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1 Introduction

This paper deals with a classical problem in optimal design. It consists in mixing two

isotropic materials (such as electric, thermic, · · · ) given by their respective diffusion constants

in order to minimize a certain functional. In other words, given a bounded open set Ω ⊂ R
N ,

two constants 0 < α < β and a distribution f ∈ H−1(Ω), we are interested in the problem





min J(u, ω),

−div ((αχω + βχΩ\ω)∇u) = f in Ω,

u = 0 on ∂Ω,

ω ⊂ Ω measurable.

(1.1)

Here the control variable is the set ω, where we place the material α. In some interesting

situations, one of the materials α or β is better than the other one but also more expensive.

Then, it is usual to add to the above problem a bound on the amount of the best material.

This type of problems has been considered since the pioneering works of Murat and Tartar. In

particular, it is known that there is not a solution in general (see [13–14]). So, it is better to

consider a relaxed formulation. This can be done by using the homogenization theory whose aim

is to describe what materials can be approximated by using microscopic (or better mesoscopic)

mixtures of other ones. Then, to relax (1.1), the idea is to consider the closure of the materials
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of the form αχω + β(1 − χΩ) in the sense of the homogenization. We refer, for example, to [1,

15, 18, 20, 23] for the theoretical study of the homogenization theory and to [1, 3, 16, 21–22]

for its application to optimal design problems.

An interesting question from both the theoretical and numerical points of view is to study

the smoothness properties of the solutions of (1.1) in its relaxed form. This is the problem that

we consider in this paper for two very particular cases of functional J corresponding to

J(u, ω) = −
∫

Ω

(αχω + βχΩ\ω)|∇u|2dx, (1.2)

J(u, ω) =

∫

Ω

(αχω + βχΩ\ω)|∇u|2dx. (1.3)

The case where J is given by (1.2), compliance problem, is considered in Section 2. It was

specially studied for f = 1 and N = 2 (see [9–10, 16]), where the problem applies to maximizing

the torsional rigidity of a rod and to maximizing the flow rate corresponding to two fluids of

different viscosities in a pipe. Most of the results contained in these papers easily generalize

to an arbitrary f . It is simple to check that the solution of (1.1) corresponds to ω = Ω,

i.e., material β is better than the material α. Thus, we will add the restriction |ω| ≤ κ with

0 < κ < |Ω|. Then, the problem has not a solution in general, and it is necessary to consider

a relaxed formulation. It consists in replacing the materials (αχω + βχΩ\ω) by those of the

form
(

θ
α

+ 1−θ
β

)−1
, where θ ∈ L∞(Ω; [0, 1]) represents the proportion of material α which we

are using in the homogenized mixture. As it is proved in [16], although an optimal solution

(θ̂, û) is not necessarily unique, the flux σ̂ =
(

θ
α

+ 1−θ̂
β

)−1∇û is unique. Moreover, there exists

µ̂ ≥ 0 such that θ̂ = 0 if |σ̂| < µ̂, θ̂ = 1 if |σ̂| > µ̂. In this paper, we show that if Ω and f

are smooth enough then σ̂ belongs to H1(Ω)N ∩ L∞(Ω)N and θ̂ is derivable in the orthogonal

directions of σ̂, that is, ∂iθ̂σ̂i − ∂j θ̂σ̂i is in L2(Ω) for 1 ≤ i ≤ j ≤ N . This allows us to improve

some results in [16], where they were established by assuming the existence of solutions to be

smooth enough.

In Section 3, we consider the case where the functional J is given by (1.3). From the

application point of view, it consists in minimizing the potential energy for an electric material

or a membrane. In this case, the best material is β, and then we will add the restriction |ω| ≥ κ

with 0 < κ < |Ω|. The relaxed formulation consists in replacing the materials (αχω + βχΩ\ω)

by those of the form θα + (1 − θ)β, with θ ∈ L∞(Ω; [0, 1]) being the proportion of material α

in the homogenized mixture. For this problem, we show that if (θ̂, û) is an optimal solution,

then û is unique and there exists µ̂ ≥ 0 such that θ̂ = 1 if |∇û| < µ̂, and θ̂ = 0 if |∇û| > µ̂.

Moreover, if Ω and f are smooth enough then û ∈ H2(Ω) ∩ W 1,∞(Ω) and θ̂ is derivable in the

directions of ∇û, that is, ∇θ̂ · ∇û is in L2(Ω).

