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1 Introduction

This paper aims to report results that have been exposed during a talk given at the “In-

ternational Conference on Nonlinear and Multiscale Partial Differential Equations: Theory,

Numerics and Applications, Fudan University, Shanghai” in China September 16–20, 2013 in

honor of Luc Tartar. These results were first obtained in [5].

Turbulent flows are chaotic systems, highly sensitive to small changes in data (see [15]),

which means that any tiny change in body forces, any external action and/or initial data,

might give rise almost instantly to significant changes in the flow features.

To be more specific, let us consider an experiment which measures the velocity (or one of

its components) of a turbulent flow N times at a given point. Each measurement is carried

out under the same conditions (the same initial data, constant temperature, and the same

source). Although advanced technologies allow measurements to be made to high precision, the

experiment will yield N different results, because in reality infinitesimal changes occur during

each measurement that cannot be controlled.

Moreover, because of the structure of the turbulence, any code using the Navier-Stokes

equations (NSE for short)

{

∂tv + (v · ∇)v − ν∆v + ∇p = f ,

∇ · v = 0,
(1.1)

that specify flow motions (see [2, 5]), would be very complex and would require too many com-

putational resources in order to run the simulation. In the equations above, v = (v1, v2, v3) =

v(t,x) denotes the Eulerian velocity of the fluid, p = p(t,x) denotes its pressure, (t,x) ∈ R+×Ω
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for some bounded domain Ω ⊂ R
3, ν > 0 is the kinematic viscosity and f is a given external

force. Throughout this paper, we assume that v satisfies the no slip boundary condition, i.e.,

v|Γ = 0, and that v0 = v0(x) = v(0,x) is a given initial data.

A long time ago, Reynolds [14], Stokes [17], Boussinesq [3] and Prandtl [13] suggested to

decompose the flow field as the sum of a mean field and a fluctuation, i.e.,

v = v + v′, p = p+ p′. (1.2)

In those works, the means v and p were formally expressed by long time averages

v(x) = lim
T→∞

1

T

∫ T

0

v(t,x)dt, p(x) = lim
T→∞

1

T

∫ T

0

p(t,x)dt. (1.3)

Later, Taylor [20] and then Kolmogorov [7] considered statiscal means instead of long-time

averages (see details also in [5]).

We focus in this paper on the long-time average (1.3), and in particular:

(i) We show that the long-time average (v, p) is well-defined in some Sobolev spaces for

global turbulent solutions of the NSE (1.1), when the domain Ω is smooth enough, and under

appropriate assumptions on the source term f and the initial data v0.

(ii) We show that (v, p) satisfy the steady-state NSE, with an additional source term of the

form −∇σ(R), where σ(R) is a Reynolds stress. Finally, We show that σ(R) is dissipative.

We mention that recently Layton [10] showed that, for smooth solutions of the NSE that

satisfy the energy equality, the Reynolds stress is also dissipative when considering ensemble

averages.

This paper is organised as follows. Section 2 is devoted to outlining the functional frame-

work which we shall use, to recalling the basic Leray-Hopf result (see [6, 11]) that states the

existence of turbulent solutions of the NSE, and to deriving from the energy inequality long-time

estimates. We then proceed with the programme set out above in Section 3.

2 Framework and Basic Results

2.1 Functional spaces

We assume in this section that Γ is of class C1 for simplicity.1 For given q, p, s, we set

Lq(Ω) = {w = (w1, w2, w3); wi ∈ Lq(Ω), i = 1, 2, 3}, (2.1)

Ws,p(Ω) = {w = (w1, w2, w3); wi ∈ W s,p(Ω), i = 1, 2, 3}. (2.2)

We denote by ‖ · ‖q,p,Ω the standard Ws,p(Ω) norm. For any s > 1
2 , we consider the spaces

Hs(Ω) = {w = (w1, w2, w3); wi ∈ Hs(Ω), i = 1, 2, 3}, (2.3)

Hs
0(Ω) = {w ∈ Hs(Ω); γ0w = 0 on Γ}. (2.4)

