A1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1
−1 1

−1
. . .
. . . 1

−1 1
−1 1 0 · · · 0

−1 1
−1 1

−1
. . .
. . . 1

−1 1
−1 1 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2m−2)×(2m−1)

with the right m − 1 columns zero. It is clear that rankA1 = m − 1, and hence dimKIm δ∗1 =
rankA1 = m − 1, and dimKKer δ∗1 = |B//g0| − rankA1 = (m + m − 1) − (m − 1) = m. One
can easily check that

δ∗1((β1α1, e1)) = 0, δ∗1((β2α2, e2)) = 0, · · · ,

δ∗1((βm−1αm−1, em−1)) = 0, δ∗1
( m∑

i=1

(ei, ei)
)

= 0.

Since
{ m∑

i=1

(ei, ei), (β1α1, e1), (β2α2, e2), · · · , (βm−1αm−1, em−1)
}

is K-linear independent and

has m elements, it is a K-basis of Ker δ∗1 .
Noticing that HHn(A) = Ker δ∗n+1/Im δ∗n, we next find out a K-basis of the kernel space

Ker δ∗n+1 and the image space Im δ∗n for n > 0, respectively. They will be discussed in four
cases.
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Case I: n = 4t, t 
= 0. Set

U = {(β2t+jα2t+j , g
n
2t,2t+j) | j = 1, 2, · · · , m − 2t − 1},

V = {(α2t+j , g
n−1
2t,2t+j+1) − (β2t+j , g

n−1
2t−1,2t+j) | j = 0, 1, · · · , m − 2t − 1}

∪
{ m∑

i=2t+1

(−1)i(αi−1, g
n−1
2t,i )

}
.

Case II: n = 4t + 1, t 
= 0. Set

U = {(α2t+j , g
n
2t+1,2t+j+1) + (β2t+j , g

n
2t,2t+j) | j = 1, 2, · · · , m − 2t − 1},

V = {(β2t+jα2t+j , g
n−1
2t,2t+j) | j = 1, 2, · · · , m − 2t − 1} ∪

{ m∑
i=2t+1

(ei, g
n−1
2t,i )

}
.

Case III: n = 4t + 2. Set

U = {(β2t+jα2t+j , g
n
2t+1,2t+j) | j = 2, 3, · · · , m − 2t − 1},

V = {(α2t+j , g
n−1
2t+1,2t+j+1) + (β2t+j , g

n−1
2t,2t+j) | j = 1, 2, · · · , m − 2t − 1}

∪
{ m∑

i=2t+2

(αi−1, g
n−1
2t+1,i)

}
.

Case IV: n = 4t + 3. Set

U = {(α2t+j , g
n
2t+2,2t+j+1) − (β2t+j , g

n
2t+1,2t+j) | j = 2, 3, · · · , m − 2t − 1},

V = {(β2t+jα2t+j , g
n−1
2t+1,2t+j) | j = 2, 3, · · · , m − 2t − 1}

∪
{ m∑

i=2t+2

(−1)i(ei, g
n−1
2t+1,i)

}
.

Lemma 3.3 U forms a K-basis of Im δ∗n and V forms a K-basis of Ker δ∗n.

Proof We only prove the case I, and the other cases are similar and their proofs are omitted
here. It is not difficult to calculate the matrix of the linear map δ∗n under the K-bases B//gn−1 =
{(α2t, g

n−1
2t,2t+1), (α2t+1, g

n−1
2t,2t+2), · · · , (αm−1, g

n−1
2t,m), (β2t, g

n−1
2t−1,2t), (β2t+1, g

n−1
2t−1,2t+1), · · · , (βm−1,

gn−1
2t−1,m−1)} and B//gn−1 = {(e2t+1, g

n
2t,2t+1), (e2t+2, g

n
2t,2t+2), · · · , (em, gn

2t,m), (β2t+1α2t+1,

gn
2t,2t+1), (β2t+2α2t+2, g

n
2t,2t+2), · · · , (βm−1αm−1, g

n
2t,m−1)}. The matrix An is

An =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
· · · · · ·

0 0
1 1 1 1

1 1 1 1
. . . . . . . . . . . .

