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Abstract In this article, we discuss a numerical method for the computation of the
minimal and maximal solutions of a steady scalar Eikonal equation. This method relies
on a penalty treatment of the nonlinearity, a biharmonic regularization of the resulting
variational problem, and the time discretization by operator-splitting of an initial value
problem associated with the Euler-Lagrange equations of the regularized variational prob-
lem. A low-order finite element discretization is advocated since it is well-suited to the low
regularity of the solutions. Numerical experiments show that the method sketched above
can capture efficiently the extremal solutions of various two-dimensional test problems and
that it has also the ability of handling easily domains with curved boundaries.

Keywords Eikonal equation, Minimal and maximal solutions, Regularization meth-
ods, Penalization of equality constraints, Dynamical flow, Operator
splitting, Finite element methods

2000 MR Subject Classification 65N30, 65K10, 65M60, 49M20, 35F30

1 Introduction

Various mathematical models in science and engineering lead to the prototypical Eikonal
equation |∇u| = 1; this is the case particularly in optics, wave propagation, material science,
differential geometry (geodesics) (see [32]), geophysics (see [37]), and image processing. The
analysis of such nonlinear models can be found in [14] (see also the references therein). Actually,
the Eikonal equation is often associated with the Hamilton-Jacobi equation for wave propagation
(as shown in [40]).

In this article, we are interested in the computation of the approximate solutions of the
Dirichlet problem for a steady Eikonal equation. Namely, we want to find u : Ω ⊂ R

2 → R

satisfying {
|∇u| = 1 in Ω,
u = g on ∂Ω,

(1.1)
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1Haute Ecole de Gestion de Genève, HES-SO//University of Applied Sciences, Western Switzerland,
Route de Drize 7, 1227 Carouge, Switzerland. E-mail: alexandre.caboussat@hesge.ch

2Department of Mathematics, University of Houston, 4800 Calhoun Rd, Houston, Texas 77204-3008,
USA. E-mail: roland@math.uh.edu

∗This work was supported by the National Science Foundation (No. DMS-0913982).



660 A. Caboussat and R. Glowinski

where g is a given data, and |·| is the canonical Euclidean norm. Problem (1.1) is a Dirichlet
problem for the scalar Eikonal equation. Vector Eikonal equations, which are natural general-
izations of (1.1), have been discussed in [15–17] for origami modeling. All these problems are
examples of implicitly nonlinear equations (see [8, 22]).

Numerical methods for the solution of this type of implicitly nonlinear equations can be
found in, e.g., [5, 12–13, 27]. Related methods can be used for the solutions of the Hamilton-
Jacobi equations and of some obstacle problems. Among these numerical methods, let us
mention the fast marching methods (see [40]), the fast sweeping methods (see [42]), and the level-
set-based methods (see [2]). Among the computational issues which have been and are currently
investigated, let us mention the computational cost, the influence of the space discretization
mesh, and the design of fast algorithms (see related references [30–31, 37, 41]). Similar problems,
involving the infinity-Laplacian operator, arise in sand mechanics (see, e.g., [1, 3, 35–36]).

Due to the low regularity and the possible multiplicity of the solutions of the scalar Eikonal
equation, these solutions have to be defined in a generalized sense, the most commonly accepted
one being the notion of viscosity solutions (see, e.g., [11]). Other approaches are available as
shown in, e.g., [29].

Most methods for the numerical solution of the scalar Eikonal equation view it as a non-
linear hyperbolic problem. In this article, we take a different point of view, and attempt to
solve (1.1) by using a calculus of variations approach relying on elliptic solvers and on the
time-discretization by operator-splitting of an initial value problem associated with an Euler-
Lagrange equation. Our approach, which is also well-suited to the solution of some Eikonal
systems (see [12–13]), focuses on the computation of minimal and maximal solutions of (1.1),
using a methodology combining: (i) A quadratic penalization of the Ginzburg-Landau type
to relax the equation |∇u| = 1, considered as a nonlinear equality constraint. (ii) A linear
or nonlinear biharmonic regularization (see [3, 21, 28]). (iii) The use of an operator-splitting
scheme à la Marchuk-Yanenko to time-discretize an initial value problem associated with the
Euler-Lagrange equation of the above regularized problem. (iv) A low-order C0-conforming
finite element approximation, well-suited to the Lipschitz continuous regularity of the solutions
and to domains with a curved boundary.

The operator-splitting approach allows the decoupling of the differential operators from the
Ginzburg-Landau nonlinearity. Actually, these techniques have been successfully applied by
the authors to other situations, such as Monge-Ampère and Pucci equations (see [6, 9, 18–19,
26]), visco-plastic or particulate flow (see [20, 24]) and other problems involving non-smooth
operators (see [3–4, 33]).

The article is organized as follows: In Section 2, we formulate particular cases of (1.1),
leading to minimal and maximal solutions. Equivalent and regularized formulations are given
in Section 3. Our computational approach is described in Section 4, while in Section 5 we
briefly describe another regularization approach. The finite element implementation of our
methodology is discussed in Section 6 with the corresponding numerical results being presented
in Section 7. Finally, among other comments, a viscosity interpretation of our methodology
will be given in Section 8.
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2 Problem Formulation

Let Ω be a bounded domain of R
2; we suppose that the boundary Γ := ∂Ω is at least

Lipschitz continuous in the sense of Nečas [34]. The steady scalar Eikonal equation we want to
solve reads as follows: Find u : Ω → R verifying{|∇u| = 1 in Ω,

u = g on Γ.
(2.1)

We observe that, up to the addition of a constant, we can always suppose that g ≥ 0. Since
problem (2.1) has infinitely many solutions, in general, it makes sense to enforce uniqueness by
imposing additional conditions. In this article, we will impose on the solution to be maximal
in the sense of L1(Ω) (actually, we can also impose on the solution to be minimal).

Remark 2.1 If the equation |∇u| = 1 is replaced by the more general situation |∇u| =
f(≥ 0), the numerical approach presented in this work also applies with straightforward modi-
fications.

In order to obtain the maximal solution, we actually require u to maximize the linear
functional

v →
∫

Ω

vdx (2.2)

over

Eg = {v ∈ H1(Ω), v = g on Γ, |∇v| = 1 in Ω}, (2.3)

instead of maximizing the L1-norm over Eg. This change of the cost function is easy to justify:
Indeed suppose that u maximizes the functional (2.2) over Eg. Since g ≥ 0 and |∇ |u|| = |∇u|,
we also have |u| ∈ Eg. By the definition of u, we have∫

Ω

|u|dx ≤
∫

Ω

udx.

On the other hand, the relation u ≤ |u| implies that∫
Ω

udx ≤
∫

Ω

|u|dx.

It follows that ∫
Ω

[|u| − u] dx = 0.

The non-negativity of the integrand |u|−u ≥ 0 implies that u = |u|, that is, the non-negativity
of u. Actually, we can easily prove that the above function is also the upper hull of all the
functions in Eg, that is, the (necessarily unique (see [38])) function u of Eg verifying

u(x) ≥ v(x), ∀v ∈ Eg, ∀x ∈ Ω. (2.4)

Remark 2.2 In order to find the smallest solution of (2.1) in the sense of (2.4), that is,

u(x) ≤ v(x), ∀v ∈ Eg, ∀x ∈ Ω, (2.5)



662 A. Caboussat and R. Glowinski

we would minimize over Eg the functional

v →
∫

Ω

vdx.