In the above definition, γ0 is the trace operator, which is defined by

γ0ϕ = ϕ|Γ, ∀ϕ ∈ C∞(Ω),

that can be extended to Hs(Ω), when s > 1
2 , in a continuous operator with values in the space

Hs− 1

2 (Γ). When no risk of confusion occurs, we also denote γ0w = w. The space H1
0(Ω) is

equipped with its standard norm

‖w‖H1

0
(Ω) = ‖∇w‖0,2,Ω,

1Many results reported in this section also hold for Lipchitz domains (see for instance [18]).
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which is a norm equivalent to the ‖·‖1,2,Ω norm, due to the Poincaré’s inequality. Details about

Sobolev spaces can be found in [19]. We shall also make use of the following spaces:

Vdiv(Ω) = {ϕ = (ϕ1, ϕ2, ϕ3), ϕi ∈ D(Ω), ∇ ·ϕ = 0}, (2.5)

Vdiv(Ω) = {w ∈ H1
0(Ω), ∇ ·w = 0}, (2.6)

L2
div,0(Ω) = {w ∈ L2(Ω), γnw = 0 on Γ, ∇ · w = 0}. (2.7)

In the definition above, γn is the normal trace operator, which is defined by

γnϕ = ϕ · n|Γ, ∀ϕ ∈ C∞(Ω)3,

the vector n being the outward-pointing unit normal vector to Γ. We know that this operator

can be extended to L2
div(Ω), in a continuous operator with values in the space H− 1

2 (Γ) (see

[8]), where

L2
div(Ω) = {w ∈ L2(Ω); ∇ ·w ∈ L2(Ω)}.

2.2 Variational formulation of the NSE

For simplicity, we denote by (u, v) the duality pairing 〈Lp′

(Ω), Lp(Ω)〉,

(u, v)Ω =

∫

Ω

u(x)v(x)dx,

and we define the diffusion and transport operators by

a(v,w) = ν(∇v,∇w)Ω, b(z;v,w) = ((z · ∇)v,w)Ω, (2.8)

respectively. We know that these multilinear forms are continuous over H1(Ω) (see [5]). More-

over, we also know that, ∀ z,v ∈ Vdiv(Ω), ∀ p ∈ L2(Ω),

b(z;v,v) = 0, 〈∇p,v〉 = −(p,∇ · v) = 0. (2.9)

We assume from now on that

v0 ∈ L2
div,0(Ω), f ∈ L2

loc(R+,Vdiv(Ω)′). (2.10)

Following [6, 11], we say that v is a turbulent solution of the NSE (1.1) if and only if ∀T > 0,






v ∈ L2([0, T ],Vdiv(Ω)) ∩ Cw([0, T ],L2
div,0(Ω)),

∂tv ∈ L
4

3 [0, T ],Vdiv(Ω)′),
(2.11)

lim
t→0

‖v(t, ·) − v0(·)‖0,2,Ω = 0, (2.12)

and ∀w ∈ Vdiv(Ω),

d

dt
(v,w)Ω + b(z;v,w) + a(v,w) = 〈f ,w〉 in D′([0, T ]). (2.13)

Remark 2.1 According to the definition of the space Lp([0, T ], E) through the Bochner

integral, where E is any given Banach space (see [16]), (2.12) can be replaced by
∫ T

0

〈∂tv,w〉dt+

∫ T

0

∫

Ω

((v · ∇)v)(t,x) · w(t,x) dxdt

+ ν

∫ T

0

∫

Ω

∇v(t,x) : ∇w(t,x) dxdt

=

∫ T

0

〈f ,w〉dt, ∀w ∈ L4([0, T ],Vdiv(Ω)) (2.14)
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(see [5] for instance).

The following existence result is standard (see [6, 11]).

Theorem 2.1 The NSE (1.1) has a turbulent solution which satisfies the energy inequality

at every t ∈ [0, T ], i.e.,

d

2dt
‖v(t, ·)‖2

0,2,Ω + ν‖∇v(t, ·)‖2
0,2,Ω ≤ 〈f ,v〉 in D′([0, T ]). (2.15)

The uniqueness of this solution is still an open problem at the time of writing this paper.