1 1 1 1
1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2m−4t−1)×(2m−4t)

whose first m−2t rows are zero. The rank of An is m−2t−1 and hence dimKIm δ∗n = rankAn =
m− 2t− 1 and dimKKer δ∗n = |B//gn−1|−dimKIm δ∗n = 2(m− 2t)− (m− 2t− 1) = m− 2t+1.
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It is easy to see that

(β2t+1α2t+1, g
n
2t,2t+1) = δ∗n((α2t, g

n−1
2t,2t+1)),

(β2t+2α2t+2, g
n
2t,2t+2) = δ∗n((α2t+1, g

n−1
2t,2t+2) − (α2t, g

n−1
2t,2t+1)),

(β2t+3α2t+3, g
n
2t,2t+3) = δ∗n((α2t+1, g

n−1
2t,2t+3) − (α2t+1, g

n−1
2t,2t+2) + (α2t, g

n−1
2t,2t+1)),

· · ·
(βm−1αm−1, g

n
2t,m−1) = δ∗n((αm−2, g

n−1
2t,m−1) − (αm−3, g

n−1
2t,m−2) + · · · + (−1)m−2t(α2t, g

n−1
2t,2t+1)).

Since the set {(β2t+1α2t+1, g
n
2t,2t+1), (β2t+2α2t+2, g

n
2t,2t+2), · · · , (βm−1αm−1, g

n
2t,m−1)} ⊂ (B//gn)

is K-linear independent and has m − 2t − 1 elements, it is a K-basis of Im δ∗n.
Clearly,

δ∗n((α2t, g
n−1
2t,2t+1) − (β2t, g

n−1
2t−1,2t)) = 0,

δ∗n((α2t+1, g
n−1
2t,2t+2) − (β2t+1, g

n−1
2t−1,2t+1)) = 0,

...

δ∗n((αm−1, g
n−1
2t,m) − (βm−1, g

n−1
2t−1,m−1)) = 0,

δ∗n
( m∑

i=2t+1

(−1)i(αi−1, g
n−1
2t,i )

)
= 0.

It follows that

{(α2t+j , g
n−1
2t,2t+j+1) − (β2t+j , g

n−1
2t−1,2t+j) | j = 0, 1, · · · , m − 2t − 1}

∪
{ m∑

i=2t+1

(−1)i(αi−1, g
n−1
2t,i )

}
⊆ Ker δ∗n

which is obviously K-linear independent and has m − 2t + 1 elements, so it is a K-basis of
Ker δ∗n. The proof is finished.

Now it is a position to give a K-basis of the Hochschild cohomological space HHn(A).

Theorem 3.1 Let A = KQ/I be the K-algebra defined as in the introduction. Then we
have

(1) dimKHHi(A) =

⎧⎨⎩
m, i = 0,
1, 1 � i � 2m− 2,
0, i > 2m − 2.

(2) HH0(A) has a basis
m∑

i=1

(ei, ei), (β1α1, e1), (β2α2, e2), · · · , (βm−1αm−1, em−1); and

HH4t(A) has a basis
m∑

i=2t+1

(ei, g
4t
2t,i) for t 
= 0,

HH4t+1(A) has a basis
m∑

i=2t+2

(αi−1, g
4t+1
2t+1,i),

HH4t+2(A) has a basis
m∑

i=2t+2

(−1)i(ei, g
4t+2
2t+1,i),

HH4t+3(A) has a basis
m∑

i=2t+3

(−1)i(αi−1, g
4t+3
2t+2,i).

Here these basis elements represent the representatives of the corresponding elements in HHn(A).
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Proof It follows from Lemmas 3.2–3.3 and the fact that HHi(A) = Ker δ∗i+1/Im δ∗i directly.

