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Abstract This paper introduces a domain decomposition preconditioner for elliptic equa-
tions with rough coefficients. The coarse space of the domain decomposition method is
constructed via the so-called rough polyharmonic splines (RPS for short). As an ap-
proximation space of the elliptic problem, RPS is known to recover the quasi-optimal
convergence rate and attain the quasi-optimal localization property. The authors lay out
the formulation of the RPS based domain decomposition preconditioner, and numerically
verify the performance boost of this method through several examples.
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1 Introduction

Problems with many scales are ubiquitous in nature. Among all the multi-scale problems,

the following divergence-form scalar elliptic equation (1.1) with highly heterogeneous coefficients

α(x) ∈ L∞(Ω) is perhaps the most intensively studied one, with a wide range of applications

in reservoir modeling, composite materials, etc. Our main objective in this paper is to develop

and test a class of overlapping domain decomposition methods using the so-called rough poly-

harmonic splines (RPS for short) based multiscale coarse grid solvers, which is a multiscale

basis with the optimal convergence rate and the optimal localization property (see [23]).
{
−∇ · α(x)∇u(x) = f(x) in Ω,

u = 0 on ∂Ω.
(1.1)

The contrast of α(x) is expressed as the ratio between high and low conductivity values and

defined by

max
x∈Ω

α(x)

min
x∈Ω

α(x)
(1.2)
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which brings a small scale into the problem. This type of problems commonly arises in several

fields that include subsurface flows and oil reservoir modeling as the representative examples.

The domain decomposition method is a powerful tool to construct efficient parallel solvers

for large-scale linear systems arising from the fine scale discretization of partial differential

equations (see [26, 28]). To construct preconditioners for the fine-scale system, domain decom-

position algorithms include small local problems in the subregions and a coarse problem. Note

that without a coarse space component, the algorithms cannot be scalable, i.e., they have a

rate of convergence independent of the number of subregions.

The number of iterations required by domain decomposition based methods is determined

by the condition number of the preconditioned system. Therefore, the design of precondition-

ers must address the effects of the following two issues on the condition number, the size of

the problem, and the contrast in the media properties. Commonly used domain decomposi-

tion methods (see [19, 26, 28]) can make the condition number of the preconditioned system

independent of the system size for certain problems including the scalar elliptic equation (1.1).

The design of robust preconditioners with respect to the contrast turns out to be a more

challenging problem. When the variation of coefficients is mild inside the coarse-grid blocks,

classical domain decomposition preconditioners with a linear coarse space result in a system

with the condition number independent of the contrast (see, e.g., [19, 28]). If the variation of

coefficients is large inside coarse grid blocks, the classical method fails to be robust. In this case,

a judicious choice of the coarse space is the key to constructing the robust domain decomposition

preconditioner which has a condition number independent of the coefficient contrast.

In recent works [1, 11, 14], robust preconditioners with respect to the contrast were con-

structed with the help of coarse space adaptive to small scale features. The connection between

multiscale finite elements and robust preconditioners was first explored in [1]. In [14–15], robust

preconditioners were constructed for a variety of binary (i.e., two-scale) media model problems

using multiscale finite element based coarse space. In a series of works [9–12], the coarse space

was further enriched by local spectral basis functions to be suitable for high contrast prob-

lems. It is now well understood that the construction of coarse space is closely associated with

the development of the multiscale finite-element methods, or in the general sense, numerical

homogenization methods.

To this end, we would like to give a very short introduction about numerical homogenization.

The field of numerical homogenization concerns the numerical approximation of the solution

space of (1.1) with a finite-dimensional space. This problem is motivated by the fact that

standard methods, such as the finite-element method with piecewise linear elements (see [4]),

can perform arbitrarily badly for PDEs with rough coefficients such as (1.1). Although some

numerical homogenization methods are developed from classical homogenization concepts such

as periodic homogenization and scale separation (see [5]), as well as localized cell problems (see

[24]), one of the main objectives of numerical homogenization is to achieve a numerical approxi-

mation of the solution space of (1.1) with arbitrary rough coefficients (i.e., in particular, without

the assumptions found in classical homogenization, such as scale separation and ergodicity at

fine scales). In this direction, oscillating test functions, G or H-convergence and compensated

compactness (see [13, 20, 27]) have always been a great source of inspiration. Professor Luc