Similarly, we do not know if the energy inequality (2.15) is an equality. The energy inequality

(2.15) also yields

1

2
‖v(t, ·)‖2

0,2,Ω + ν

∫ t

0

‖∇v‖2
0,2,Ω ≤

1

2
‖v0‖

2
0,2,Ω +

∫ t

0

〈f ,v〉 (2.16)

for all t > 0. The pressure is recovered from the De Rham’s theorem, leading to the following

statement (see for instance [9, 12, 18, 21]).

Lemma 2.1 There exists p ∈ D′([0, T ], L2
0(Ω)), such that (v, p) is a solution of the NSE

(1.1) in the sense of distributions.

In the statement above,

L2
0(Ω) =

{

q ∈ L2(Ω);

∫

Ω

q(x) dx = 0
}

.

The pressure p is considered as a constraint in this kind of formulation. Therefore, p is called

a Lagrange multiplier. It can also be proved that p ∈ L
5

4 (Q), Q = [0, T ] × Ω (see for instance

[4]).

2.3 Long-time estimate

From now on and until the end of the report, we assume that the source term f ∈ H−1(Ω) ⊂

Vdiv(Ω)′ does not depend on t, and we set F = ‖f‖−1,2,Ω.

The real number µ denotes the best constant in the Poincaré’s inequality, written as

C‖v‖0,2,Ω ≤ ‖∇v‖0,2,Ω, ∀v ∈ H1
0 (Ω).

The energy inequality (2.16) yields that ‖v(t, ·)‖0,2,Ω is bounded uniformly in t. To be more

specific, we prove the following proposition.

Proposition 2.1 Let v be any turbulent solution to the NSE. Then we have

‖v(t, ·)‖2
0,2,Ω ≤ ‖v0‖

2
0,2,Ω e−νµt +

F 2

ν2µ
(1 − e−νµt) (2.17)

for all t > 0.

Proof Set

W (t) = ‖v(t, ·)‖2
0,2,Ω, W (0) = ‖v0‖

2
0,2,Ω. (2.18)
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Energy inequality (2.15) yields

1

2
W ′(t) + ν

∫

Ω

|∇v|2 ≤ 〈f ,v〉 ≤
F 2

2ν
+
ν

2

∫

Ω

|∇v|2. (2.19)

We apply Poincaré’s inequality in the second term of the left-hand side of (2.19), leading to

W ′(t) + νµW (t) ≤
F 2

ν
. (2.20)

Therefore, W is a subsolution of the ordinary differential equation






λ′(t) + νµλ(t) =
F 2

ν
,

λ(0) = W (0),
(2.21)

the solution of which is

λ(t) = W (0)e−νµt +
F 2

ν2µ
(1 − e−νµt), (2.22)

and hence (2.17) holds.

As a consequence, we deduce that the turbulent solution is well-defined all over R+, and

hence can be extended to L∞(R+,L
2
div(Ω)) as a global time solution. In particular, we have

sup
t≥0

‖v(t, ·)‖2
0,2,Ω ≤ max

t≥0
K(t) = E∞, (2.23)

where

K(t) = ‖v0‖
2
0,2,Ω e−νµt +

F 2

ν2µ
(1 − e−νµt). (2.24)

We also deduce from (2.19) combined with (2.23), the following inequality:

1

t

∫ ∫

Qt

|∇v(s,x)|2dxds ≤
F 2

ν2
+

‖v0‖
2
0,2,Ω

νt
, ∀ t > 0. (2.25)

Moreover, from standard interpolation inequalites (see [5]), we infer that

‖v‖0, 10

3
,Qt

≤ C1E
1

5

∞‖∇v‖
3

5

0,2,Qt
, v ∈ L

10

3 (Qt), ∀ t > 0, (2.26)

leading to

(v · ∇)v ∈ L
5

4 (Qt), ‖(v · ∇)v‖0, 5

4
,Qt

≤ C1E
1

5

∞‖∇v‖
8

5

0,2,Qt
. (2.27)

3 Main Results

3.1 Long-time average operator

We start with the study of the mean operator Mt over [0, t], for a given fixed time t > 0,

expressed by

Mt(ψ) =
1

t

∫ t

0

ψ(s,x) ds, (3.1)

