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Abstract It is known that the Boltzmann equation has close relation to the classical

systems in fluid dynamics. However, it provides more information on the microscopic level

so that some phenomena, like the thermal creep flow, can not be modeled by the classical

systems of fluid dynamics, such as the Euler equations. The author gives an example to

show this phenomenon rigorously in a special setting. This paper is completely based on

the author’s recent work, jointly with Wang and Yang.
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1 Introduction

The fundamental equation in statistical physics for rarefied gas is the famous Boltzmann

equation which gives a description of the time evolution of particle distribution. Even though

it has close relation to the classical systems in fluid dynamics, it provides more information on

the microscopic level so that it describes some phenomena which can not be modeled by using

the classical Euler and Navier-Stokes equations. This kind of interesting phenomena, called

the “ghost effect”, such as the thermal creep flow in a rarefied gas, was known since the time

of Maxwell. The mathematical formulation and numerical computation on the basis of kinetic

equation have been studied since the 1960s.

There was tremendous progress made on the mathematical theories for the Boltzmann

equation, such as the global existence of weak (renormalized) solutions for large data (see

[10]) and classical solutions as small perturbations of the equilibrium states (Maxwellian) (see

[26]), fluid dynamic limits (see [2–3, 5, 11–12, 14, 19, 21–22, 27, 35–37] and the references

therein), etc. Among them, the classical works of Hilbert, Chapman-Enskog reveal the close

relation of the Boltzmann equation to the classical systems of fluid dynamics through asymptotic

expansions with respect to the Knudsen number which is assumed to be small. In some physical

situations, the studies of both Sone and his group, and Kogan showed that the classical systems,

such as the Euler and Navier-Stokes equations, are not enough to describe the behavior of

the macroscopic components in the solution to the Boltzmann equation. In addition to some

interesting experiments, Sone and his group verified this kind of phenomena mainly by using

asymptotic expansions and numerical computations.
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More precisely, the non-dimensional Boltzmann equation takes the form

Sh∂sf + ξ · ∇zf =
1

ε
Q(f, f), (s, z, ξ) ∈ R+ × R

3 × R
3.

Here f(s, z, ξ) ≥ 0 is the distribution function of particles, and Q(f, f) is the collision operator

which is a non-local bilinear operator in the velocity variable with a kernel determined by the

physics of particle interaction. There are two parameters Sh and ε in the above equation which

are called Strouhal and Knudsen numbers, respectively. Their product Sh · ε is 2
√
π times the

ratio of the mean free time to the reference time. And the non-dimensional parameters ε and

Sh · ε not only characterize the different effects coming from the molecular collisions, but also

give the weight of the spatial and temporal derivatives with respect to the collision operator.

As mentioned, the relation between the Boltzmann equation and the classical systems of

fluid dynamics was presented in the Hilbert and Chapman-Enskog expansions when Sh = 1

and ε is small. And the justification of this kind of relations was raised in the Hilbert’s sixth

problem, i.e., the “mathematical treatment of the axioms of physics”, in his famous lecture

“Mathematical Problems” at ICM in 1900.

On the other hand, there are some phenomena described by the Boltzmann equation, for

which the time evolution of the macroscopic components is not governed by the classical fluid

dynamic systems. This happens, for example, when the parameters Sh and ε as well as the

macroscopic velocity are small while the density and temperature are of the order 1, such as

the thermal creep flow phenomenon. Unlike the Poiseuille flow induced by the gradient of

pressure and described by the Navier-Stokes equations, the thermal creep flow is induced by

the gradient of the wall temperature and can not be modeled by the Navier-Stokes equations.

There were a lot of studies on this kind of phenomena and most of the results are mainly

built on the asymptotic expansions and numerical computations (see [3, 30] and the references

therein). Recently, Chen-Chen-Liu-Sone [8] first gave a rigorous mathematical analysis in which

the thermal creep flow is studied for the stationary linearized Boltzmann equation. However,

the time evolutionary and nonlinear problems about this kind of phenomena provide a lot of

challenging mathematical topics remaining unsolved.

As for the thermal creep flow, we assume that both the Strouhal number and the macroscopic

velocity (i.e., flow velocity) are of the order of ε, and rewrite the Boltzmann equation under

the following scalings:

ε∂sf + ξ · ∇zf =
1

ε
Q(f, f).