In Section 4, we show that the results obtained in Section 2 can be applied to another

classical problem in optimal design consisting in minimizing the first eigenvalue of the operator

u ∈ H1
0 (Ω) 7→ −div((αχω + βχΩ\ω)∇u) ∈ H−1(Ω).

In particular, our smoothness results allow us to obtain an example where the unrelaxed problem

has not a solution.
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The results in this paper are a summary of the ones in [4–5], where we can find the corre-

sponding proofs.

2 The Compliance Problem

For a bounded open set Ω, three constants α, β, κ with 0 < α < β, 0 < κ < |Ω|, and a

distribution f̃ ∈ H−1(Ω), we consider the compliance problem





max
{∫

Ω

(αχω + βχΩ\ω)|∇uω|2dx
}

,

ω ⊂ Ω measurable, |ω| ≤ κ,

−div ((αχω + βχΩ\ω)∇uω) = f̃ in Ω, uω ∈ H1
0 (Ω).

(2.1)

This problem has not a solution in general (see [13–14]), and therefore it is more convenient to

work with a relaxed formulation which can be obtained (see [16, 21–23]) by replacing in (2.1)

the materials of the form αχω + βχΩ\ω with ω ⊂ Ω measurable by more general materials of

the form ( θ

α
+

1 − θ

β

)−1

.

Here θ ∈ L∞(Ω; [0, 1]) represents the proportion of material α in the homogenized mixture.

Then, denoting

c =
β − α

α
, f =

1

β
f̃ , (2.2)

we get the following relaxed formulation for (2.1):





max
{∫

Ω

|∇uθ|2
1 + c θ

dx
}

,

θ ∈ L∞(Ω; [0, 1]),

∫

Ω

θ dx ≤ κ,

−div
∇uθ

1 + c θ
= f in Ω, uθ = 0 ∈ H1

0 (Ω),

(2.3)

which by using the classical characterization of the state equation as a minimum problem can

also be written as






min
{∫

Ω

|∇u|2
1 + c θ

dx − 2〈f, u〉
}
,

θ ∈ L∞(Ω; [0, 1]),

∫

Ω

θ dx ≤ κ, u ∈ H1
0 (Ω).

(2.4)

The solution θ of (2.4) is not unique in general, but one can show the following result (see [16]).

Theorem 2.1 There exists a unique function σ̂ ∈ L2(Ω)N such that for every solution θ̂ of

(2.3), we have

σ̂ =
∇u

θ̂

1 + c θ̂
. (2.5)
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This function σ̂ is characterized as the unique solution of

min
σ∈L2(Ω)N

−div σ=f

max
θ∈L∞(Ω;[0,1])∫

Ω
θdx≤κ

∫

Ω

(1 + c θ)|σ|2dx. (2.6)

Moreover, θ̂ is a solution of (2.3) if and only if it is a solution of

max
θ∈L∞(Ω;[0,1])∫

Ω
θdx≤κ

min
σ∈L2(Ω)N

−div σ=f

∫

Ω

(1 + c θ)|σ|2dx, (2.7)

and the minimum in σ for θ̂ is attained in σ̂.

Using the Kuhn-Tucker theorem to solve the minimum problem in θ in (2.6), we get the

following theorem.

Theorem 2.2 Define σ̂ ∈ L2(Ω)N by Theorem 2.1, and µ̂ by

µ̂ = min{µ ≥ 0 : |{x ∈ Ω : |σ̂(x)| > µ}| ≤ κ}. (2.8)

Then, every solution θ̂ of (2.3) satisfies

θ̂ = 0 a.e. in {|σ̂| < µ̂}, θ̂ = 1 a.e. in {|σ̂| > µ̂}. (2.9)

From (2.9), (2.5) and −div σ = f in Ω, we can also prove the following result which is the

basis of our smoothness results for (2.3). We refer to [9] for a very related result.

Theorem 2.3 For µ̂ given by (2.8), we define the positive convex function F ∈ W 2,∞(0,

+∞) by

F (s) =






s2, if 0 ≤ s < µ̂,

2µ̂ s − µ̂2, if µ̂ ≤ s ≤ (1 + c)µ̂,

s2

(1 + c)
+ cµ̂2, if s > (1 + c)µ̂.