Tartar has made profound contribution to the development of the above theories. The mul-

tiscale finite-element method (MsFEM for short) (see [8, 16–17]) can be seen as a numerical

generalization of the idea of oscillating test functions found in H-convergence (see [20]) and was



ASM with RPS Coarse Spaces 805

justified for problems with scale separation. For problems with nonseparable scales, the authors

and collaborators proposed the method of harmonic coordinates for scalar elliptic equations in

2D (see [21]). In [6], the transfer property of the flux-norm was introduced to identify the

global basis, and then in [22] the computation of the basis was localized to sub-domains of size

O
(√

H ln( 1
H

)
)
. In [22], we also concluded the strong compactness of the solution space, which

guarantees the existence of an accurate finite-dimensional approximation space as long as the

right-hand side is not too singular. Then the name of the game becomes how to achieve such

a finite-dimensional space with the least cost, namely, a space with the best localized basis.

In [23], we introduced an approximation space generated by an interpolation basis over

scattered points with resolution H which minimizes the L2 norm of the source terms; its

(pre-)computation involves minimizing O(Hd) quadratic (cell) problems on (super-)localized

sub-domains of size O(H ln( 1
H

)). The resulting interpolation basis functions are biharmonic for

d ≤ 3, and polyharmonic for d ≥ 4 and can be seen as a generalization of polyharmonic splines

to differential operators with arbitrary rough coefficients. Therefore, the basis is called rough

polyharmonic splines (RPS for short). The accuracy of the method O(H) in the energy norm

is optimal and independent of aspect ratios of the mesh formed by the scattered points. For

development in this direction, please also see [3, 18].

In this paper, we use RPS to construct the coarse space of the domain decomposition

method, and evaluate the performance of RPS-based preconditioners with some typical domain

decomposition preconditioners (linear and MsFEM-based). We apply our method to some

benchmark problems and obtain promising numerical results. Theoretical justification of the

method is in progress.

2 Mathematical Formulations

In this section, we present the continuous and discrete formulations of the problems that

will be considered for preconditioning.

Consider the variational formulation of (1.1) as follows: Find u ∈ H1
0(Ω) such that

a(u, v) = (f, v) for all v ∈ H1
0(Ω), (2.1)

where

a(u, v) :=

∫

Ω

α(x)∇u · ∇vdx, (f, v) :=

∫

Ω

fvdx,

where Ω ⊂ R
2 is a bounded polygonal domain, and f(x) ∈ L2(Ω). The coefficients α(x) ≥ α0 >

0, and α(x) ∈ L∞(Ω) are allowed to be highly variable in an unstructured way and have a high

contrast in Ω. Without loss of generality, we assume that α0 ≥ 1 which can always be achieved

by scaling the problem with 1
min
x∈Ω

α(x) .

Let the domain Ω =
N⋃

i=1

Ωi and Ωi be disjoint-shape regular polygonal subdomains of diam-

eters Hi. Denote the subdomain boundaries by ∂Ωi. For each Ωi, we introduce a quasi-uniform

triangulation Ti by triangles with the mesh size hi. The resulting triangulation Th on Ω is

assumed to be conforming, i.e., the subdomain meshes match across ∂Ωi.

Without loss of generality, we assume that the coefficient α(x) restricted to any fine triangle

τ ∈ Th is a constant, denoted by ατ . The analysis will depend on the coefficient on a boundary
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layer near subdomain boundaries. For each subdomain Ωi, we define the boundary layer Ωh
i as

the union of fine triangles in Ωi that touch the boundaries ∂Ωi. Then we set

αi := max
x∈Ωh

i

α(x). (2.2)

Denote by Vh(Ω) the standard finite-element space of continuous functions on the domain

Ω, which are piecewise linear on the fine mesh Th and vanishing on ∂Ω. The discrete problem

of (2.1) is of the following form: Find uh ∈ Vh(Ω) such that

a(uh, vh) = (f, vh) for all vh ∈ Vh(Ω). (2.3)

This weak form results in a linear system as

Auh = f , (2.4)

where the global stiffness matrix A is large, sparse, and symmetric positive definite, and f is

the load vector corresponding to the right-hand side of (2.3).