Hence, the solution to the Boltzmann equation has the following macroscopic and microscopic

decompositions (see [3]):

f = M[ρ,εu,θ] + εG. (1.1)

Here M[ρ,εu,θ] is the local Maxwellian and G is the microscopic component. Moreover, the local

Maxwellian M[ρ,εu,θ] is defined by the five conserved quantities, that is, the mass density ρ(s, z),

the momentum density m(s, z) = ερ(s, z)u(s, z) and the energy density E(s, z) + 1
2 |εu(s, z)|2
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given by






ρ(z, s) ≡
∫

R3

f(z, s, ξ)dξ,

mi(z, s) ≡
∫

R3

ψi(ξ)f(z, s, ξ)dξ for i = 1, 2, 3,

[
ρ
(
E +

ε2

2
|u|2

)]
(z, s) ≡

∫

R3

ψ4(ξ)f(z, s, ξ)dξ,

(1.2)

as

M ≡M[ρ,εu,θ](z, s, ξ) ≡
ρ(z, s)√

(2πRθ(z, s))3
exp

(
− |ξ − εu(z, s)|2

2Rθ(z, s)

)
. (1.3)

Here the collision invariants ψα(ξ) are given by (see [4])






ψ0(ξ) ≡ 1,

ψi(ξ) ≡ ξi for i = 1, 2, 3,

ψ4(ξ) ≡
1

2
|ξ|2,

satisfying ∫

R3

ψj(ξ)Q(h, g)dξ = 0 for j = 0, 1, 2, 3, 4.

As usual, θ(s, z) is the temperature related to the internal energy E by E = 3
2Rθ with R

being the gas constant, and εu(s, z) is the flow velocity. Here u is the scaled flow velocity which

appears in the equations for the macroscopic variables ρ and θ.

When ε→ 0, (1.1) implies that the solution converges to M[ρ,0,θ] formally. Mathematically,

it means that the equations governing the time evolution of the functions ρ and θ depend

actually on the scaled velocity u even though the macroscopic velocity tends to zero. An

interesting phenomenon is that the flow moves from the low temperature to the high one when

the gas is very rarified, while on the Euler or Navier-Stokes level, the flow moves from the high

temperature to the low one, which is well-known in heat flow. Therefore, the resulting system

of equations for these macroscopic variables, ρ, u and θ, is not given by either the classical

Euler or Navier-Stokes equations. Indeed, by expanding the variables in the power of ε and

letting (ρ0, u0, θ0) be the leading order of the variables (ρ, u, θ), Bardos-Levermore-Ukai-Yang

[3] derived the following system for (ρ0, u0, θ0) which is the same as that obtained by Sone using

Hilbert expansion:





∇z(p
0) = 0,

∂sρ
0 + ∇z · (ρ0u0) = 0,

∂s(ρ
0u0) + ∇z · (ρ0u0 ⊗ u0) + ∇zP

∗

= ∇z ·
(
µ(θ)

(
∇zu

0 + (∇zu
0)T − 2

3
∇z · u0I

))
−∇z · Σ(ρ0, θ0),

∂s

(3R

2
ρ0θ0

)
+ ∇x ·

(5R

2
ρ0θ0u0

)
= ∇z · (κ(θ0)∇zθ

0),

(1.4)

where P ∗ is an unknown scalar pressure while

p0 = Rρ0θ0, µ(θ) =
√
θγ1(θ), κ(θ) =

5R

2

√
θγ2(θ),



858 F. M. Huang

Σ(ρ, θ) =
γ3(θ)

ρ
Σ1(θ) +

γ4(θ)

ρ
Σ2(θ),

Σ1(θ) = ∇2
zθ −

1

3
∆zθI, Σ2(θ) = ∇zθ ⊗∇zθ −

1

3
|∇zθ|2I,

I is the identity matrix, and γj(θ) (j = 1, 2, 3, 4) are positive functions of θ > 0 whose explicit

formulas can be found in the book by Sone [32]. (1.4) is now called the ghost effect system.

Notice that (1.4)1 means that

the pressure p0 = Rρ0θ0 is a function of time but not of z.

Clearly, the function p0 is given by the boundary conditions or the far fields in the z-space but

not by the initial condition. Recently, Levermore, Sun and Trivisa [25] established the local

well-posedness result for the Cauchy problem of the ghost effect system (1.4). However, it is

not clear whether there exists the ghost effect phenomenon in the solutions obtained in [25] or

not.

In this note, we will consider the Boltzmann equation with slab symmetry so that the space

dimension reduces to one. We first construct explicit solutions (ρ̃, ũ1, θ̃) of (1.4) in which the

flow moves from the low temperature to the high one (see Figures 1–2 below). These solutions

precisely show the thermal creep flow phenomenon for (1.4).

Figure 1 θ
−

< θ+

Figure 2 θ
−

> θ+
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Furthermore, the expansion in the Knudsen number of the Boltzmann equation, as for the ther-

mal creep flow, is justified mathematically, that is, (1.4) is indeed a good approximation for the

ghost effect of the Boltzmann equation. Then we further show that when the Knudsen number

is sufficiently small, the macroscopic components in the solutions of the nonlinear Boltzmann

equation also have the thermal creep flow phenomenon in a special setting by stability analysis,

based on the above special solutions as background states. The precise statement of the main

results will be given in Theorem 2.1 in the next section.