Remark 2.3 If g = 0, the maximizer of (2.2) is nothing but the distance function to the
boundary of the domain x → δ(x, Γ). For example, in one dimension of space, if Ω = (0, 1),
then u(x) = min(x, 1 − x); in two dimensions of space, if Ω = (0, 1) × (0, 1), then

u(x) = u(x1, x2) = min(x1, x2, 1 − x1, 1 − x2), ∀x = {x1, x2} ∈ Ω.

If Ω is the disk of radius R centered at 0, then u(x) = u(x1, x2) = R −
√

x2
1 + x2

2.

In the remainder of this article, we describe a numerical method for the approximate com-
putation of the maximal and minimal solutions in the general case.

3 Modeling, Regularization and Penalization

Let C > 0 be a given positive constant. We first note that there is an equivalence between

u = arg max
v∈Eg

∫
Ω

vdx (3.1)

and

u = arg min
v∈Eg

[1
2

∫
Ω

|∇v|2 dx − C

∫
Ω

vdx
]
. (3.2)

The main difficulty with (3.2) is the nonlinear constraint |∇v| = 1 (which is equivalent to
|∇v|2 = 1). To handle this constraint we are going to use a penalization approach preserving
the differentiability of the cost functional. Let ε > 0 be a small parameter; we thus approximate
(3.2) by

uε = arg min
v∈W 1,4

g

[1
2

∫
Ω

|∇v|2 dx − C

∫
Ω

vdx +
1
4ε

∫
Ω

(|∇v|2 − 1)2dx
]
, (3.3)

where

W 1,4
g =

{
v ∈ W 1,4(Ω) , v = g on Γ

}
. (3.4)

Based on past experience with related problems (see, e.g., [6, 12–13]), we introduce a biharmonic
regularization. We thus consider a positive constant η > 0 and a regularized variant of (3.3)
that reads:

uη
ε = arg min

v∈W 1,4
g ∩H2(Ω)

[η

2

∫
Ω

∣∣∇2v
∣∣2 dx +

1
2

∫
Ω

|∇v|2 dx

− C

∫
Ω

vdx +
1
4ε

∫
Ω

(|∇v|2 − 1)2dx
]
. (3.5)

The introduction of the regularization term η
2

∫
Ω

∣∣∇2v
∣∣2 dx corresponds to adding the bihar-

monic term −η∇2u to the first-order optimality conditions, together with the natural boundary
condition ∇2u = 0 on Γ.
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Remark 3.1 (A Nonlinear Biharmonic Regularization) Another regularized variant of
(3.3) that is inspired from image-processing techniques (see [10]) reads as follows:

uη
ε = arg min

v∈W 1,4
g ∩W 2,1(Ω)

[
η

∫
Ω

√
1 + |∇2v|2dx +

1
2

∫
Ω

|∇v|2 dx

− C

∫
Ω

vdx +
1
4ε

∫
Ω

(|∇v|2 − 1)2dx
]
. (3.6)

In the following sections, we are going to discuss mainly the iterative solution of problem
(3.5). Due to the interesting features of problem (3.6), we will discuss it briefly aside in Section 5.

Remark 3.2 In order to capture the minimal solution instead of the maximal solution, it
suffices to change C in −C in (3.2) (and in (3.5)–(3.6)), C still being a strictly positive constant.

Remark 3.3 For the sake of rigor, we should replace in (3.5), g by a regularized version
gη ∈ H

3
2 (Γ), such that lim

η→0
gη = g. Actually, the numerical results reported in Section 7 show

that using Lipschitz continuous functions g without the H
3
2 (Γ)-regularity has no computational

incidence in practice.

4 On the Solution of the Regularized Variational Problem

4.1 Mixed formulation and optimality conditions

After dropping the indices ε and η, (3.5) reads as follows:

u = arg min
v∈W 1,4

g ∩H2(Ω)

[η

2

∫
Ω

∣∣∇2v
∣∣2 dx +

1
2

∫
Ω

|∇v|2 dx

− C

∫
Ω

vdx +
1
4ε

∫
Ω

(|∇v|2 − 1)2dx
]
. (4.1)

In order to solve (4.1), let us define the function u1 as the unique solution of the following linear
variational problem: Find u1 ∈ H1

g :=
{
v ∈ H1(Ω) , v = g on Γ

}
satisfying∫

Ω

∇u1 · ∇vdx =
∫

Ω

vdx, ∀v ∈ H1
0 (Ω). (4.2)

The function u1 is the solution of the Poisson-Dirichlet problem: −∇2u1 = 1 in Ω, with
boundary conditions u = g on Γ. If Γ is smooth and/or Ω convex, the function u1 has enough
regularity to belong to W 1,4

g (Ω). Since W 1,4
g (Ω) ⊂ H1

g (Ω), it follows from (4.2) that∫
Ω

∇u1 · ∇(v − u1)dx =
∫

Ω

(v − u1)dx, ∀v ∈ W 1,4
g (Ω). (4.3)

Relationship (4.3) implies that
∫
Ω

vdx =
∫
Ω

u1dx −
∫
Ω
|∇u1|2 dx +

∫
Ω
∇u1 · ∇vdx for all v ∈

W 1,4
g (Ω), which implies in turn that (4.1) is equivalent to

u = arg min
v∈W 1,4

g ∩H2(Ω)

[η

2

∫
Ω

∣∣∇2v
∣∣2 dx +

1
2

∫
Ω

|∇v|2 dx

− C

∫
Ω

∇u1 · ∇vdx +
1
4ε

∫
Ω

(|∇v|2 − 1)2dx
]
. (4.4)
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The rationale behind the introduction of u1 and the alternative formulation (4.4) is to have ∇u,
instead of u, as the master unknown, the new problem having better decomposition properties.
We denote by p the vector-valued function ∇u, and define the vector space Q by

Q = {q ∈ L4(Ω)2 , ∇ · q ∈ L2(Ω)}. (4.5)

Setting q := ∇v, there is equivalence between (4.4) and the following non-convex nonlinear
variational problem (of the mixed type):

p = arg min
q∈Q

[η

2

∫
Ω

|∇ · q|2 dx +
1
2

∫
Ω

|q|2 dx

− C

∫
Ω

∇u1 · qdx +
1
4ε

∫
Ω

(|q|2 − 1)2dx + I∇(q)
]
, (4.6)

where I∇(·) is the indicator functional of the space ∇W 1,4
g (Ω), that is,

I∇(q) =

{
0, if q ∈ ∇W 1,4

g (Ω),

+∞, if q ∈ Q\∇W 1,4
g (Ω).

(4.7)

We observe that in (4.6), the quartic term is of the Ginzburg-Landau type. In the variational
form, the Euler-Lagrange equation associated with (4.6) reads as follows: Find p ∈ Q satisfying

η

∫
Ω

(∇ · p)(∇ · q)dx +
∫

Ω

p · qdx − C

∫
Ω

∇u1 · qdx

+
1
ε

∫
Ω

(|p|2 − 1)p · qdx + 〈∂I∇(p),q〉 = 0, ∀q ∈ Q. (4.8)

Here ∂I∇(p) denotes the subgradient of the functional I∇(·) evaluated at p (see [38]).

Remark 4.1 Instead of defining u1 as the solution of −∇2u1 = 1 in Ω, together with u1 = g

on Γ, we could have defined it as the solution of −∇2u1 = 1 in Ω, together with u1 = 0 on Γ.