(2.10)

Then, if θ̂ ∈ L∞(Ω; [0, 1]) is a solution of (2.3), the corresponding function u
θ̂

is a solution of

min
u∈H1

0 (Ω)

{∫

Ω

F (|∇u|)dx − 2〈f, u〉
}
. (2.11)

Moreover, θ̂ can be obtained from u
θ̂

by

θ̂(x) =





0, if 0 ≤ |∇u
θ̂
| < µ̂,

1

c

( |∇u
θ̂
|

µ̂
− 1

)
, if µ̂ ≤ |∇u

θ̂
| ≤ (1 + c)µ̂,

1, if |∇uθ| > (1 + c)µ̂.

(2.12)

Using Theorem 2.3, we can now prove the following theorem.



Smoothness Results for Optimal Design Problems 707

Theorem 2.4 Assume Ω ∈ C1,1, and define σ̂ by Theorem 2.2. We have the following

assertions:

(1) If f ∈ W−1,p(Ω), 2 ≤ p < ∞, then σ̂ belongs to Lp(Ω)N .

(2) If f ∈ Lp(Ω), p > N , then σ̂ belongs to L∞(Ω)N .

(3) If f ∈ W 1,1(Ω)∩L2(Ω), then σ̂ belongs to H1(Ω)N and every solution θ̂ of (2.3) is such

that ∂iθ̂σ̂j − ∂j θ̂σ̂i belongs to L2(Ω), 1 ≤ i, j ≤ N .

Sketch of the Proof It is based on Theorem 2.3. In other words, if F was C2 with a strictly

positive second derivative, then it is known that f being smooth implies that the solutions of

(2.11) are twice derivable (see [8]). Using this result, the idea is then to approximate F for a

sequence of smooth functions Fε strictly convex. The solution uε of (2.11) with F replaced by

Fε is twice derivable, and for a subsequence, converges to a solution u of (2.11) in H1
0 (Ω). Now,

it is easy to check that ∇∂iuε satisfies an elliptic problem of the type

−div(Mε(x)∇∂iuε) = ∂if in Ω, 1 ≤ i ≤ N. (2.13)

Although the matrix functions Mε are uniformly bounded, they lose the strict positivity when

ε tends to zero, due to F not strictly convex. For this reason, we can not deduce the estimate

that ‖D2uε‖L2(Ω)N×N is bounded. However, we can prove that Mε∇∂iuε · ∇∂iuε is bounded in

L1(Ω). Using the explicit expression of the matrix functions Mε, this allows us to show that σ̂

is in H1(Ω)N . The estimates of σ̂ in Lq(Ω)N mainly follow from Stampacchia estimates (see

[19]).

Remark 2.1 The estimates in Theorem 2.4 are local. That is, if U is an open set in R
N

such that ∂Ω∩U is in C1,1, then the results above hold with Ω replaced by Ω∩O and O ⊂⊂ U

open.

Remark 2.2 The fact that θ̂ is a solution of (2.3) and f ∈ Lp(Ω) (p > N) implies that the

corresponding state function u
θ̂

is in W 1,∞(K) for every compact set K ⊂ Ω is given in [10]

as a simple consequence of the results in [6]. Therefore the main contribution of Theorem 2.4

refers to the estimates on the boundary and specially to σ̂ ∈ H1(Ω)N .

Theorem 2.4 has some interesting consequences for the unrelaxed problem (2.1). They apply

mainly to proving the non-existence of a solution.

Theorem 2.5 Assume Ω ∈ C1,1 and f ∈ W 1,1(Ω)∩L2(Ω). We suppose that there exists a

solution ω̂ of (2.1) and define σ̂ by Theorem 2.1. Then, we have the following assertions:

(1) The curl of σ̂ is zero.

(2) If Ω is simply connected, then σ̂ = ∇w, with w being the solution of

{
−∆w = f in Ω,

w = 0 on Ω.
(2.14)

Remark 2.3 The second assertion in the previous lemma was obtained in [16] assuming

that the solution ω̂ has a smooth boundary. Here the result is a consequence of Theorem 2.4.

Since curl σ̂ = 0, it is locally the gradient of a function w which, taking into account

that −div σ̂ = f , satisfies the equation −∆w = f (the second assertion of Theorem 2.5 is a
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consequence of this result). This allows us to prove that if f is in a certain space W k,p(Ω), then

σ̂ is in W k+1,p(Ω)N .