2 Construction of the Profile and the Main Theorem

Since the profile studied is in one-space dimension, we consider the scaled Boltzmann equa-

tion with “slab symmetry”

ε∂sf + ξ1fz =
1

ε
Q(f, f), (f, z, s, ξ) ∈ R × R × R

+ × R
3, (2.1)

where f(z, s, ξ) represents the distributional density of particles at space-time (z, s) with velocity

ξ. For monatomic gas, the rotational invariance of the molecule leads to the collision operator

Q(f, f) as a bilinear collision operator in the form (see [4])

Q(f, g)(ξ) ≡ 1

2

∫

R3

∫

S2
+

(f(ξ′)g(ξ′∗) + f(ξ′∗)g(ξ
′) − f(ξ)g(ξ∗) − f(ξ∗)g(ξ))B(|ξ − ξ∗|, θ)dξ∗dΩ

with θ being the angle between the relative velocity and the unit vector Ω. Here S
2
+ = {Ω ∈

S
2 : (ξ − ξ∗) · Ω ≥ 0}. The conservation of momentum and energy gives the following relation

between velocities before and after collision:
{
ξ′ = ξ − [(ξ − ξ∗) · Ω] Ω,

ξ′∗ = ξ∗ + [(ξ − ξ∗) · Ω] Ω.

In this paper, we consider the Boltzmann equation for the hard sphere model, for simplicity,

i.e., the collision kernel B(|ξ − ξ∗|, θ) takes the form

B(|ξ − ξ∗|, θ) = |(ξ − ξ∗,Ω)|.

Using the macroscopic and microscopic decompositions as in [3], or in [26, 28], the Boltzmann

equation (2.1) is equivalent to the following system (see [20] for details):





ερs + (ερu1)z = 0,

ε(ερu1)s + (ε2ρu2
1 + p)z =

4

3
ε(µ(θ)εu1z)z − ε

∫
ξ21Θzdξ,

ε(ερui)s + (ε2ρu1ui)z = ε(µ(θ)εuiz)z − ε

∫
ξ1ξiΘzdξ, i = 2, 3,

ε
[
ρ
(
e+

|εu|2
2

)]

z
+

[
ερu1

(
e+

|εu|2
2

)
+ εpu1

]

z

= ε(κ(θ)θz)z +
4

3
ε(ε2µ(θ)u1u1z)z +

3∑

i=2

ε(ε2µ(θ)uiuiz)z − ε

∫
1

2
ξ1|ξ|2Θzdξ,

(2.2)

together with the following equation for the non-fluid component G:

ε2Gs + P1(ξ1Mz) + εP1(ξ1Gz) = LMG+ εQ(G,G), (2.3)
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where

G = L−1
M (P1(ξ1Mz)) + Θ,

Θ = L−1
M (ε2Gs + εP1(ξ1Gz) − εQ(G,G)).

Here LM is the linearized operator of the collision operator with respect to the local Maxwellian

M ,

LMh = Q(M,h) +Q(h,M).

In the above presentation, we normalize the gas constant R to be 2
3 for simplicity so that

e = 3
2Rθ = θ and p = Rρθ = 2

3ρθ. Notice also that the viscosity coefficient µ(θ) > 0 and

the heat conductivity coefficient κ(θ) > 0 are smooth functions of the temperature θ. And the

following relation holds between these two functions (see [7, 15]):

κ(θ) =
15

4
Rµ(θ) =

5

2
µ(θ), (2.4)

after taking R = 2
3 . It should be pointed out that (2.4) is crucially used in the following analysis.

In fact, in our analysis, it is required that

inf
θ
κ(θ) >

5

4
sup

θ

µ(θ)

for all θ under consideration. By (2.4), it is known that the above condition holds provided

that the variation of the temperature is suitably small.

Note that with slab symmetry, (1.4) in one-space dimension reads






(ρθ)z = 0,

∂sρ+ (ρu1)z = 0,

∂s(ρu1) + (ρu2
1)z + P ∗

z =
4

3
(µ(θ)u1z)z − ∂zΣ(ρ, θ), i = 1, 2, 3,

∂s(ρθ) +
(5

3
ρθu1

)

z
= (κ(θ)θz)z ,

(2.5)

where P ∗ is an unknown function and Σ(ρ, θ) = 2
3

(
γ3(θ)

ρ
θzz + γ4(θ)

ρ
(θz)

2
)
.