4.2 Initial-value problem and operator-splitting

We associate with (4.8) the following initial-value problem (flow in the dynamical system
terminology): Find p(t) ∈ Q for a.e. t ∈ (0, +∞) satisfying⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∫
Ω

∂p
∂t

· qdx + η

∫
Ω

(∇ · p)(∇ · q)dx +
∫

Ω

p · qdx − C

∫
Ω

∇u1 · qdx

+
1
ε

∫
Ω

(|p|2 − 1)p · qdx + 〈∂I∇(p),q〉 = 0, ∀q ∈ Q,

p(0) = p0.

(4.9)

Our aim is to find a stationary solution to the initial-value problem (IVP for short) (4.9). In
order to solve this IVP, we advocate an operator-splitting scheme à la Marchuk-Yanenko (see,
e.g., [24, Chapter 6]) for its robustness and simplicity. Note that other schemes are available
(like the Strang symmetrized one). Let us denote by τ > 0 a time-discretization step and set
tn = nτ, n = 0, 1, 2, · · · . Let pn be an approximation of p(tn). In order to solve (4.9), we
advocate the following operator-splitting scheme: Initialize with

p0 = p0. (4.10)
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For n ≥ 0, pn being known, we compute pn+ 1
2 and pn+1 successively via the solution of:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

pn+ 1
2 ∈ Q,∫

Ω

pn+ 1
2 − pn

τ
· qdx +

1
ε

∫
Ω

(∣∣∣pn+ 1
2

∣∣∣2 − 1
)

pn+ 1
2 · qdx = 0,

∀q ∈ Q,

(4.11)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

pn+1 ∈ Q,∫
Ω

pn+1 − pn+ 1
2

τ
· qdx + η

∫
Ω

(∇ · pn+1)(∇ · q)dx +
∫

Ω

pn+1 · qdx

−C

∫
Ω

∇u1 · qdx +
〈
∂I∇(pn+1),q

〉
= 0, ∀q ∈ Q.

(4.12)

Actually, problem (4.11) can be solved point-wise, corresponding thus to an infinite family of
low-dimensional optimization problems. On the other hand, (4.12) is a classical linear varia-
tional problem written in a mixed form. We are going to discuss in the following sections the
solution of these two problems. The initialization of algorithm (4.10)–(4.12) is the topic of the
next remark.

Remark 4.2 (Initialization of the IVP) Choosing sensibly p0 in (4.10) is an important
issue in order to reduce the number of time steps necessary to achieve convergence. We thus
advocate the following approach: Solve −∇2u0 = C/ |C| in Ω, with u0 = g on Γ. Then, we
define p0 by

p0(x) =

⎧⎨⎩
∇u0(x)
|∇u0(x)| , if ∇u0(x) �= 0,

0, otherwise.

4.3 Solution of the local optimization problems

Problem (4.11) does not involve any derivatives. Thus it can be solved locally for almost
every point x ∈ Ω. Rewriting (4.11) locally, we see that pn+ 1

2 (x) verifies

pn+ 1
2 (x)

[(
1 − τ

ε

)
+

τ

ε
|pn+ 1

2 (x)|2
]

= pn(x), a.e. x on Ω. (4.13)

Taking the canonical Euclidean norm of both sides of the vector-valued equation (4.13), it
follows that |pn+ 1

2 (x)| is a solution of the real-valued cubic equation:
τ

ε
z3 +

(
1 − τ

ε

)
z = |pn(x)| . (4.14)

If the condition τ ≤ ε holds, the equation (4.14) has a unique solution, necessarily non-negative.
Once |pn+ 1

2 (x)| is known, we obtain pn+ 1
2 (x) from (4.13) by setting

pn+ 1
2 (x) =

( 1(
1 − τ

ε

)
+

τ

ε
|pn+ 1

2 (x)|2
)
pn(x). (4.15)

To solve the nonlinear equation (4.14), we advocate the Newton-Raphson method starting from
the initial guess z0 = 1; the consecutive iterates are thus, for k ≥ 0,

zk+1 = zk −
τ

ε
(zk)3 +

(
1 − τ

ε

)
zk − |pn(x)|

3
(τ

ε

)
z2 +

(
1 − τ

ε

) . (4.16)
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In practice, after an appropriate finite difference or finite element approximation, we have to
solve at each time step a cubic equation such as (4.14) for each point (resp. triangle) of the
associated finite difference (resp. finite element) grid. Since Ω is bounded in R

2, the number
of such cubic equations is of the order of h−2, where h is a space-discretization step.

4.4 Solution of the linear variational problems

Problem (4.12) is simpler to solve than it looks like. Indeed, setting

∇un+1 := pn+1,

problem (4.12) is equivalent to finding un+1 ∈ H2(Ω) ∩ H1
g (Ω) that satisfy∫

Ω

∇un+1 − pn+ 1
2

τ
· ∇vdx + η

∫
Ω

(∇2un+1)(∇2v)dx

+
∫

Ω

∇un+1 · ∇vdx − C

∫
Ω

vdx = 0, ∀v ∈ H2(Ω) ∩ H1
0 (Ω). (4.17)

Problem (4.17) is nothing but a variational formulation of the following biharmonic problem:{
−(1 + τ)∇2un+1 + ητ∇4un+1 = τC −∇ · pn+ 1

2 in Ω,

un+1 = g on Γ, ∇2un+1 = 0 on Γ.

Such a biharmonic problem is equivalent to the following system of two well-posed second-order
linear elliptic problems:{

(1 + τ)wn+1 − ητ∇2wn+1 = τC −∇ · pn+ 1
2 in Ω,

wn+1 = 0 on Γ,{
−∇2un+1 = wn+1 in Ω,

un+1 = g on Γ.

Anticipating Section 6, boundary-layer considerations suggest taking ητ � h2 with h being a
space-discretization step. Many direct and iterative methods are available for the numerical
solution of the above two elliptic boundary value problems (in fact, of their discrete analogues;
see, e.g., [24] and the references therein). In order to speed up the convergence, we can use the
following strategy to vary ε and τ at each step of the operator-splitting scheme:

(a) As long as ητn > χh2 (with χ � 1), take

{τn+1, εn+1} = ξ{τn, εn} (4.18)

with ξ ∈ (0, 1).
(b) If ητn ≤ χh2, take

{τn+q, εn+q} = {τn, εn}, ∀q ≥ 1. (4.19)

Relationship (4.19) is motivated by the fact that if τn goes to zero too rapidly, the time
integration never reaches t = +∞, and thus the steady state cannot be reached in the most
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stringent cases. Similarly, if ητn << h2, the biharmonic term has no regularization effect
anymore.

The influence of the choice of the constant C is not crucial. An appropriate choice for C

leads to the most appropriate topology of the objective function, and may improve the global
convergence of the algorithm.

5 A Variant with a Nonlinear Biharmonic Regularization

After dropping the indices ε and η, (3.6) reads as follows:

u = arg min
v∈W 1,4

g ∩W 2,1(Ω)

[
η

∫
Ω

√
1 + |∇2v|2dx +

1
2

∫
Ω

|∇v|2 dx

− C

∫
Ω

vdx +
1
4ε

∫
Ω

(|∇v|2 − 1)2dx
]
. (5.1)

If u1 is still defined by (4.2), and if p = ∇u, then (5.1) is equivalent to

p = arg min
p∈Q̃

[
η

∫
Ω

√
1 + |∇ · q|2dx +

1
2

∫
Ω

|q|2 dx

− C

∫
Ω

∇u1 · qdx +
1
4ε

∫
Ω

(|q|2 − 1)2dx + I∇(q)
]
, (5.2)

where

Q̃ =
{
q ∈ L4(Ω)2 , ∇ · q ∈ L1(Ω)

}
.