ψ = ψ(t,x) being any given field.
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Lemma 3.1 Let t > 0, Qt = [0, t] × Ω. Assume ψ ∈ Lp(Qt). Then Mt(ψ) ∈ Lp(Ω) and

one has

‖Mt(ψ)‖0,p,Ω ≤
1

t
1

p

‖ψ‖0,p,Qt
. (3.2)

Proof By the Hölder’s inequality, we have

∣

∣

∣

1

t

∫ t

0

ψ(s,x) ds
∣

∣

∣
≤

1

t

∫ t

0

|ψ(s,x)|p ds. (3.3)

Thus (3.2) follows by Fubini’s theorem.

We study the effect of Mt on (v, p) in defining

Vt(x) = Mt(v)(x), Pt(x) = Mt(p)(x). (3.4)

We deduce from the NSE that (Vt, Pt) is the solution of the following Stokes problem, at least

in the sense of distributions,











−ν∆Vt + ∇Pt = −Mt((v · ∇)v) + f + εt in Q,

∇ · Vt = 0 in Q,

Vt = 0 on Γ.

(3.5)

In (3.5),

εt(x) =
v0(x) − v(t,x)

t
, (3.6)

which goes to zero in L2(Ω) when t→ +∞, according to (2.23).

3.2 Existence of velocity-pressure long-time averages

In addition to the previous assumptions, we assume now that the domain Ω is of class C
9

4
,1,

and f ∈ L
5

4 (Ω) ∩ H−1(Ω) does not depend on t, v0 ∈ L2
div,0(Ω).

Theorem 3.1 There exists

(i) a sequence (tn)n∈N that goes to +∞ when n→ +∞,

(ii) (v, p) ∈ W2, 5

4 (Ω) × W1, 5

4 (Ω)/R,

(iii) F ∈ L
5

4 (Ω),

such that (Vtn
, Ptn

)n∈N converges to (v, p), weakly in W2, 5

4 (Ω) × W1, 5

4 (Ω)/R, that satisfies











(v · ∇)v − ν∆v + ∇p = −F + f in Ω,

∇ · v = 0 in Ω,

v = 0 on Γ,

(3.7)

in the sense of distributions.

Proof The proof is divided into 3 steps. We first find estimates and extract convergent

subsequences. We then take the limit in the equations, firstly in the conservation equation, and

then in the momentum equation.
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Step 1 We first show that the nonlinear term −Mt((v · ∇)v) is bounded in L
5

4 (Ω). By

(3.2), we have

‖Mt((v · ∇)v)‖0, 5

4
,Ω ≤

1

t
4

5

‖(v · ∇)v‖0, 5

4
,Qt
, (3.8)

where Qt = [0, t] × Ω. Combining this inequality with (2.23) and (2.27), we find

‖Mt((v · ∇)v)‖
5

4

0, 5

4
,Ω

≤ C
5

4

1 E
1

4

∞

(1

t

∫ t

0

∫

Ω

|∇v(s,x)|2dxds
)

, (3.9)

and hence (Mt((v · ∇)v))t>0 is bounded in L
5

4 (Ω), uniformly in t due to (2.25). Since Ω is of

class C1+ 5

4
,1 = C

9

4
,1, f ∈ L

5

4 (Ω) and

(Mt((v · ∇)v))t>0 and (εt)t>0 are bounded in L
5

4 (Ω), (3.10)

the results in [1] apply, that is, there exists a unique solution (Vt, Pt) of (3.5) that satisfies

‖Vt‖2, 5
4
,Ω + ‖Pt‖

W
1, 5

4 (Ω)R
≤ ‖Mt((v · ∇)v)‖0, 5

4
,Ω + ‖f‖0, 5

4
,Ω + ‖εt‖0, 5

4
,Ω. (3.11)

Because of uniqueness, this solution (Vt, Pt) is indeed that defined by (3.4). Statement (3.10)

combined with estimate (3.11) ensures that

{

(Vt)t>0 is bounded in W2, 5

4 (Ω),

(Pt)t>0 is bounded in W 1, 5
4 (Ω)/R.