With slab symmetry, on the macroscopic level, it is more convenient to rewrite the system

and the equation by using the Lagrangian coordinates as in the study of conservation laws, that

is to consider the coordinate transformation as follows:

(x, t)
.
=

( ∫ (z,s)

(0,0)

ρ(y, s)dy − (ρu1)(y, s)ds, s
)
.

(2.1) in the Lagrangian coordinates becomes

εft −
εu1

v
fx +

ξ1

v
fx =

1

ε
Q(f, f). (2.6)
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Moreover, (2.2) and (2.3) take the forms





εvt − εu1x = 0,

ε2u1t + px =
4

3
ε2

(µ(θ)

v
u1x

)

x
− ε

∫
ξ21Θ1xdξ,

ε2uit = ε2
(µ(θ)

v
uix

)

x
− ε

∫
ξ1ξiΘ1xdξ, i = 2, 3,

ε
(
e+

|εu|2
2

)

t
+ (εpu1)x = ε

(κ(θ)
v

θx

)

x
+

4

3
ε3

(µ(θ)

v
u1u1x

)

x

+

3∑

i=2

ε3
(µ(θ)

v
uiuix

)

x
− ε

∫
1

2
ξ1|ξ|2Θ1xdξ

(2.7)

and

ε2Gt −
ε2u1

v
Gx + P1

(ξ1
v
Mx

)
+ εP1

(ξ1
v
Gx

)
= LMG+ εQ(G,G), (2.8)

respectively, with

G = L−1
M

(
P1

(ξ1
v
Mx

))
+ Θ1

and

Θ1 = L−1
M

(
ε2Gt −

ε2u1

v
Gx +

ε

v
P1(ξ1Gx) − εQ(G,G)

)
, (2.9)

respectively.

On the other hand, (1.4) derived by Bardos-Levermore-Ukai-Yang [3] becomes





(θ
v

)

x
= 0,

vt − u1x = 0,

u1t + P ∗
x =

4

3

(µ(θ)

v
u1x

)

x
− ∂xΣ

(1

v
, θ

)
,

θt + (pu1)x =
(κ(θ)

v
θx

)

x
.

(2.10)

2.1 Construction of the profile

We will construct the profile with the thermal creep flow in this subsection. We first consider

(2.10) and try to find a special solution in which the thermal creep flow is shown as in Figures

1–2 in the previous section. From (2.10)1, we observe that θ ≡ v and p = 2
3

θ
v
≡ 2

3 , if we assume,

without loss of generality, that the boundary conditions at the far fields satisfy

lim
x→±∞

(v, θ)(x, t) = (v±, θ±),
θ+

v+
=
θ−
v−

= 1 with θ− 6= θ+.

Then (2.10)4 is rewritten as

θt +
2

3
u1x =

(κ(θ)
θ
θx

)

x
. (2.11)



862 F. M. Huang

Substituting (2.10)2 into (2.11) and noting that v ≡ θ, we get the following scalar nonlinear

diffusion equation:

θt = (a(θ)θx)x, a(θ) =
3κ(θ)

5θ
. (2.12)

From [1] and [9], it is known that the nonlinear diffusion equation (2.12) admits a self-similar

solution θ̂(η) with η = x√
1+t

satisfying the boundary conditions θ̂(±∞, t) = θ±. Let δ =

|θ+ − θ−|, and then θ̂(t, x) has the property that

θ̂x(t, x) =
O(1)δ√
1 + t

e
− x2

4a(θ±)(1+t) as x→ ±∞. (2.13)

Define

(ṽ, ũ1, θ̃)
.
= (θ̂, a(θ̂)θ̂x, θ̂)(x, t), (2.14)

and then from (2.12), it can be checked that (ṽ, ũ1, θ̃ ) satisfies (2.10) as





( θ̃
ṽ

)

x
= 0,

ṽt − ũ1x = 0,

ũ1t + P̃ ∗
x =

4

3

(µ(θ̃)

ṽ
ũ1x

)

x
− ∂xΣ

(1

ṽ
, θ̃

)
,

θ̃t + (p̃ ũ1)x =
(κ(θ̃)

ṽ
θ̃x

)

x
,

where P̃ ∗ = −a(θ̂)θ̂t + 4µ(θ̂)

3θ̂
(a(θ̂)θ̂x)x + ∂xΣ( 1

ṽ
, θ̃). That is, (ṽ, ũ1, θ̃, P̃

∗) is a special solution of

the ghost effect system (2.10).

Remark 2.1 If θ− < θ+, then ũ1 = a(θ̂)θ̂x > 0, that is, the flow moves from the low

temperature to the high one (see Figure 1). The case θ− > θ+ also has the same phenomenon.