In the variational form, the Euler-Lagrange equation associated with (5.2) reads as follows:
Find p ∈ Q̃ satisfying

η

∫
Ω

(∇ · p)(∇ · q)√
1 + |∇ · p|2

dx +
∫

Ω

p · qdx − C

∫
Ω

∇u1 · qdx

+
1
ε

∫
Ω

(|p|2 − 1)p · qdx + 〈∂I∇(p),q〉 = 0, ∀q ∈ Q̃, (5.3)

with ∂I∇(·) the sub-gradient of the functional I∇ at p. As in Section 4, we associate with (5.3)
an initial-value problem similar to (4.9), namely, to find p(t) ∈ Q̃ for a.e. t ∈ (0, +∞) satisfying
p(0) = p0 and∫

Ω

∂p
∂t

· qdx + η

∫
Ω

(∇ · p)(∇ · q)√
1 + |∇ · p|2

dx +
∫

Ω

p · qdx − C

∫
Ω

∇u1 · qdx

+
1
ε

∫
Ω

(|p|2 − 1)p · qdx + 〈∂I∇(p),q〉 = 0, ∀q ∈ Q̃. (5.4)

Following the approach we took in Section 4, we are going to use again an operator-splitting
scheme à la Marchuk-Yanenko to solve the problem (5.4). The initialization and the solution
to the local optimization problems are similar to those in Section 4. The main difference has
to do with the solution of the variational problem (4.12), which now reads: Find pn+1 ∈ Q̃



668 A. Caboussat and R. Glowinski

satisfying ∫
Ω

pn+1 − pn+ 1
2

τ
· qdx + η

∫
Ω

(∇ · pn+1)(∇ · q)√
1 + |∇ · pn+1|2

dx +
∫

Ω

pn+1 · qdx

− C

∫
Ω

∇u1 · qdx +
〈
∂I∇(pn+1),q

〉
= 0, ∀q ∈ Q̃. (5.5)

By setting ∇un+1 := pn+1, there is equivalence between the problem (5.5) and finding un+1 ∈
W 2,1(Ω) ∩ H1

g (Ω) that satisfy∫
Ω

∇un+1 − pn+ 1
2

τ
· ∇vdx + η

∫
Ω

(∇2un+1)(∇2v)√
1 + |∇2un+1|2

dx +
∫

Ω

∇un+1 · ∇vdx

− C

∫
Ω

vdx = 0, ∀v ∈ H2(Ω) ∩ H1
0 (Ω). (5.6)

The problem (5.6) is nothing but the variational formulation of the following nonlinear bihar-
monic problem:⎧⎪⎪⎪⎨⎪⎪⎪⎩

−(1 + τ)∇2un+1 + ητ∇2 ∇2un+1√
1 + |∇2un+1|2

= τC −∇ · pn+ 1
2 in Ω,

un+1 = g on Γ,
∇2un+1 = 0 on Γ,

which is equivalent to the following system of second-order elliptic equations:⎧⎪⎨⎪⎩
(1 + τ)wn+1 − ητ∇2 wn+1√

1 + |wn+1|2
= τC −∇ · pn+ 1

2 in Ω,

wn+1 = 0 on Γ,{
−∇2un+1 = wn+1 in Ω,

un+1 = g on Γ.

The first of these second-order elliptic equations can be formulated in the divergence form,
namely, ⎧⎨⎩(1 + τ)wn+1 − ητ∇ · ∇wn+1

(1 + |wn+1|2) 3
2

= τC −∇ · pn+ 1
2 in Ω,

wn+1 = 0 on Γ.

(5.7)

From the small size of the coefficient ητ , it is tempting to use, in practice, the following simple
linearization: ⎧⎨⎩(1 + τ)wn+1 − ητ∇ · ∇wn+1

(1 + |wn|2) 3
2

= τC −∇ · pn+ 1
2 in Ω,

wn+1 = 0 on Γ.

(5.8)

The elliptic operator in (5.8) is linear, self-adjoint and strictly positive. Using (5.8) avoids
solving the nonlinear problem (5.7) by Newton’s, quasi-Newton, or other methods.

Remark 5.1 If for some reason, w0 is required (as it will be if we use (5.8) instead of
(5.7)), we can take w0 = C.
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6 Finite Element Discretization

6.1 Generalities

Finite element methods are well-suited to the solution of variational problems such as (3.5)
(or (3.6)), particularly those methods relying on continuous piecewise linear approximations on
triangulations of Ω. Indeed, piecewise linear finite element methods rely on spaces of Lipschitz
continuous functions well-suited to the approximation of solutions to the Eikonal equation,
whose regularity is precisely Lipschitz, and whose second derivatives do not have, in general, an
Ls(Ω)-regularity, even for s = 1, implying that higher-order methods will not bring additional
accuracy.

Let us define a space discretization step h > 0, and associate with h a triangulation Th that
satisfies the usual compatibility conditions (see, e.g., [25] for a complete definition). Let us
denote by Σh the (finite) set of the vertices of Th, by Nh the number of elements in Σh, and by
Σ0h the subset of those elements in Σh not located on Γ (with N0h := card(Σ0h)). From the
triangulation Th, we define the following finite element spaces:

Vh =
{
v ∈ C0

(
Ω

)
, v|K ∈ P1, ∀K ∈ Th

}
,

Vgh = {v ∈ Vh, v(P ) = g(P ), ∀P ∈ Γ ∩ Σh} ,

V0h = {v ∈ Vh, v = 0 on Γ} ,

Qh =
{
q ∈ L∞(Ω)2, q|K ∈ R

2, ∀K ∈ Th

}
,

where P1 is the space of the two-variable polynomials of degree ≤ 1. We clearly have

∇Vh ⊂ Qh. (6.1)

With each point Pi ∈ Σh, we associate the piecewise linear basis function ϕi ∈ Vh, i =
1, · · · , Nh, uniquely defined by ϕi(Pi) = 1, ϕi(Pj) = 0, j = 1, · · · , Nh, j �= i. Next, we equip
Vh, and its sub-spaces V0h and Vgh with the following discrete scalar product:

(v, w)0h =
1
3

Nh∑
k=1

Akv(Pk)w(Pk), ∀v, w ∈ Vh,

and the corresponding norm ||v||0h :=
√

(v, v)0h, for all v ∈ Vh; above, Ak denotes the area of
the polygonal domain which is the union of those triangles of Th which have Pk as a common
vertex. In a similar fashion, we equip the space Qh with the scalar product and the norm
respectively defined as follows:

((p,q))0h =
∑

K∈Th

|K| p|K · q|K

and |||q|||0h =
√

((q,q))0h (with |K| = area of K).

6.2 Approximation of the regularized variational problem

After dropping the indices ε and η, we approximate the problem (3.5) by

uh = arg min
v∈Vgh

[η

2
(θ, θ)0h +

1
2

∫
Ω

|∇v|2 dx

− C

∫
Ω

vdx +
1
4ε

∫
Ω

(|∇v|2 − 1)2dx
]
, (6.2)
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where θ = θ(v) ∈ V0h is defined from v via the solution of the following finite-dimensional linear
variational problem:

θ ∈ V0h, (θ, ϕ)0h =
∫

Ω

∇v · ∇ϕdx, ∀ϕ ∈ V0h. (6.3)

The optimality conditions associated with (6.2)–(6.3) read as follows: Find {uh, wh} ∈ Vgh×V0h

such that⎧⎪⎪⎪⎨⎪⎪⎪⎩
η(wh, v)0h +

∫
Ω

∇wh · ∇vdx +
1
ε

∫
Ω

(|∇uh|2 − 1)∇uh · ∇vdx = C

∫
Ω

vdx,

∀v ∈ V0h,

(wh, v)0h =
∫

Ω

∇uh · ∇vdx, ∀v ∈ V0h.