Remark 3.1 The dimension of the Hochschild cohomological space HHn(A) was obtained
by de la Peña and Xi in [17] in a different way.

4 The Cup Product

In this section we will describe the multiplicative structure of the Hochschild cohomology
ring of A in terms of parallel paths. In [23] it was shown that for any projective Ae-resolution P of
a finite dimensional algebra A, there exists a unique (up to homotopy) chain map Δ : P → P⊗AP

lifting the identity. P gives rise to a “cup product” of two elements η in HHm(A) and θ in
HHn(A) by using the composition

P
Δ→ P ⊗A P

η⊗θ→ A ⊗A A
ν→ A

coinciding with the ordinary cup product and being independent of the projective resolution P

of A and the chain map Δ.
The following lemma provides an explicit description of the so-called “comultiplicative struc-

ture” of the generators of each Pn in (P, δ), which is key to defining a chain map Δ.

Lemma 4.1 For any given p = 0, 1, · · · , n, we have

gn
r,i =

r∑
s=0

(−1)(r−s)(n+1−p+r−s)gn−p
s,i gp

r−s,i+n−p−2s.

Proof We use induction on p. There is nothing to prove provided that p = 0. If p = 1,
then gn

r,i = gn−1
r,i βi+n−2r−1 + (−1)ngn−1

r−1,iαi+n−2r , which is just the defining formula of gn
r,i.

Suppose now that the formula holds true for p = k. We consider the case p = k + 1. By the
induction hypothesis and the formula (2.1), we have

gn
r,i =

r∑
s=0

(−1)(r−s)(n+1−k+r−s)gn−k
s,i gk

r−s,i+n−k−2s

=
r∑

s=0

(−1)(r−s)(n+1−k+r−s)
[
gn−k−1

s,i βi+n−k−2s−1 + (−1)n−kgn−k−1
s−1,i αi+n−k−2s

]
gk

r−s,i+n−k−2s

=
r∑

s=0

(−1)(r−s)(n+1−k+r−s)gn−k−1
s,i βi+n−k−2s−1g

k
r−s,i+n−k−2s

+
r∑

s=1

(−1)(r−s)(n+1−k+r−s)(−1)n−kgn−k−1
s−1,i αi+n−k−2sg

k
r−s,i+n−k−2s

=
r∑

s=0

(−1)(r−s)(n−k+r−s)gn−k−1
s,i gk+1

r−s,i+n−k−2s−1.

The result follows.

The lemma allows us to give the definition of the map Δ : P → P ⊗A P. First we recall the
tensor product chain complex (P⊗AP, D) of (P, δ). Its n-th object is (P⊗AP)n =

⊕
i+j=n

Pi⊗APj

and the differential Dn : (P⊗AP)n → (P⊗AP)n−1 is given by Dn =
n−1∑
i=0

(δi+1⊗1+(−1)i1⊗δn−i).
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By abuse of notations, we denote by o(gn
r,i) (resp. t(gn

r,i)) the corresponding idempotent eo(gn
r,i)

(resp. et(gn
r,i)

), and by εn
r,i the generator o(gn

r,i) ⊗ t(gn
r,i) of Pn.

Definition 4.1 The A-A-bimodule map Δ = (Δn) : P → P ⊗A P is defined by

Δn(εn
r,i) =

n∑
p=0

r∑
s=0

(−1)(r−s)(n+1−p+r−s)εn−p
s,i ⊗A εp

r−s,i+n−p−2s

for 0 ≤ n ≤ 2m − 2 and the other Δn are all zero.

Lemma 4.2 The map Δ : (P, δ) → (P ⊗A P, D) defined as above is a chain map.