Remark 2.2 The construction of the profile (ṽ, ũ1, θ̃ ) is motivated by the one of the viscous

contact wave of compressible Navier-Stokes equations (see [18, 23–24]). The viscous contact

wave is used to approximate the contact discontinuity for compressible Euler equations and its

pressure keeps constant.

For the Boltzmann equation, if we use the profile (ṽ, ũ1, θ̃ ), then some non-t-integrable error

terms with bad ε-decay rates, coming from the non-fluid component, exist for the integrated

equation for (Φ,Ψ,W ) (see Subsection 2.2). Therefore, we need to construct a profile (v, εu, θ)

for the Boltzmann equation, based on the explicit solutions (ṽ, ũ1, θ̃ ) of the ghost effect system

(2.10). For this, we require that the approximate pressure p satisfiy

p =
2θ

3v
=

2

3
+O(1)ε2 = p+ +O(1)ε2 = p− +O(1)ε2. (2.15)

Motivated by [24] for the Boltzmann equation, we first notice that the principle part of the

non-fluid component in the solution G and part of Θ1 defined in (2.9) are given by

w =
1

v
L−1

M (P1(ξ1Mx)) =
1

Rvθ
L−1

M

{
P1

[
ξ1

( |ξ − εu|2
2θ

θx + ξ · εux

)
M

]}
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and

Θ̂1 = L−1
M

(ε
v
P1(ξ1wx) − εQ(w,w)

)
,

respectively. To distinguish the leading term coming from the non-fluid component, we rewrite

the Boltzmann equation (2.7) as




εvt − εu1x = 0,

ε2u1t + px =
4

3
ε2

(µ(θ)

v
u1x

)

x
−

2∑

j=1

ε

∫
ξ21Θj

1xdξ,

ε2uit = ε2
(µ(θ)

v
uix

)

x
−

2∑

j=1

ε

∫
ξ1ξiΘ

j
1xdξ, i = 2, 3,

ε
(
e+

|εu|2
2

)

t
+ (εpu1)x = ε

(κ(θ)
v
θx

)

x
−

2∑

j=1

ε

∫
1

2
ξ1|ξ|2Θj

1xdξ +Hx

(2.16)

with

ε2G̃t − LMG̃ = − 1

Rvθ
P1

[
ξ1

( |ξ − εu|2
2θ

(θ − θ)x + ξ · (εu− εu)x

)
M

]

+
ε2u1

v
Gx − ε

v
P1(ξ1Gx) + εQ(G,G) − ε2Gt, (2.17)

where




G =
1

Rvθ
L−1

M

{
P1

[
ξ1

( |ξ − εu|2
2θ

θx + ξ · εux

)
M

]}
, G̃ = G−G,

H =
4ε3

3

µ(θ)

v
u1u1x +

3∑

i=2

ε3
µ(θ)

v
uiuix,

Θ1
1 = L−1

M

( ε
v
P1(ξ1Gx) − εQ(G,G)

)
,

Θ2
1 = L−1

M

(
ε2Gt −

ε2u1

v
Gx +

ε

v
P1(ξ1G̃x) − εQ(G̃, G̃) − 2εQ(G, G̃)

)

(2.18)

satisfy
2∑

j=1

Θj
1 = Θ1 = L−1

M

(
ε2Gt −

ε2u1

v
Gx +

ε

v
P1(ξ1Gx) − εQ(G,G)

)
.

Here, the function (v, εu, θ)(x, t) is the profile to be constructed.

Since the velocity εu decays faster than (v, θ) in time, the leading part in the energy equation

(2.16)4 is

εθt + εpu1x = ε
(κ(θ)

v
θx

)

x
− ε

∫
1

2
ξ1|ξ|2Θ1

1xdξ. (2.19)

By the definition of Θ1
1, it holds that






−ε
∫

1

2
ξ1|ξ|2Θ1

1dξ = ε2N1 + ε3F1,

N1 = f11θxθx + f12vxθx + f13θ
2

x + f14θxx,

|F1| = O(1)[(|vx| + |θx| + |θx| + ε|ux| + ε|ux|)|ux| + |uxθx| + |uxx|],

(2.20)
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where the coefficients f1j (j = 1, 2, 3, 4) are smooth functions of (v, εu, θ). By (2.15), it is

expected that the profile (v, εu, θ) for the Boltzmann equation satisfies θ ∼= v. Thus, by choosing

only the leading term in (2.19), we have

εθt = ε(a(θ)θx)x +
3ε2

5
N1x, (2.21)

where a(θ) is given in (2.12). Thus the leading part of (2.21) is the nonlinear diffusion equation

(2.12) and an explicit solution θ̂
(

x√
1+t

)
is given with the boundary conditions θ̂(±∞, t) = θ±.