(6.4)

The main difficulty with problem (6.4) is its cubic nonlinearity. In order to decouple this
nonlinearity from the differential operators, we observe that (6.4) is equivalent to the following
system:

∇uh = ph, (6.5)

ph = arg min
q∈Qh

[η

2
(θ, θ)0h +

1
2

∫
Ω

|q|2 dx

− C

∫
Ω

∇u1 · qdx +
1
4ε

∫
Ω

(|q|2 − 1)2dx + I∇(q)
]
, (6.6)

where θ = θ(q) is obtained from q as the unique solution of the discrete linear variational
problem:

θ ∈ V0h, (θ, v)0h =
∫

Ω

q · ∇vdx, ∀v ∈ V0h. (6.7)

In (6.6), the function u1 is the unique solution of the discrete variational problem

u1 ∈ Vgh,

∫
Ω

∇u1 · ∇vdx =
∫

Ω

vdx, ∀v ∈ V0h, (6.8)

and the functional I∇(·) (an indicator functional) is defined by

I∇(q) =

{
0, if q ∈ ∇Vgh,

+∞, if q ∈ Qh\∇Vgh.
(6.9)

The optimality conditions associated with this extended system (6.6)–(6.7) read as follows:
Find {p, w, θ} ∈ Qh × V0h × V0h such that:

(w, v)0h =
∫

Ω

p · ∇vdx, (6.10)

η(w, θ)0h +
∫

Ω

p · qdx − C

∫
Ω

∇u1 · qdx

+ < ∂I∇(p),q > +
1
ε

∫
Ω

(|p|2 − 1)p · qdx = 0, (6.11)

(θ, v)0h =
∫

Ω

q · ∇vdx (6.12)

for all {q, v} ∈ Qh × V0h.
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6.3 Initial-value problem and operator-splitting

As in Subsection 4.2, we associate with (6.10)–(6.12) an initial-value problem that corre-
sponds to a finite-dimensional flow in the dynamical system sense. The variational formulation
of this initial-value problem reads as follows: Find {p(t), w(t)} ∈ Qh × V0h, for a.e. t ∈ (0,∞),
satisfying ∫

Ω

∂p(t)
∂t

· qdx + η(w, θ)0h +
∫

Ω

p · qdx − C

∫
Ω

∇u1 · qdx

+ 〈∂I∇(p),q〉 +
1
ε

∫
Ω

(|p|2 − 1)p · qdx = 0 (6.13)

for all q ∈ Qh, together with θ ∈ V0h,

(θ, v)0h =
∫

Ω

q · ∇vdx, ∀v ∈ V0h, (6.14)

(w(t), v)0h =
∫

Ω

p(t) · ∇vdx, ∀v ∈ V0h, (6.15)

and the initial condition p(0) = p0 given in Qh. For the choice of p0, we suggest to compute first
the solution of the discrete Poisson problem: Find u0 ∈ Vgh such that

∫
Ω
∇u0 ·∇vdx = C

∫
Ω

vdx
for all v ∈ V0h and then set

∀K ∈ Th, p0|K =

{ ∇u0|K
|∇u0|K | , if ∇u0|K �= 0,

0, if ∇u0|K = 0.

Let τ(> 0) be the time-discretization step. To time-discretize the initial-value problem
(6.13)–(6.14), we advocate the following Marchuk-Yanenko-type scheme: Starting with p0 = p0,
we compute pn+1 from pn, for n ≥ 0, via the following time-splitting scheme:

1. Solve the discrete nonlinear problem: Find pn+ 1
2 such that∫

Ω

pn+ 1
2 − pn

τ
· qdx +

1
ε

∫
Ω

(|pn+ 1
2 |2 − 1)pn+ 1

2 · qdx = 0 (6.16)

for all q ∈ Qh.
2. Solve the discrete variational problem: Find {pn+1, wn+1} ∈ Qh × V0h such that∫

Ω

pn+1 − pn+ 1
2

τ
· qdx + η(wn+1, θ)0h +

∫
Ω

pn+1 · qdx

−
∫

Ω

∇u1 · qdx + 〈∂I∇(pn+1),q〉 = 0, ∀{q, θ} ∈ Qh × V0h, (6.17)

together with

(wn+1, v)0h =
∫

Ω

pn+1 · ∇vdx, (θ, v)0h =
∫

Ω

q · ∇vdx, ∀v ∈ V0h. (6.18)

Remark 6.1 Let us introduce pn+1 = ∇un+1; there is then equivalence between system
(6.17)–(6.18) and finding

{
un+1, wn+1

}
∈ Vgh × V0h that satisfy

τη

∫
Ω

∇wn+1 · ∇vdx + (1 + τ)(wn+1, v)0h =
∫

Ω

pn+ 1
2 · ∇vdx + τC

∫
Ω

vdx,∫
Ω

∇un+1 · ∇vdx = (wn+1, v)0h

both for all v ∈ V0h.
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6.4 On the solution of the discrete nonlinear problems

The finite-dimensional nonlinear problem (6.16) can be solved triangle-wise; indeed, if we
denote q|K by qK , we can rewrite (6.16) as follows: Find pn+ 1

2 := {pn+ 1
2

K }K∈Th
satisfying

pn+ 1
2

K

[τ

ε
|pn+ 1

2
K |2 +

(
1 − τ

ε

)]
= pn

K , ∀K ∈ Th. (6.19)

Let us assume from now on that ε ≥ τ ; under this assumption, we observe that |pn+ 1
2

K | is the
unique solution of the cubic one-variable equation:

τ

ε
ρ3 +

(
1 − τ

ε

)
ρ − |pn

K | = 0, ∀K ∈ Th. (6.20)

The Newton’s method can be applied to the solution of (6.20). Once the |pn+ 1
2

K | are known, we

obtain pn+ 1
2

K from

pn+ 1
2

K =
pn

K
τ

ε
|pn+ 1

2
K |2 +

(
1 − τ

ε

) , ∀K ∈ Th. (6.21)

6.5 Further comments

The discrete linear variational problem (6.17)–(6.18) is of the mixed type; it consists of two
discrete elliptic problems, each of them being equivalent to a linear system associated with a
matrix which is sparse, symmetric and positive definite. A large variety of solution methods
exists for such systems, while among them are the fast elliptic solvers of FISHPACK if the
mesh is uniform, and the sparse Cholesky solvers, like those available in MATLAB. Clearly,
the approximation methods discussed in Subsections 6.1–6.4 can be easily modified in order
to handle the numerical solution of the nonlinearly regularized problem (5.1) via the operator-
splitting scheme (5.5)–(5.6).

7 Numerical Experiments

In this section, we will present the results of numerical experiments. Most of them are
concerned (not surprisingly) with the particular case where Ω = (0, 1)2, however, test problems
where Ω has a (totally or partially) curved boundary or where Ω is not convex will also be
considered. The finite element triangulations we use are either structured or isotropic à la
Delaunay. All the experiments have been performed on an Intel Xeon computer (2.93 GHz)
with 8 GB memory. The results have been post-processed with Paraview.