3 Additive Schwarz Methods with RPS-Based Coarse Spaces

The two-level additive Schwarz methods use the solutions of local problems and a coarse

problem to construct preconditioners for the fine scale system (2.4). In this section, we intro-

duce an additive Schwarz method with the RPS approximation space as a new coarse space.

The construction of RPS generalizes the well-known concepts of polyharmonic splines (see

[2, 7, 25]). Unlike standard polyharmonic splines, RPS incorporates information about the co-

efficients α(x). In [23], the properties of RPS, necessary for construction of an optimal localized

computational basis, were established and rigorously justified.

We denote by {Ω′

i}N
i=1 the overlapping partition from the original nonoverlapping partition

{Ωi}N
i=1 by extending each subregion Ωi into

Ω′

i = Ωi ∪ {x ∈ Ω | dist(x, Ωi) < δi}, i = 1, · · · , N, (3.1)

where the dist is some distance function. Here we consider the case of minimal overlap with

δi = hi, that is, Ωi is extended to Ω′

i by adding one layer of fine triangles in Ti that touch the

outside of ∂Ωi by edges and/or vertices. The space Vh(Ω) can be decomposed as follows:

Vh(Ω) = V0(Ω) + V1(Ω) + · · · + VN (Ω),

where

Vi(Ω) = {v ∈ Vh(Ω) | v(x) = 0, x ∈ Ω\Ω′

i} for all i = 1, · · · , N.

The local matrix is defined by Ai = RiART
i , where RT

i : Vi(Ω) → Vh(Ω) is the extension by

zero operator.

The coarse space V0(Ω) will be defined in a special way with the coarse basis functions

{Φk}Nc

k=1, where Nc is equal to the number of coarse nodes excluding those on the global

boundary ∂Ω. We associate a specific function Φk with each coarse node xk, i.e., a rough

polyharmonic spline centered at xk. The definition of RPS is provided below (see also [23]).
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Let V be the set of functions u ∈ H1
0(Ω) such that div(α∇u) ∈ L2(Ω). Let ‖.‖V be the

norm on V defined by

‖u‖V := ‖ div(α∇u)‖L2(Ω). (3.2)

For each coarse node xk we define

Vk := {Φ ∈ V | Φ(xk) = 1 and Φ(xj) = 0 for j ∈ {1, · · · , Nc} such that j 6= k}

and consider the following optimization problem over Vk:





Minimize

∫

Ω

| div(α∇Φ)|2dx,

Subject to Φ ∈ Vk.

It was shown in [23] that the minimizer of the above problem exists and is unique, which can

be finally identified as the coarse basis function Φk.

Then we can define

V0(Ω) = span{Φk}Nc

k=1, (3.3)

and the coarse matrix A0 = R0ART
0 with RT

0 = [Φ1, · · · , ΦNc
], i.e., (R0)kj = Φk(xh

j ) where xh
j

is the fine nodal point. The corresponding two-level additive Schwarz preconditioner is of the

form

M−1
AS =

N∑

i=0

RT
i A−1

i Ri. (3.4)

Theorem 3.1 The condition numbers of the preconditioned stiffness matrices using the

proposed two-level additive Schwarz preconditioners satisfy

κ(M−1
ASA) ≤ Cβ

H

h
, (3.5)

where β = max
i

αi,
H
h

= max
i

Hi

hi
, and C is independent of Hi, hi and α.

Remark 3.1 For the proof of Theorem 3.1, we follow the general abstract theory for the

additive Schwarz methods developed in [26, 28]. Using the same abstract arguments, the proof

follows by checking three assumptions. We start with Assumption II (strengthened Cauchy-

Schwarz inequalities) and Assumption III (local stability) which are quite easy to verify. In our

case, this is straightforward to prove that ρ(E) = 1 and ω = 1 in these two assumptions, re-

spectively. Finally, we only need to check the constant in Assumption I (stable decomposition).

The sharpness of the dependence on the contrast and the mesh ratio in (3.5) will be verified

numerically in the next section, while the rigorous proof remains the work in progress.