To include more microscopic effects, let the profile θ ≈ θ̂
(

x√
1+t

)
+εθnf (x, t), where θnf (x, t)

represents the part of the nonlinear diffusion wave coming from the non-fluid component and not

appearing on the macroscopic level. Moreover, the term θnf (x, t) in the form 1√
1+t

D1

(
x√
1+t

)

is from N1 in (2.21). Note that θnf (x, t) decays faster than θ̂(x, t) so that it can be viewed as

a perturbation around the Navier-Stokes profile θ̂(x, t). To construct θnf (x, t), we linearize the

equation (2.21) around θ̂(x, t) and keep only the linear terms. This leads to a linear equation

for θnf (x, t) from (2.21) as follows:

θ
nf
t = (a(θ̂)θnf

x )x + (a′(θ̂)θ̂xθ
nf )x +

3

5
N̂1x, (2.22)

where N̂1 = (f̂11 + f̂12 + f̂13)(θ̂x)2 + f̂14θ̂xx with f̂1j = f1j(ṽ, 0, θ̂), j = 1, 2, 3, 4. Let

g1(x, t) =

∫ x

−∞
θnf (x, t)dx,

and then integrating (2.22) with respect to x yields that

g1t = a(θ̂)g1xx + a′(θ̂)θ̂xg1x +
3

5
N̂1. (2.23)

Note that N̂1 takes the form 1
1+t

D2

(
x√
1+t

)
and satisfies the property

|N̂1| = O(1)δ(1 + t)−1e
− x2

4a(θ±)(1+t) as x→ ±∞.

We can check that there exists a self-similar solution g1(η), η = x√
1+t

for (2.23) with the

boundary condition g1(−∞, t) = 0, g1(+∞, t) = δ1. Here δ1 satisfies 0 < δ1 < δ. It is

worthy of pointing out that even though the function g1(x, t) depends on the constant δ1,

θnf (x, t) = g1x(x, t) → 0 as x→ ±∞. That is, the choice of the constant δ1 has no influence on

the ansantz as long as |δ1| < δ. From now on, we fix δ1 so that the function g1(x, t) is uniquely

determined and its derivative g1x = θnf has the property

|θnf | = |g1x| = O(δ)(1 + t)−
1
2 e

− x2

4a(θ±)(1+t) as x→ ±∞.

Now we follow the same procedure to construct the second and third components of the velocity

of the ghost profile denoted by εui (i = 2, 3). Similarly, the leading part of the equation for εui

coming from (2.16) is

ε2uit = ε2
(µ(θ)

θ
uix

)

x
− ε

∫
ξ1ξiΘ

1
1xdξ. (2.24)
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For i = 2, 3, we have




−ε
∫
ξ1ξiΘ

1
1dξ = ε2Ni + ε3Fi,

Ni = fi1θxθx + fi2vxθx + fi3θ
2

x + fi4θxx,

|Fi| = O(1)((|vx| + |θx| + |θx| + ε|ux| + ε|ux|)|ux| + |ux||θx| + |uxx|)

(2.25)

with smooth functions fij (i = 2, 3, j = 1, 2, 3, 4). Notice that the symbols Ni and Fi (i = 2, 3),

used here are for the convenience of notations.

From (2.24)–(2.25), we expect that the profile ui(x, t) takes the form 1√
1+t

hi

(
x√
1+t

)
and

satisfies the following linear equation:

ε2uit = ε2
(µ(θ̂)

θ̂
uix

)

x
+ ε2N̂ix, i = 2, 3, (2.26)

where N̂i = (f̂i1 + f̂i2 + f̂i3)(θ̂x)2 + f̂i4θ̂xx, f̂ij = fij(ṽ, 0, θ̂), i = 2, 3, j = 1, 2, 3, 4.

Denote

gi(x, t) =

∫ x

−∞
ui(x, t)dx,

and then integrating (2.26) with respect to x, we have

git =
µ(θ̂)

θ̂
gixx + N̂i. (2.27)

For given θ̂, we can check that there exists a self-similar solution gi(η) with η = x√
1+t

and

the boundary conditions gi(−∞, t) = 0, gi(+∞, t) = δi, where δi satisfies 0 < δi < δ. As we

explained before, the choice of the constant δi is not important to our result. From (2.13), we

fix δi so that the function gi(x, t) is uniquely determined and the derivative gix = ui (i = 2, 3)

has the following property:

|εui| = |εgix| = O(1)δε(1 + t)−
1
2 e

− x2

4b(θ±)(1+t) as x→ ±∞,

where b(θ±) = max
{
a(θ±), µ(θ±)

θ±

}
.