7.1 Solution of the Eikonal equation with homogeneous boundary conditions on
the unit square (recovery of the distance function)

Let us consider Ω = (0, 1)2. The first numerical example corresponds to the homogeneous
case g = 0 in (2.1). The maximal solution to (2.1) is clearly the distance function x → δ(x, Γ)
(distance of x to the boundary Γ of Ω); it is given here by

umax(x1, x2) = min{x1, 1 − x1, x2, 1 − x2}, ∀x = (x1, x2) ∈ Ω. (7.1)
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Figure 1 Distance function on the unit square (g = 0). Approximation uh of the

solution of the Eikonal equation (h = 1
20

, after 100 iterations). Left: Maximal solution;

right: Minimal solution. First row: Graph of uh, second row: Contours of uh, third

row: Piecewise constant approximation of |∇uh|.

Since g = 0, the minimal solution of (2.1) is just the opposite of the maximal one, i.e. umin =
−umax. For our computations, we have used the strategy with variable ε and τ as described in
(4.18) and (4.19), with ε0 = 0.1, τ0 = 0.09, ξ = 0.9, and the other parameters being η = 0.1 and
C = 10. The finite element mesh we use is a structured triangulation Th of the “British flag”
type where h denotes the length of the edges adjacent to the right angles. For the solution of
the local nonlinear 2×2 systems, we have used the Newton’s method with the stopping criterion
tolerance equal to 10−4; with this tolerance, the Newton’s algorithm was always converging in
less than 10 iterations, typically.

In Figure 1, we have reported, using linear biharmonic regularization, the graph of the
computed maximal and minimal solutions, their contours, and the “contours” of |∇umax,h| and
|∇umin,h| obtained with h = 1

20 and 100 iterations (in fact, 100-time steps of the operator-
splitting scheme (6.16)–(6.18)). Numerically, we also obtain umin,h = −umax,h. As an indica-
tion, the maximal value for umax,h is 0.500164 for h = 1

20 , 0.500211 for h = 1
30 , and 0.500228 for

h = 1
40 , which are accurate approximations of the maximal value of umax, which is 0.5. These
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results show that the Eikonal equation is satisfied, up to rounding errors and mesh effects
(indeed, 0.999662 ≤ |∇umax,h| = |∇umin,h| ≤ 1.000546, a.e. on Ω if h = 1

20 ).
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Figure 2 Computed distance function on the unit square (g = 0; linear bihar-

monic regularization). Approximation errors ||uh − umin||0h and ||∇(uh − umin)|| (resp.

||uh − umax||0h and ||∇(uh − umax)||) versus h (100 outer iterations). Left: Maximal

solution; right: Minimal solution.
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Figure 3 Computed distance function on the unit square (g = 0; nonlinear bihar-

monic regularization). Approximation errors ||uh − umin||0h and ||∇(uh − umin)|| (resp.

||uh − umax||0h and ||∇(uh − umax)||) versus h (100 outer iterations). Left: Maximal

solution; right: Minimal solution.

Convergence results are visualized in Figure 2; they show the O(h
1
2 ) approximation error

for both the L2 and H1-norms, whenever u = umax or u = umin. The low regularity of the
solution (they belong to W 1,∞(Ω) ∩ Hs(Ω) for all s < 3

2 ) explains why we do not obtain the
usual O(h2) and O(h) approximation errors.

If we use the nonlinear biharmonic regularization discussed in Section 5, we obtain numerical
results very close to those obtained with the linear regularization from Sections 3–4. The related
convergence results are shown in Figure 3: they are close to those obtained with the linear
regularization and thus the difference does not warrant further comparisons.

Remark 7.1 The various numerical experiments we have performed in this article show
that if they can be employed (which is definitely the case with square domains), “British flag”-
type meshes behave quite well compared with other types of triangulations. This is in strong
contrast with what we observed when solving, also via a nonlinear biharmonic approach, the
elliptic Monge-Ampère equation detD2u = f (with f > 0, D2u being the Hessian of u); indeed
for this fully nonlinear elliptic equation, the worst numerical results were obtained with “British
flag” triangulations (see [6] for details).

There is nothing mysterious about these different behaviors: Indeed, for the Eikonal equation
discussed here, the biharmonic terms ∇4u and ∇2 ∇2u√

1+|∇2u|2
have been introduced for smoothing
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purposes, being multiplied by a small coefficient (of the order of h2 for their discrete analogues);
on the other hand, when solving the above Monge-Ampère equation, the discrete second-order
derivatives associated with “British flag” triangulations are very poor approximations of their
continuous counterparts, explaining the bad results they produce.

7.2 Solution of the Eikonal equation with homogeneous boundary conditions on
two-dimensional domains with curved boundary (recovery of the distance func-
tion)

If g = 0, the maximal solution to (2.1) is the distance to the boundary function, whatever the
(convex) domain Ω is (see, e.g., [12]). We consider here the following two-dimensional domains,
namely, the unit disk, an ellipse of axes of length 1 and 2, and the half-disk. The values of the
numerical parameters are the same as in Subsection 7.1, except C that we take equal to 500 here.
In Figure 4 (the top row), we have reported the graph of the computed approximations uh of the
distance function for the three domains above using the linear biharmonic regularization. There
is no doubt that using piecewise linear approximations greatly facilitates the solution of the
Eikonal equation (2.1) on domains with curved boundary (see also [6]). In Figure 4 (the bottom
row), we have visualized |∇uh|: The relation |∇uh| = 1 is accurately verified, the discrepancies
being very localized (along edges and at corners, in particular); this behavior was expected,
but overall the numerical results we obtained show the robustness of our approach. In Figure
5, in the particular case of the unit disk, we have visualized the convergence properties of the
computed approximate solutions obtained by using both the linear and nonlinear biharmonic
regularizations: Both regularizations produce essentially the same results, suggesting O(h

1
2 ) for

both ||uh − u||0h and ||∇(uh − u)||.

Figure 4 Computed distance function on domains Ω with curved boundaries (g = 0,

linear biharmonic regularization). Approximation uh of the solution of the Eikonal

equation (h = 1
20

, after 100 iterations). Top: Graphs of the computed maximal solutions

uh. Bottom: Visualization of |∇uh|.

Actually, for the (upper) half-disk domain, the exact maximal solution is given by

umax(x1, x2) = min
(
1 −

√
x2

1 + x2
2, x2

)
, (7.2)
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− − − −

−
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−

− −

Figure 5 Computed distance function of the unit disk (g = 0, linear and nonlinear

biharmonic regularizations). Approximation errors ||uh − umax||0h and ||∇(uh − umax)||
versus h. Number of iterations: 100.

the ridge being the curvilinear arc whose equation, in polar coordinates, is given by

ρ =
1

1 + sin(θ)
(7.3)

with θ ∈ [0, π]. This function takes a maximal value of 1
2 at the point

(
0, 1

2

)
. Figure 6 (left)

visualizes the order of convergence of the L2-norm of the approximation error, while Figure
6 (right) visualizes the error on the maximum value, that is ||uh|∞ − 0.5|. Both display an
approximation error of order h2, suggesting some kind of super-convergence in this particular
case.
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−
−

− − −

−

−

−

−

−
−

Figure 6 Computed distance function of the half-disk (g = 0). Approximation errors

||uh − umax||0h (left) and ||uh| − 0.5| (right) versus h. Number of iterations: 200.