4 Numerical Results

Let the domain Ω be a unit square (0, 1)2. We firstly triangulate Ω into N ×N equal coarse

squares, then decompose each coarse square into M × M equal fine squares and divide each

fine square into two sub-triangles along its diagonal with a positive slope. The distribution of
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coefficients in each example is presented by figures, where α(x) = α̂ in the red shaded region,

and α(x) = 1 else where. We use the additive Schwarz method with RPS-based coarse spaces

(see Section 3), and iterate with the preconditioned conjugate gradient (PCG for short) method.

The iteration in each test stops whenever the l2 norm of the residual is reduced by a factor of

10−6.

4.1 Dependence on the contrast

We implement the two-level additive Schwarz methods with RPS-based coarse spaces for

Examples 4.1–4.2 (see Figure 1) to investigate how the condition numbers of preconditioned

systems depend on the contrast in the coefficients. Here we take N = 8 and M = 8, i.e., H = 1
8

and h = 1
64 .

Figure 1 Left: Example 4.1. Right: Example 4.2.

In Example 4.1, the high-conductivity subregions are completely in the interior of subdo-

mains, while the high-conductivity subregions are only in the boundary layers in Example 4.2.

The results in Table 1 indicate that the condition numbers are independent of the contrast in

the interior of subdomains, while they may (linearly) depend on the contrast in the boundary

layers.

Table 1 Examples 4.1–4.2. Iteration numbers (condition numbers)

for different values of contrast, coarse dof 49.

α̂ Example 4.1 Example 4.2
1e0 16(7.392e0) 16(7.392e0)
1e1 15(5.154e0) 25(2.001e1)
1e2 14(4.469e0) 40(1.435e2)
1e3 14(4.438e0) 56(9.536e2)
1e4 15(4.444e0) 58(2.670e3)
1e5 15(4.440e0) 99(1.240e5)
1e6 15(4.443e0) 136(1.234e6)

4.2 Dependence on the mesh ratio

We test the proposed method with Example 4.1, where the distribution of coefficients is kept

as shown in Figure 1 with H = 1
8 and α̂ = 106. We change M = 8, 16, 32, i.e., h = 1

64 , 1
128 , 1

256 .

The log-log plot of the condition numbers with respect to the mesh ratio H
h

is reported in Figure

2. The slope of the least square line in Figure 2 is approximated by 1.01, which indicates the

linear dependence of the condition number on the mesh ratio.
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Figure 2 The log-log plot of the condition number vs. H

h
for Example 4.1.

4.3 Comparisons

We test domain decomposition preconditioners based on the following three coarse spaces:

The classical linear coarse space (linear for short), the MsFEM-based coarse space (MsFEM

for short), and the global RPS-based coarse space (RPS for short). We consider three different

distributions of the coefficients (see Examples 4.3–4.5 in Figure 3, and test different values of

the contrast in each example). In all the three examples, we choose N = 8 and M = 10, i.e.,

H = 1
8 and h = 1

80 .

Figure 3 Top Left: Example 4.3. Top Right: Example 4.4. Bottom: Example 4.5.

It follows from the numerical results in Tables 2–4 that for unstructured permeabilities with

high contrast, domain decomposition preconditioners constructed by coarse spaces with small

scale features (MsFEM and RPS) have a better performance than the classical linear coarse



810 R. Du and L. Zhang

spaces. In particular, RPS outperforms MsFEM by 3–4 orders of magnitude in the condition

number and has a much less iteration counts for the high contrast case. This difference is

not so profound for the simpler case, Example 4.3, but for the more complicated permeability

fields in Examples 4.4–4.5, the performance gain with RPS is also more significant. We believe

it is due to the fact that RPS is a basis with the (quasi-)optimal convergence rate and the

(quasi-)optimal localization property as an approximation space of the original elliptic problem

(1.1).

Table 2 Example 4.3. Iteration numbers (condition numbers) of

different methods, coarse dof 49.