In summary, we can define the profile with the ghost effect (v, εu, θ) for the Boltzmann

equation as follows. To satisfy the conservation of mass, we need

εvt − εu1x = 0.

By letting v = θ̂ + εθnf , we have

εu1 = ε[a(θ̂)θ̂x + εa(θ̂)θnf
x + εa′(θ̂)θ̂xθ

nf ] +
3ε2

5
N̂1. (2.28)

However, by plugging (2.28) into the momentum equation of (2.16), we have a non-conservative

term containing ε2N̂1t. To avoid this, we define

εu1 = ε[a(θ̂)θ̂x + εa(θ̂)θnf
x + εa′(θ̂)θ̂xθ

nf ].

Similarly, to avoid the non-conservative term (|u|2)t in the energy equation, we set

θ̃ = θns + εθnf − 1

2
|εu|2.
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Therefore, the profile (v, εu, θ) is finally defined as






v = θ̂ + εθnf ,

εu1 = ε[a(θ̂)θ̂x + εa(θ̂)θnf
x + εa′(θ̂)θ̂xθ

nf ],

εui = εgix, i = 2, 3,

θ = θ̂ + εθnf − 1

2
|εu|2,

(2.29)

where θ̂ is given by (2.12), θnf by (2.22) and gi (i = 2, 3) by (2.27). Then a direct but tedious

computation shows that





εvt − εu1x =
3ε2

5
N̂1x,

ε2u1t + px =
4ε2

3

(µ(θ)

v
u1x

)

x
+R1x,

ε2uit = ε2
(µ(θ)

v
uix

)

x
+ ε2N ix +Rix, i = 2, 3,

ε
(
e+

|εu|2
2

)

t
+ (εpu1)x = ε

(κ(θ)
v
θx

)

x
+Hx + ε2N1x − 2ε2

5
N̂1x +R4x,

(2.30)

where

R1 = ε2[a(θ̂)θ̂t + (a(θ̂)θnf )t] + p− p+ − 4

3
ε
(µ(θ)

v
εu1x

)
(2.31)

= O(1)δε2(1 + t)−1e
− x2

4c(θ±)(1+t) as x→ ±∞,

Ri = ε
[µ(θ̂)

θ̂
− µ(θ)

v

]
εuix + ε2(N̂i −N i)

= O(1)δε3(1 + t)−
3
2 e

− x2

4c(θ±)(1+t) as x→ ±∞, i = 2, 3,

R4 =
[5

3
ε(a(θ̂)θ̂x + a(θ̂)θnf

x + a′(θ̂)θ̂xθ
nf ) − ε

κ(θ)

v
θx

]

+ (p− p+)εu1 + ε2(N̂1 −N1) −H

= O(1)δε3(1 + t)−
3
2 e

− x2

4c(θ±)(1+t) as x→ ±∞,

N̂i = O(1)δ(1 + t)−1e
− x2

4a(θ±)(1+t) as x→ ±∞, i = 1, 2, 3 (2.32)

with c(θ±) = max{a(θ±), 1
2b(θ±)}, N i (i = 1, 2, 3) and H are the corresponding functions

defined in (2.18), (2.20) and (2.25) by substituting the variable (v, εu, θ) by the profile (v, εu, θ).

It is worthy of pointing out that the decay rate of Ri (i = 2, 3, 4) is of order ε3(1 + t)−
3
2 .

Furthermore, even though the decay rate of R1 is still ε2(1 + t)−1, it is sufficient to give

the desired a priori estimates through a subtle analysis coming from the intrinsic dissipation

mechanism in the momentum equations.

Define

M =
v−1

√
(2πRθ)3

exp
(
− |ξ − εu|2

2Rθ

)
, G0 = L−1

M

(1

v
P 1(ξ1Mx)

)
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and

f = M + εG0.

Then from (2.30) we have

εf t −
εu1

v
fx +

1

v
ξ1fx = LMG0 + εQ(G0, G0) +Rf , (2.33)

where

Rf = ε2B̂2(x, t, ξ)M + ε2G0t − ε
εu1

v
G0x + εP 1

( ε
v
G0x

)
− εQ(G0, G0)

and |B̂2(x, t, ξ)| = O(1)δ(1 + t)−
3
2 e

− x2

4c(θ±)(1+t) |ξ|3 as x→ ±∞.

Remark 2.3 From the definition of (ṽ, ũ1, θ̃ ) in (2.14) and the definition of (v, u1, θ ) in

(2.29), it holds that

|(v − ṽ, u1 − ũ1, θ − θ̃)(x, t)| = O(1)δε(1 + t)−
1
2 e

− x2

4c(θ±)(1+t) as x→ ±∞, (2.34)

which implies that the ansantz (v, u1, θ) approximates the solution (ṽ, ũ1, θ̃, P̃
∗) to the ghost-

effect system (2.10) as ε is small.