Proof To prove the result, it suffices to show that the diagram

Pn
δn−−−−→ Pn−1

Δn

⏐⏐� ⏐⏐�Δn−1

(P ⊗A P )n
Dn−−−−→ (P ⊗A P )n−1

is commutative for n � 1.
Let (Δn−1 ◦ δn(εn

r,i))(t,n−1−t) denote the element of P t ⊗A Pn−1−t. By the definition of Δ
and δn(εn

r,i) = (−1)nei ⊗ βi+n−2r−1 + ei ⊗αi+n−2r + (−1)rβi ⊗ ei+n−2r + (−1)rαi−1 ⊗ ei+n−2r,
we have

(Δn−1 ◦ δn(εn
r,i))(t,n−1−t) = (−1)n

r∑
s=0

(−1)(r−s)(t+1+r−s)εt
s,i ⊗A εn−1−t

r−s,i+t−2sβi+n−2r−1

+
r∑

s=0

(−1)(r−s−1)(t+r−s)εt
s,i ⊗A εn−1−t

r−1−s,i+t−2sαi+n−2r

+ (−1)r
r∑

s=0

(−1)(r−s)(t+1+r−s)βiε
t
s,i+1 ⊗A εn−1−t

r−s,i+1+t−2s

+ (−1)r
r∑

s=0

(−1)(r−s−1)(t+r−s)αi−1ε
t
s,i−1 ⊗A εn−1−t

r−s−1,i−1+t−2s.

On the other hand, noting that

(Δn(εn
r,i))(t,n−t) =

r∑
s=0

(−1)(r−s)(t+1+r−s)εt
s,i ⊗A εn−t

r−s,i+t−2s

and

(Δn(εn
r,i))(t+1,n−1−t) =

r∑
s=0

(−1)(r−s)(t+2+r−s)εt+1
s,i ⊗A εn−t−1

r−s,i+t−2s+1,

we can directly check that

[(−1)t⊗Aδn−t]((Δn(εn
r,i))(t,n−t))+[δt+1⊗A1]((Δn(εn

r,i))(t+1,n−1−t)) = (Δn−1◦δn(εn
r,i))(t,n−1−t)

and thus Δn−1δn = DnΔn as desired. The proof is finished.

In order to give an explicit description of the Hochschild cohomology ring of A, we first give
the cup product on the level of cochains, which is essentially juxtaposition of parallel paths up
to sign.
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Lemma 4.3 Let A = KQ/I be the K-algebra defined as in the introduction. Then

(b1, g
n1
r1,i) � (b2, g

n2
r2,j) =

{
(−1)r2(n1+1+r2)(b1b2, g

n1+n2
r1+r2,i), if j = i + n1 − 2r1,

0, otherwise.

Here (b1b2, g
n1+n2
r1+r2,i) is viewed as 0 whenever b1b2 ∈ I.

Proof Let ηn1 = (b1, g
n1
r1,i) and ηn2 = (b2, g

n2
r2,j). Using the composition

P
Δ→ P ⊗A P

η⊗θ→ A ⊗A A
ν→ A,

we have

ηn1 � ηn2(ε
n1+n2
r,k )

= ν(ηn1 ⊗ ηn2)Δn1+n2(ε
n1+n2
r,k )

= ν(ηn1 ⊗ ηn2)
n1+n2∑

p=0

r∑
s=0

(−1)(r−s)(n1+n2+1−p+r−s)εn1+n2−p
s,k ⊗A εp

r−s,k+n1+n2−p−2s

=
r∑

s=0

(−1)(r−s)(n1+1+r−s)ηn1(ε
n1
s,k) · ηn2(ε

n2
r−s,k+n1−2s).

When s 
= r1 or i 
= k, we have ηn1(ε
n1
s,k) = 0. And when r− s 
= r2 or j 
= k + n1 − 2s, we have

ηn2(ε
n2
r−s,k+n1−2s) = 0. Thus, only in the case of s = r1, i = k, r−s = r2 and j = i+n1−2r1 we

have ηn1 � ηn2(ε
n1+n2
r,k ) = (−1)r2(n1+1+r2))b1b2. By the isomorphism of Lemma 3.1, it is easy

to see that in the case of j = i + n1 − 2r1, we have ηn1 � ηn2 = (−1)r2(n1+1+r2)(b1b2, g
n1+n2
r1+r2,i)

and otherwise is zero.