(3.12)

Therefore, there exist

v ∈ W2, 5

4 (Ω), p ∈ W 1, 5

4 (Ω)/R, B ∈ L
5

4 (Ω),

and a sequence (tn)n∈N which goes to ∞ as n→ ∞, such that

lim
n→∞

Vtn
= v weakly in W2, 5

4 (Ω), (3.13)

lim
n→∞

Mtn
= p weakly in W 1, 5

4 (Ω)/R, (3.14)

lim
n→∞

Mtn
((v · ∇)v) = B weakly in L

5

4 (Ω)9. (3.15)

Moreover, W 2, 5
4 (Ω) →֒ W 1, 15

7 (Ω), the injection being compact. Then,

(Vtn
)n∈N converges to v strongly in W1, 15

7 (Ω). (3.16)

Step 2 We check that ∇·v = 0 in an appropriate Lebesgue space. To do so, we first prove

that ∇ · Vt = 0 in D′(QT ) regardless of T > 0. For any given ϕ ∈ D(QT ), we have

〈∇ ·Vt, ϕ〉 =

∫∫

Q

∇ ·
(1

t

∫ t

0

v(s,x)ds
)

ϕ(t,x) dxdt

= −

∫∫

Q

(

∫ t

0

v(s,x)ds
)

·
1

t
∇ϕ(t,x) dxdt

=

∫∫

Q

∫ t

0

v(t,x) ·
(

∫ t

0

1

s
∇ϕ(s,x)ds

)

dxdt, (3.17)



890 R. Lewandowski

which holds because ϕ ∈ D(QT ). Moreover, since ϕ ∈ D(QT ),

∫ t

0

1

s
∇ϕ(s,x)ds = ∇

∫ t

0

ϕ(s,x)

s
ds = ∇ψ(t,x), ∀ t ∈ [0, T ]. (3.18)

Therefore, we deduce from (3.17)–(3.18) that

〈∇ · Vt, ϕ〉 = 〈v,∇ψ〉 = −〈∇ · v, ψ〉 = 0. (3.19)

Because ∇ · v = 0, we have 〈∇ ·Vt, ϕ〉 = 0. Then,

∇ ·Vt = 0 in D′(QT ), ∀T > 0. (3.20)

Furthermore, by setting V0 = v0, we get Vt ∈ C([0, T ],L2(Ω)), so that (3.20) becomes

∇ ·Vt = 0 in H−1(Ω), ∀ t ∈ [0, T ],

and in reality in L
15

7 (Ω) by (3.16), and regardless of T > 0, which allows us to take the limit

as tn → ∞, leading to ∇ · v = 0 in L
15

7 (Ω).

Step 3 We now take the limit in the momentum equation. Let ϕ ∈ D(Ω). Since

ϕ,∇ϕ,∆ϕ ∈ L5(Ω), we deduce from (3.13)–(3.15) and the convergence to zero of (εtn
)n∈N

in all Lp(Ω), p ≤ 2, on the one hand,

lim
n→∞

〈Mtn
((v · ∇)v),ϕ〉 = lim

n→∞
(Mtn

((v · ∇)v),ϕ)Ω = (B,ϕ)Ω = 〈B,ϕ〉, (3.21)

and on the other hand,

lim
n→∞

〈εtn
,ϕ〉 = lim

n→∞
(εtn

,ϕ)Ω = 0,

lim
n→∞

〈−∆Vtn
,ϕ〉 = lim

n→∞
(Vtn

,−∆ϕ)Ω = (v,−∆ϕ)Ω = (−∆v,ϕ)Ω,

lim
n→∞

〈∇Ptn
,ϕ〉 = − lim

n→∞
(Ptn

,∇ · ϕ)Ω = −(p,∇ · ϕ)Ω = 〈∇p,ϕ〉,

which shows by (3.5) that (v, p) satisfies in D′(Ω),











−ν∆v + ∇p = −B + f in Ω,

∇ · v = 0 in Ω,

v = 0 on Γ.