7.3 Solution of the Eikonal equation with non-homogeneous boundary conditions
on the unit square (I)

The numerical example we consider now concerns the search of the maximal and minimal
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solutions of the Eikonal equation (2.1) when Ω = (0, 1)2 and g is defined by

g(x1, x2) =

{
0 on Γ1 ∪ Γ3 ∪ Γ4,

min(x2, 1 − x2) on Γ2,

where Γ1 = [0, 1] × {0}, Γ2 = {1} × (0, 1), Γ3 = [0, 1] × {1} and Γ4 = {0} × (0, 1). The
corresponding maximal solution is given by

umax(x1, x2) = min(x1, x2, 1 − x2). (7.4)

On the other hand, the closed form of the minimal solution is given by

umin(x1, x2) = max
(
− x1,−x2, x2 − 1,

1
2
−

√
(x1 − 1)2 +

(
x2 −

1
2

)2)
. (7.5)

In order to solve numerically this new test problem, we have taken (i) ε0 = 0.25, τ0 = 0.2,
η = 10−3, C = 10 and ξ = 0.9 if h = 1

40 , and (ii) ε0 = 0.25, τ0 = 0.2, η = 10−3, C = 100 and
ξ = 0.9 if h = 1

120 . The mesh used is a structured mesh where the square cells are split into two
triangles according to the first diagonal. When calculating the minimal solutions, parameters
are identical except that C = −100. Figures 7–8 visualize the maximal and minimal solutions
respectively. For instance, the maximal solution reaches a maximal value of 0.503278 instead
of the theoretical value of 0.5

(
when h = 1

50

)
.

Figure 7 Non-homogeneous boundary conditions on the unit square (I). Approximation

uh of the maximal solution of the Eikonal equation
(
h = 1

150
, after 500 iterations

)
. Top

left: Graph of uh; top right: Graph of u; bottom left: Contour of |uh|; bottom right:

Visualization of |∇uh|.

Looking at the gradient |∇uh|, one can observe that it is almost everywhere equal to one.
The exception is in the neighborhood of an edge, due to the mesh effects. Note that for the
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Figure 8 Non-homogeneous boundary conditions on the unit square (I). Approximation

uh of the minimal solution of the Eikonal equation
(
h = 1

150
, after 700 iterations

)
. Top

left: Graph of uh; top right: Graph of u; bottom left: Contour of |uh|; bottom right:

Visualization of |∇uh|.

Figure 9 Non-homogeneous boundary conditions on the unit square (I) (linear bihar-

monic regularization). Approximation uh of the solution of the Eikonal equation. Left:

Maximal solution, cut along Ox1 at x2 = 1
2
; middle: Minimal solution, cut along Ox1

at x2 = 1
2
; right: Minimal solution, cut along Ox2 at x1 = 1

4

(
h = 1

150
–black– exact

solution –red–, after 500 iterations
)
.

maximal solution for instance, the approximation error due to the mesh is only present when
mesh edges are perpendicular to the solution’s ridges.

Figure 9 shows cuts of the graph of the maximal and minimal solutions for the approxima-
tion solution and the exact solution (interpolated on the same mesh). The cut of the maximal
solution (left) shows that as expected, the discrepancy between the exact and computed max-
imal solutions is maximal at

(
1
2 , 1

2

)
, the point where the three lines of discontinuity of ∇umax

encounter.
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Figure 10 Non-homogeneous boundary conditions on the unit square (I) (linear bihar-

monic regularization). Approximation errors ||uh − umin||0h (resp. ||uh − umax||0h) ver-

sus h for various types of discretizations (“British-flag” mesh and unstructured mesh).

Left: Maximal solution; right: Minimal solution.

The cuts of the minimal solution show that along the Ox1 direction, the approximation is
close to the exact solution with a little diffusion effect. Along the Ox2 direction, one sees that
the approximation is more diffusive.

Figure 10 visualizes the convergence properties of the computed approximate solutions ob-
tained on various types of discretizations of the unit square using the linear biharmonic regu-
larization. We consider the “British flag” discretization, and a Delaunay discretization (“un-
structured mesh”). All types of meshes produce essentially the same results, suggesting O(h

1
2 )

for ||uh − u||0h. When the edges of the mesh follows the lines of discontinuity of the gradient of
the solution, the convergence order is actually closer from O(h), suggesting some kind of super
convergence, a property that was expected.

7.4 Solution of the Eikonal equation with non-homogeneous boundary conditions
on the unit square (II)

This numerical example corresponds to the following boundary conditions:

g(x1, x2) =

{
min(x1, 1 − x1) on Γ1 ∪ Γ3,

min(x2, 1 − x2) on Γ2 ∪ Γ4,

where Γ1 = [0, 1]×{0}, Γ2 = {1}× (0, 1), Γ3 = [0, 1]×{1} and Γ4 = {0}× (0, 1). The maximal
and minimal solutions are respectively given by:

umax(x1, x2) = min
{√

x2
1 + x2

2 ,
√

(x1 − 1)2 + x2
2 ,√

x2
1 + (x2 − 1)2 ,

√
(x1 − 1)2 + (x2 − 1)2

}
(7.6)
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and

umin(x1, x2) = max
{1

2
−

√
x2

1 +
(
x2 −

1
2

)2

,

1
2
−

√
(x1 − 1)2 +

(
x2 −

1
2

)2

,

1
2
−

√(
x1 −

1
2

)2

+ x2
2 ,

1
2
−

√(
x1 −

1
2

)2

+ (x2 − 1)2
}

. (7.7)

Note that these solutions of the closed form are identified after looking at the numerical results
obtained by our method, showing once again that numerical investigations can be useful in order
to determine exact solutions. They are consistent with the results of Caffarelli and Crandall [7]
who show that, away from the singularities of ∇u, the solutions of the Eikonal equation |∇u| = 1
are piecewise affine or conical. Numerical parameters are the same as those used for the test
case with non-homogeneous boundary conditions (I). Figures 11 and 12 visualize the maximal
and minimal solutions respectively, for two different (coarse and fine) mesh discretizations.
This test case is the most stringent one in terms of convergence behavior. Figure 13 illustrates
cuts of the graph of the minimal or maximal solutions for the approximation solution and the
exact solution (interpolated on the same mesh). These cuts show that the solution is well
approximated, except for mesh effects (for instance, along the diagonal line where the ridge is
perpendicular to the mesh edges).

Studying umax, we observe that the maximal value is reached at (0.5, 0.5) with a value of 1√
2
,

which is close to the values obtained by the numerical approximations. Concerning umin, its
minimal value is zero and is also obtained at (0.5, 0.5); here again the numerical approximation
agrees with the exact solution.

Figure 14 visualizes the convergence properties of the computed approximate solutions ob-
tained for the various types of discretizations of the unit square using the linear biharmonic
regularization. These results suggest a convergence order for the error ||uh − u||0h that is be-
tween O(h

1
2 ) and O(h). Here, the “British flag” mesh allows to track more accurately the

edges of the solution (i.e., the lines of discontinuity of the gradient of the solution) than the
asymmetric mesh that is oriented along one diagonal. The more general, unstructured mesh
actually performs also better than the asymmetric mesh in that regard. A clear mesh effect is
thus observed for the convergence orders.