3 The Energy Problem

In this section, instead of maximizing the functional in (2.1), let us minimize it. Now, the

best material is not α but β. For this reason, we do not ask the measure of ω to be small but

large. In other words, given a bounded open set Ω, two constants α, β, with 0 < α < β, a

distribution f̃ ∈ H−1(Ω), and a constant κ with 0 < κ < |Ω|, let us consider the problem





min
{∫

Ω

(αχω + βχΩ\ω)|∇uω |2dx
}

,

ω ⊂ Ω measurable, |ω| ≥ κ,

−div
(
(αχω + βχΩ\ω)∇uω

)
= f̃ in Ω, uω ∈ H1

0 (Ω).

(3.1)

As for the compliance problem, it is better to work with a relaxed formulation, because problem

(3.1) has not a solution in general. This relaxation can be obtained by replacing the materials

of the form αχω + βχΩ\ω by those of the form αθ + β(1 − θ) (see [1, 16, 21–23]). Taking

d =
β − α

β
, f =

1

β
f̃, (3.2)

we then get the relaxed formulation of (3.1)






min
{∫

Ω

(1 − dθ)|∇uθ|2dx
}

,

θ ∈ L∞(Ω; [0, 1]),

∫

Ω

θ dx ≥ κ,

−div((1 − dθ)∇uθ) = f in Ω, uθ ∈ H1
0 (Ω),

(3.3)

or equivalently

max
θ∈L∞(Ω;[0,1])∫

Ω
θdx≥κ

min
u∈H1

0 (Ω)

(∫

Ω

(1 − dθ)|∇u|2dx − 2〈f, u〉
)
. (3.4)

Instead of using the variables u and θ, it is also possible to write the problem in the variables

σ and θ with σ = (1 − d)∇u, that is, (3.3) is also equivalent to

min
θ∈L∞(Ω;[0,1])∫

Ω
θdx≥κ

min
σ∈L2(Ω)N

−divσ=f

∫

Ω

|σ|2
1 − dθ

dx. (3.5)

Remark that the structure of these problems is similar to those of (2.4) and (2.6), but the roles

of σ and ∇u are exchanged. Thus we expect to prove properties similar to those obtained

for the optimal σ̂ in the compliance problem for the gradient of an optimal state function û

corresponding to the energy problem. This is what the results we state below essentially show.

We start with the following uniqueness result for (3.3).
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Theorem 3.1 There exists a unique function û ∈ H1
0 (Ω) such that if θ̂ is a solution of

(3.3), then the corresponding state equation u
θ̂

agreees with û. Moreover, defining

µ̂ = min{µ ≥ 0 : |{x ∈ Ω : |∇û(x)| ≤ µ}| ≥ κ}, (3.6)

we have

θ̂(x) =

{
1, if |∇û(x)| < µ̂,

0, if |∇û(x)| > µ̂
(3.7)

for every solution θ̂ of (3.3).

Analogous to Theorem 2.3 for (2.3), the following result is the key ingredient to obtaining

some smoothness properties for the solutions of (3.3).

Theorem 3.2 Let û and µ̂ be given by Theorem 3.1. We define G ∈ W 2,∞(0, +∞) by

G(s) =





s2

1 − d
, if 0 ≤ s < (1 − d)µ̂,

2µ̂s − (1 − d)|µ̂|2, if (1 − d)µ̂ ≤ s ≤ µ̂,

s2 + d|µ̂|2, if s > µ̂.

(3.8)

Then, a function θ̂ ∈ L∞(Ω) is a solution of (3.3) if and only if

σ̂ =
∇û

1 − dθ̂
(3.9)

is a solution of

min
σ∈L2(Ω)N

−div σ=f

∫

Ω

G(|σ|)dx. (3.10)

Moreover, the function θ̂ can be obtained from σ̂ by

θ̂(x) =





1, if 0 ≤ |σ̂| < (1 − d)µ̂,

1

d

(
1 − |σ̂|

µ̂

)
, if (1 − d)µ̂ ≤ |σ̂| ≤ µ̂,

0, if µ̂ < |σ̂|.

(3.11)

Our main result related to the smoothness properties of the solutions of (3.3) is given by

the following theorem.

Theorem 3.3 Assume Ω ∈ C1,1, and define û by Theorem 3.1. Then, we have the following

assertions:

(1) If f ∈ W−1,p(Ω), p ≥ 2, then û belongs to W
1,p
0 (Ω)N .