2.2 The main result

Now we consider (2.7)–(2.8) with the initial data

(v, u, θ)|t=0 = (v, u, θ)(x, 0), G(x, t)|t=0 = G(x, 0). (2.35)

We have the following theorem.

Theorem 2.1 Let (v, u, θ)(x, t) be the profile defined in (2.29) with strength δ = |θ+ − θ−|.
Then there exist small positive constants δ0 and ε0 and a global Maxwellian M∗ = M[v∗,u∗,θ∗],

such that when δ ≤ δ0 and ε ≤ ε0, the Cauchy problem (2.7)–(2.8) with the initial data (2.35)

has a unique global solution (v, u, θ,G) satisfying, for any sufficiently small but fixed positive

constant ϑ > 0,






‖(v − v, εu− εu, θ − θ)(t)‖2
L2

x
≤ C

√
δε3(1 + t)−1+C0

√
δ,

‖(v − v, εu− εu, θ − θ)x(t)‖2
L2

x
≤ C

√
δε2(1 + t)−

3
2 +ϑ+C0

√
δ,

‖fxx(t)‖2
L2

x(L2
ξ
( 1√

M∗
))

+ ‖(v − v, εu− εu, θ − θ)xx(t)‖2
L2

x
≤ C

√
δ(1 + t)−

3
2 +ϑ+C0

√
δ,

‖(G−G)(t)‖2
L2

x(L2
ξ
( 1√

M∗
))
≤ C

√
δ(1 + t)−

1
2 ,

‖(G−G)x(t)‖2
L2

x(L2
ξ
( 1√

M∗
))
≤ C

√
δ(1 + t)−

3
2+ϑ+C0

√
δ,

(2.36)

which implies that

{
‖(v − v, εu− εu, θ − θ)(t)‖L∞

x
≤ Cδ

1
4 ε

5
4 (1 + t)−

5
8 + 3

4 ϑ,

‖(v − v, εu− εu, θ − θ)x(t)‖L∞
x

≤ Cδ
1
4 ε

1
2 (1 + t)−

3
4
+ϑ,

(2.37)

where C is a positive constant independent of ε and δ.
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Proof The detailed proof of Theorem 2.1 can be found in my recent paper [20], jointly

with Wang and Yang.

Remark 2.4 The initial data (2.35) is chosen specially in Theorem 2.1. It is noted that

Theorem 2.1 is also true if the initial data belongs to some sets depending on ε.

The following result is about the justification of the expansion in the Knudsen number of

the Boltzmann equation (2.1) as for the thermal creep flow.

Corollary 2.1 Under the conditions of Theorem 2.1, from (2.34) and (2.37), it holds that

{
|(v − ṽ, θ − θ̃)(x, t)| ≤ Cε(1 + t)−

1
2 ,

|(u1 − ũ1)(x, t)| ≤ Cε
1
4 (1 + t)−

1
2 ,

(2.38)

that is, the fluid part (v, u1, θ) of the solution of (2.1) converges to the solution (ṽ, ũ1, θ̃) of

(2.10) in the sense of (2.38) as the Knudsen number ε tends to zero. As in Remark 2.1, the

flow (ṽ, ũ1, θ̃) is driven by θ̃x as shown in Figures 1–2, and therefore we justify the expansion in

the Knudsen number of the Boltzmann equation as for the thermal creep flow in a mathematical

setting rigorously.

From the definition of θ̂(η) with η = x√
1+t

in (2.12)–(2.13), it can be seen that θ̂ is mono-

tonic. To be definite and without loss of generality, let us assume that θ− < θ+, that is, θ̂ is

monotonically increasing. Then there exists η0 > 0 such that

θ̂′(η) > cη0δ for |η| ≤ η0, (2.39)

where cη0 is a positive constant depending on η0.

Corollary 2.2 Under the conditions of Theorem 2.1, for any fixed η0 > 0, there exists a

small positive constant ε1 = ε1(η0) ≤ ε0, such that if ε ≤ ε1, then it follows from (2.37) and

(2.39) that






0 <
cη0δ

C1

√
1 + t

<
1

C1
θ̂x ≤ u1(x, t) ≤ C1θ̂x,

0 <
1

2
θ̂x ≤ θx(x, t) ≤ 3

2
θ̂x

for |x| ≤ η0(1 + t)
1
2 , (2.40)

where C1 is a suitably large positive constant depending only on θ±. In particular, (2.40) implies

that the flow is driven by the gradient of the temperature, that is, the flow speed u1 is proportional

to the temperature gradient θx in the sense of (2.40) on the region increasing with the time rate

(1 + t)
1
2 .
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