Remark 7.2 When (2.1) is replaced by⎧⎨⎩
∣∣∣ ∂u

∂x1

∣∣∣ =
∣∣∣ ∂u

∂x2

∣∣∣ = 1 a.e. in Ω,

u = g on Γ,

(7.8)

as in [5, 12] for instance, the minimal and maximal solutions can be described analytically in a
relatively simple fashion:

umax(x1, x2) = min(x1, 1 − x1) + min(x2, 1 − x2)
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Figure 11 Non-homogeneous boundary conditions on the unit square (II); minimal

solution. Approximation uh of the solution of the Eikonal equation (after 100 iterations).

Left: h = 1
40

; right: h = 1
150

. First row: Graph of uh; second row: Contours of the

graph; third row: Piecewise constant approximation ∇uh.

and

umin(x1, x2) =

⎧⎪⎨⎪⎩
|x1 − x2| , if 0 ≤ x1, x2 ≤ 1

2
or

1
2
≤ x1, x2 ≤ 1,

|1 − x1 − x2| , if
1
2
≤ x1 ≤ 1, 0 ≤ x2 ≤ 1

2
or 0 ≤ x1 ≤ 1

2
,

1
2
≤ x2 ≤ 1.

This stresses out clearly some obvious difference between the solution of (2.1) and that of (7.8),
for the same domain and boundary data.
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Figure 12 Non-homogeneous boundary conditions on the unit square (II); maximal

solution. Approximation uh of the solution of the Eikonal equation (after 100 iterations).

Left: h = 1
40

; right: h = 1
150

. First row: Graph of uh; second row: Contours of the

graph; third row: Piecewise constant approximation ∇uh.

7.5 Solution of the Eikonal equation with non-homogeneous boundary conditions
on the unit square (III): Incompatible boundary conditions

This numerical example corresponds to the following boundary conditions:

g(x1, x2) =

{
0 on Γ1 ∪ Γ3 ∪ Γ4,

λ sin(πx2) on Γ2,

where Γ1 = [0, 1] × {0}, Γ2 = {1} × (0, 1), Γ3 = [0, 1] × {1} and Γ4 = {0} × (0, 1), and
λ = 1

2π is a constant less than 1
π . The maximal and minimal solutions are not analytically

known, and the boundary conditions do not satisfy the assumptions in [7]. In particular, the
function g|Γ2

not being piecewise affine or parabolic, it cannot be the trace of a solution of the
Eikonal equation (2.1). Figure 15 visualizes the maximal and minimal solutions, as well as their
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Figure 13 Non-homogeneous boundary conditions on the unit square (II). Approxima-

tion uh of the solution of the Eikonal equation on the structured asymmetric mesh.

Top row: Maximal solution: Cut along Ox1 at y = 1
2

(left); cut along the diagonal

x1 = x2 (right). Bottom row: Minimal solution: Cut along Ox1 at y = 1
2

(left); cut

along the diagonal x1 = x2 (right).
(
h = 1

120
–black– and exact solution –red–, after

100 iterations
)

− − −

−

−

−

−

− −

− − −

−

−

−

−

− −

Figure 14 Non-homogeneous boundary conditions on the unit square (II) (linear bi-

harmonic regularization). Approximation errors ||uh − umin||0h (resp. ||uh − umax||0h)

versus h for various types of discretizations (asymmetric structured mesh, “British-flag”

mesh, and unstructured mesh). Left: Maximal solution; right: Minimal solution.

contours and the corresponding gradients. One can observe that except in a boundary layer in
a neighborhood of Γ2, in particular, around the corners of Ω, the solution is a union of cones
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Figure 15 Non-homogeneous boundary conditions on the unit square (III). Approxi-

mation uh of the solution of the Eikonal equation
(
h = 1

150
, after 500 iterations

)
. First

row: Graph of uh; second row: Contours of |uh|; third row: Visualization of |∇uh|.
Left: Maximal solution; right: Minimal solution.

and affine functions. The imposition of these boundary conditions do not jeopardize the global
convergence properties of the algorithm.

7.6 A CFD application

Finally, let us qualitatively describe the use of the Eikonal equation for an application in
computational fluid dynamics. When modeling turbulence in computational fluid dynamics,
several models involve a mixing length (see [39]). Namely, the local turbulent viscosity is
a function of the distance between the given point and the boundary of the computational
domain. The proposed algorithm can be used to easily compute the distance to the boundary
for any arbitrary domain Ω.

As an illustration, let us consider a two dimensional cut of an aluminum Hall-Héroult cell
(see, e.g., [23] for details). Dimensions are approximately 3 [m] × 0.4 [m]. In applications, a
magneto-hydrodynamic problem has to be solved in such a domain; the computation of velocity
and pressure fields via the solution of the Navier-Stokes equations usually involves turbulence
effects.

Figure 16 visualizes the approximation of the distance obtained with our algorithm for this
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Figure 16 CFD application. Distance to the boundary for industrial application. Top:

Contours of the approximation uh of the solution of the Eikonal equation. Bottom:

Piecewise constant approximation |∇uh|.

particular geometry. The boundary data is g(x1, x2) = 0 for all (x1, x2) ∈ ∂Ω, so that the
solution is the distance to the boundary. The mesh contains approx. 3300 nodes and 6600
elements. Typical CPU time is around 20 [s] per outer iteration and a satisfactory stationary
solution can be obtained after approx. 10 iterations. The gradient norm is equal to one almost
everywhere, except in the corners of the domain (especially the entrant corners where the
domain is not convex).

8 Viscosity Solution Interpretation

Let us briefly describe the viscosity solution interpretation of the approximated solutions
obtained with this penalty-regularization-operator splitting method. Despite the fact that the
proposed algorithm is variational in nature, and relies on elliptic solvers, one can write it as the
solution to some viscosity equation.

Let us suppose that Ω is simply connected, and define v = {v1, v2} by v1 = ∂u
∂x2

and
v2 = − ∂u

∂x1
, and v1 by v1 =

{
∂u1
∂x2

, −∂u1
∂x1

}
. We can easily show that (4.8) can be rewritten as⎧⎨⎩−η∇2v + v + ε−1

2 (|v|2 − 1)v + ∇p = Cv1 in Ω,

∇ · v = 0 in Ω,
(8.1)

together with appropriate boundary conditions. Problem (8.1) is a kind of Ginzburg-Landau
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nonlinear Stokes problem. It emphasizes that u is linked to the solution v of a (kind of) viscous
fluid flow equation.

9 Concluding Remarks and Perspectives

A numerical method for the approximation of the Dirichlet problem for the Eikonal equation
|∇u| = 1 for arbitrary domains in two dimensions has been presented.

We have introduced an iterative algorithm based on the following ingredients: a penalization
of the non-smooth constraint on the gradient, a linear or nonlinear, biharmonic regularization
of the variational problem, and an operator-splitting approach to find a stationary solution of
the corresponding dynamical flow problem.

Low-order finite elements have been used for the discretization, as the low regularity of
the solution does not require any high-order approximations. Numerical results have shown
the ability of our method in approximating solutions of the Eikonal equation for various two-
dimensional domains and various boundary data. In particular, our methodology can handle
quite easily and accurately (convex) domains with curved boundaries. Cases with exact known
solutions have allowed us to highlight the actual convergence properties of our methodology.

Further work will include the extension of this Eikonal equation to the vectorial case, namely,
to find u : R

2 → R
2 satisfying {

∇u ∈ O(2) in Ω,

u = g on ∂Ω,

where O(2) denotes the set of the 2×2 orthogonal matrices. This problem arises in the origami
theory (see for instance [15–17]). The authors believe that the approach proposed in this article
will apply naturally to this vectorial extension.
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