(2) If f ∈ Lp(Ω), p > N , then û belongs to W 1,∞(Ω)N . Besides, if N = 2, then û ∈ C1(Ω).

(3) If f ∈ L2(Ω), then û belongs to H2(Ω), and every solution θ̂ of (3.3) is such that

∇θ̂ · ∇û ∈ L2(Ω).
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Sketch of the Proof As in the proof of Theorem 2.5, the idea is to approximate problem

(3.10) by another one obtained by regularizing the function G defined by (3.8), which allows

to construct a sequence of smooth functions uε converging to û at least in H1(Ω). The second

derivatives of uε satisfy an elliptic equation of the form

−div Aε∇(∂iuε) = ∂if in Ω,

where, contrary to (2.13), the matrix functions Aε are uniformly elliptic and independent of

ε, but they have not any upper bound. The proof of û ∈ H2(Ω) follows from this ellipticity

condition, while the estimate in W 1,∞(Ω) follows from Stampacchia estimates. In the special

case N = 2, we can show that û is in C1(Ω) by using the results in [2] (see also [7, 12]).

Remark 3.1 Because in the proof of Theorem 2.5, we deal with a diffusion coefficient

matrix bounded but not strictly elliptic and in Theorem 3.3 with a diffusion coefficient matrix

strictly elliptic but unbounded, there are important differences in the proofs. Moreover, there

are also some important differences in the result. In this sense, contrary to Theorem 3.3, we

do not know whether the estimates in Theorem 3.3 are local, i.e., whether Ω is smooth just

in a portion of the boundary, we do not know whether û is smooth in a neighborhood of this

portion.

Remark 3.2 In Theorem 3.3, we proved that the optimal solutions θ̂ of (2.3) are derivable

in the orthogonal directions to σ̂ and then to ∇û. For 3.3, we have that θ̂ is derivable in the

direction of ∇û.

We finish this section by giving some consequences of Theorem 3.3 when it applies to the

unrelaxed problem (3.1).

Theorem 3.4 Assume Ω ∈ C1,1 and f ∈ L2(Ω). We suppose that there exists a solution

ω̂ ⊂ Ω of (3.1) and define û by Theorem 3.1. Then, we have the following assertions:

(1)

−∆û =
( 1

1 − d
χω̂ + χΩ\ω̂

)
f in Ω. (3.12)

(2)

−(1 − d)div(∇û χω̂) = fχω̂ in Ω. (3.13)

(3)

−∆|∇û|2 + 2|D2û|2 =
( 1

1 − d
χω̂ + χΩ\ω̂

)
∇f · ∇u in Ω. (3.14)

(4) If f does not change its sign and µ̂ defined by (3.6) does not vanish, then θ̂ = χω̂ is the

unique solution of (3.3).

(5) Assume f to be strictly positive or strictly negative, and consider an open set O ⊂ Ω

and a neighborhood N of ∂O. Then we have

N ⊂ ω̂ → O ⊂ ω̂, N ⊂ O \ ω̂ → O ⊂ Ω \ ω̂.
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Remark 3.3 (3.12) implies that if f ∈ Lp(Ω), then û ∈ W 2,p(Ω). Combined with (3.14)

and the Sobolev imbedding theorem, this provides the existence of two derivatives for |∇û|2.
This is related to the smoothness properties of the interfaces corresponding to the two materials

α and β, which we recall, are contained in the sets |∇û| = µ̂.

Equation (3.13) shows that the Neumann condition ∂û
∂ν

= 0 on ∂ω is satisfied in a weak

sense.

4 Applications to the Minimization of the First Eigenvalue

Another interesting problem in the optimal design of two-composites is the minimization

of the first eigenvalue for the corresponding diffusion operator. Mathematically, it can be

formulated as

min
ω⊂Ω
|ω|≤κ

min
u∈H1

0 (Ω)
u6=0

∫
Ω(αχω + βχΩ\ω)|∇u|2dx∫

Ω
|u|2dx

, (4.1)

where, similar to the previous sections, we assume 0 < α < β, 0 < κ < |Ω|.
Define c by (2.2), and the corresponding relaxed formulation is given by

min
θ∈L∞(Ω;[0,1])∫

Ω
θdx≤κ

min
u∈H1

0 (Ω)
u6=0

∫
Ω

|∇u|2

1+cθ
dx∫

Ω |u|2dx
. (4.2)

A different formulation of (4.1) can be obtained by using the following result.