Theorem 4.1 Let A = KQ/I be the K-algebra defined as in the introduction.

(1)
m∑

i=1

(ei, ei) is the identity of HH∗(A), and for any ηj = (βjαj , ej) ∈ HH0(A), ξ ∈ HH∗(A),

ξ /∈ K, we have ηj � ξ = ξ � ηj = 0.
(2) Let ηn1 and ηn2 be the unique basis elements of HHn1(A) and HHn2(A) with n1n2 > 0,

respectively. We have

ηn1 � ηn2 =

{
ηn1+n2 , if n1n2 = 2k and n1 + n2 ≤ 2m − 2,

0, if n1n2 = 2k + 1 or n1 + n2 > 2m − 2.

Proof It follows from Lemma 4.3 directly.

Now we can give a description of the multiplication structure of the Hochschild cohomology
ring of A by giving an explicit presentation by generators and relations. Let x1,x2, · · · ,xm−1,

y, z be the indeterminates of degree 0, 0, · · · , 0, 1, 2 respectively. Let Λ = K[x1,x2, · · · ,xm−1,

y, z]/J , where J is the two-sided ideal of the polynomial algebra K[x1,x2, · · · ,xm−1,y, z]
generated by

xixj = 0, xiy = 0, xiz = 0, 1 ≤ i, j ≤ m − 1, y2 = 0, zm = 0, yzm−1 = 0.

Theorem 4.2 Let A = KQ/I be the K-algebra defined as in the introduction. Then
HH∗(A) ∼= Λ.
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Proof We omit the symbol of the cup product � of two elements of HH∗(A) for simplicity.

Clearly
m∑

i=1

(ei, ei) is the identity of HH∗(A). Denote

x1 = (β1α1, e1), x2 = (β2α2, e2), · · · , xm−1 = (βm−1αm−1, em−1),

y =
m∑

i=2

(αi−1, g
1
1,i), z =

m∑
i=2

(−1)i(ei, g
2
1,i).

By Theorem 4.1, we have

m∑
i=2t+1

(ei, g
4t
2t,i) = z2t, t 
= 0,

m∑
i=2t+2

(αi−1, g
4t+1
2t+1,i) = z2ty,

m∑
i=2t+2

(−1)i(ei, g
4t+2
2t+1,i) = z2t+1,

m∑
i=2t+3

(−1)i(αi−1, g
4t+3
2t+2,i) = z2t+1y.

Hence HH∗(A) can be generated by x1, x2, · · · , xm−1, y, z over K. Also, by Theorem 4.1, it is
easy to find that any two elements in HH∗(A) are commutative and the following relations hold
true:

xixj = 0, xiy = 0, xiz = 0, 1 ≤ i, j ≤ m − 1, y2 = 0, zm = 0, yzm−1 = 0.

Then we construct an epimorphic algebra homomorphism

ϕ : K[x1,x2, · · · ,xm−1,y, z] → HH∗(A)

sending x1,x2, · · · ,xm−1,y, z to x1, x2, · · · , xm−1, y, z, respectively. Clearly, J ⊆ Kerϕ by the
relations above. Noticing that Λ = K[x1,x2, · · · ,xm−1,y, z]/J =

⊕
i

Λi as a graded algebra

satisfies that dimKΛ0 = m and dimKΛj = 1 for j ≥ 1, we can immediately obtain that
HH∗(A) ∼= Λ by comparing the dimensions of graded algebras HH∗(A) and Λ.

Remark 4.1 Since the Hochschild cohomology of algebras is Morita-invariant, the above
theorem describes the Hochschild cohomology rings of both the Temperley-Lieb algebras and
the representation-finite q-Schur algebras Sq(n, r) for n � r.
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