Contrast Linear MsFEM RPS
1e0 18(7.906e0) 20(8.843e0) 17(8.686e0)
1e1 22(9.385e0) 21(9.269e0) 18(9.240e0)
1e2 38(2.624e1) 34(2.400e1) 19(9.324e0)
1e3 54(6.594e1) 42(4.021e1) 19(9.323e0)
1e4 61(9.244e1) 47(4.788e1) 19(9.323e0)
1e5 65(9.884e1) 52(5.681e1) 19(9.323e0)
1e6 63(9.957e1) 56(5.832e1) 19(9.301e0)

Table 3 Example 4.4. Iteration numbers (condition numbers) of

different methods, coarse dof 49.

Contrast Linear MsFEM RPS
1e0 18(7.906e0) 20(8.843e0) 17(8.686e0)
1e1 28(1.632e1) 26(1.449e1) 23(1.292e1)
1e2 59(9.852e1) 48(5.273e1) 30(2.409e1)
1e3 100(8.840e2) 70(3.414e2) 31(2.991e1)
1e4 134(8.725e3) 89(2.919e3) 34(3.079e1)
1e5 164(8.713e4) 127(2.837e4) 36(3.089e1)
1e6 199(8.718e5) 177(2.828e5) 38(3.081e1)

Table 4 Example 4.5. Iteration numbers (condition numbers) of

different methods, coarse dof 49.

Contrast Linear MsFEM RPS
1e0 18(7.906e0) 20(8.843e0) 17(8.686e0)
1e1 30(1.744e1) 28(1.648e1) 24(1.587e1)
1e2 62(1.003e2) 48(5.759e1) 35(3.903e1)
1e3 92(8.927e2) 72(3.876e2) 45(8.771e1)
1e4 115(8.808e3) 90(3.764e3) 47(1.051e2)
1e5 141(8.796e4) 116(3.753e4) 44(1.071e2)
1e6 168(8.795e5) 133(3.752e5) 44(1.073e2)

5 Conclusion

In this paper, we formulate a domain decomposition method which uses rough polyharmonic

splines (RPS for short) to construct its coarse space. As RPS has quasi-optimal properties as

an approximation space of the original elliptic equation (1.1), we expect that the performance

of the domain decomposition preconditioner will be greatly improved, especially for problems

with highly variable coefficients. This is verified numerically through several examples. The
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theoretical analysis is on progress, which lies in checking the assumption of stable decomposition.

A promising future work is to investigate the performance of localized RPS coarse spaces.
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1978, 34 pages, English translation: Topics in the Mathematical Modelling of Composite Materials, L.
Cherkarv and R. V. Kohn (eds.), Progress in Nonlinear Differential Equations and Their Applications,
Vol. 31, Birkhauser, Boston, 1998, 21–43.

[21] Owhadi, H. and Zhang, L., Metric-based upscaling, Comm. Pure Appl. Math., 60(5), 2007, 675–723.

[22] Owhadi, H. and Zhang, L., Localized bases for finite dimensional homogenization approximations with
non-separated scales and high-contrast, SIAM Multiscale Modeling Simulation, 9, 2011, 1373–1398.

[23] Owhadi, H., Zhang, L. and Berlyand, L., Polyharmonic homogenization, rough polyharmonic splines and
sparse super-localization, ESAIM: Mathematical Modelling and Numerical Analysis, 48(2), 2014, 517–552.

[24] Papanicolaou, G. C. and Varadhan, S. R. S., Boundary value problems with rapidly oscillating random
coefficients, Random Fields, Vol. I–II, 1979; Colloq. Math. Soc. János Bolyai, 27, North-Holland, Amster-
dam, 1981, 835–873.

[25] Rabut, C., Elementary m-harmonic cardinal B-splines, Numer. Algorithms, 2(1), 1992, 39–61.

[26] Smith, B. F., Petter Bjørstad and William Gropp, Domain Decomposition: Parallel Multilevel Methods
for Elliptic Partial Differential Equations, Cambridge University Press, Cambridge, 1996.

[27] Spagnolo, S., Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche, Ann. Scuola Norm. Sup.

Pisa, 22(3), 1968, 571–597; errata, ibid., 22(3), 1968, 673.

[28] Toselli, A. and Widlund, O., Domain Decomopsition Methods-Algorithms and Theory, Springer-Verlag,
Berlin, 2005.