Lemma 4.1 Assume A ∈ L∞(Ω)N×N to be uniformly elliptic. Then the first eigenvalue of

the operator −div(A∇u) with Dirichlet conditions

λ1(A) = min
u∈H1

0 (Ω)
u6=0

∫
Ω A∇u · ∇u dx∫

Ω
|u|2dx

can be characterized by

1

λ1(A)
= − min

u∈H1
0(Ω)

‖f‖
L2(Ω)≤1

(∫

Ω

A∇u · ∇u dx − 2

∫

Ω

fu dx
)
.

This lemma proves that (4.1) is equivalent to

min
‖f‖

L2(Ω)≤1
min

θ∈L∞(Ω;[0,1])∫
Ω

θdx≤κ

min
u∈H1

0 (Ω)
u6=0

(∫

Ω

|∇u|2
1 + cθ

dx − 2

∫

Ω

fu dx
)
. (4.3)

Therefore, comparing with (2.4), we see that the eigenvalue problem consists in solving the

compliance problem (2.4) for every f ∈ L2(Ω) with a unitary norm, and then minimizing in f .

Moreover, it is not difficult to check that if f is a function for which the maximum is attained,

then f is an eigenfuction for the corresponding optimal mixture. From Theorem 2.4, we then

have the following smoothness result.
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Theorem 4.1 Assume Ω ∈ C1,1. Then, if (θ̂, û) is an optimal solution of (4.1), we have

û ∈ W 1,∞(Ω), σ̂ =
∇û

1 + cθ
∈ H1(Ω)N ,

∂iθσ̂j − ∂jθσ̂i ∈ L2(Ω), 1 ≤ i, j ≤ N.

The results obtained in Theorem 2.5 can be used to obtain a counterexample to the existence

of solution for the unrelaxed problem (4.1), that is, we have the following theorem.

Theorem 4.2 Assume Ω = (−π
4 , π

4 )× (−π
2 , π

2 ). Then for ε > 0 small enough, the problem

min
ω⊂Ω

|ω|≤|Ω|−ε

min
u∈H1

0 (Ω)
u6=0

∫
Ω
(χω + 2χΩ\ω)|∇u|2dx∫

Ω |u|2dx
(4.4)

has not a solution.

Sketch of the Proof We assume that there exists a solution ωε, uε of (4.4), with uε > 0,

‖u‖L2(Ω) = 1. Taking into account that |ωε| = |Ω| − ε, we get that uε is very close to the

eigenfunction u corresponding to the first eigenvector of the Laplacian in Ω, which is given by

u(x) =
2√
3π

cos(2x1) cos(x2), ∀ (x1, x2) ∈ Ω.

Now, the optimality conditions for (4.4) show that ∂ωε is composed by level lines of uε. Then

we deduce that there exists a component Oε of Ω \ ωε which is close to the ellipse

x2
1

8
+

x2
2

2
= 1 − cε,

where cε tends to zero with ε. However, using our smoothness results for the solution of (4.4)

(Ω is not smooth, but by Remark 2.1, we have local regularity) and Serrin’s theorem (see [17]),

we must have that Oε is a ball. This contradiction shows the result.

Figures 1–3 below correspond to the numerical solution of problem

min
θ∈L∞(Ω;[0,1])∫
Ω

θdx≤|Ω|−ε

min
u∈H1

0 (Ω)
u6=0

∫
Ω

|∇u|2

1+cθ
dx∫

Ω |u|2dx
, (4.5)

with Ω given by Theorem 4.2. This is the relaxed formulation of (4.4). The figures correspond

to ε = 0.5 ∼ 0.1 |Ω|, ε = 2 ∼ 0.4 |Ω| and ε = 3 ∼ 0.6 |Ω|. In these pictures, the white zones

correspond to the material α, the black zones to the material β and the grey figures to the

homogenized materials. We observe that although in Theorem 4.2, we supposed that ε is small,

grey zones appear in all the cases, and in fact, they are larger when ε is larger.

Figure 1 Optimal solution of (4.5) with ε = 0.5.
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Figure 2 Optimal solution of (4.5) with ε = 2.

Figure 3 Optimal solution of (4.5) with ε = 3.
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[15] Murat, F., H-Convergence, Séminaire d’Analyse Fonctionnelle et Numérique, Université d’Alger, 1977–
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