(3.22)

Let F denote the tensor defined by

F = B− (v · ∇)v = B−∇ · (v ⊗ v). (3.23)

As W 2, 5
4 (Ω) →֒ L

15

2 (Ω) and W 2, 5

4 (Ω) →֒W 1, 15

7 (Ω), we get

∇v ∈ L
15

7 (Ω)3 and v ∈ L
15

2 (Ω), so then (v · ∇)v ∈ L
15

9 (Ω) →֒ L
5

4 (Ω),

and we deduce that F ∈ L
5

4 (Ω). Hence (v, p) satisfies (3.7) in the sense of distributions.

Corollary 3.1 The long-time velocity v is a solution of the following variational problem:

b(v;v,w) + a(v,w) = −(F,w)Ω + (f ,w)Ω, ∀w ∈ W1,5
div(Ω), (3.24)

the operators a and b being defined by (2.8).
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Remark 3.1 The proof of Theorem 3.1 contains the proof of the general identity, ∀ p ≥ 1,

∀T > 0, ∀ t ∈ [0, T ],

∇ ·Mt(ϕ) = Mt(∇ ·ϕ), ∀ϕ ∈ L1([0, T ],W1,p(Ω)). (3.25)

Furthermore, the same reasoning also yields

∇Mt(ϕ) = Mt(∇ϕ), (3.26)

which is called the Reynolds rule.

3.3 Reynolds decomposition

We aim to identify the source term F that appears in (3.7), to link the results of Theorem 3.1

with the usual approach to modelling turbulence, by introducing the Reynolds decomposition

and the Reynolds stress.

Let v be a given turbulent solution of the NSE, and p be its associated pressure. We respect

the conditions for the application of Theorem 3.1, which ensures that we can split (v, p) into

v(t,x) = v(x) + v′(t,x), (3.27)

p(t,x) = p(x) + p′(t,x), (3.28)

where (v′, p′) stands for the fluctuations around the mean field (v, p). We call the decomposition

(3.27)–(3.28) a Reynolds decomposition.

To identify the source term F in (3.7), we start from (3.5) and notice that, according to the

Reynolds rule (3.26),

Mt((v · ∇)v) = Mt(∇ · (v ⊗ v)) = ∇ ·Mt(v ⊗ v).

We shall find out from the Reynolds decomposition that it suffices to study the convergence of

Mt(v
′ ⊗ v′)(x) =

1

t

∫ t

0

v′(s,x) ⊗ v′(s,x) ds (3.29)

as t→ ∞, which yields what we call a Reynolds stress, denoted by σ(R).

Remark 3.2 The definition of (v, p), and hence the Reynolds decomposition (3.27)–(3.28)

and the Reynolds stress that we shall find, depend on the sequence (tn)n∈N
that appears in

Theorem 3.1, and we do not know if the limit of (Vt, Pt)t>0 is solely defined when t→ ∞. As

a result, we do not know if F is solely defined either, and even if it were, it is not known if (3.7)

has a unique solution. All of these imply that without any further information, this analysis

will not provide means and decomposition that are intrinsically defined.

3.4 Reynolds stress

Theorem 3.2 Let (tn)n∈N be as in Theorem 3.1 and F as in (3.7). Then there exists

σ(R) ∈ L
5

3 (Ω)3 such that

(i) we can extract from (Mtn
(v′ ⊗ v′))n∈N a subsequence, that we denote by (Mtn

(v′ ⊗

v′))n∈N, which converges to σ(R) weakly in L
5

3 (Ω);

(ii) F = ∇ · σ(R) in D′(Ω);
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(iii) the following energy balance holds:

ν‖∇v‖2
0,2,Ω + 〈F,v〉 = (f ,v)Ω; (3.30)

(iv) F is dissipative, in the sense

〈F,v〉 ≥ 0. (3.31)

Proof Remember that Mt is defined by (3.1). We derive from (3.27)–(3.28) that

Vtn
= v +Mtn

(v′), Ptn
= p+Mtn

(p′). (3.32)

Therefore we deduce

v′ = lim
n→∞

Mtn
(v′) = 0, p′ = lim

n→∞
Mtn

(p′) = 0, (3.33)

the limit being weak in W2, 5
4 (Ω) and W1, 5

4 (Ω)/R, respectively. In addition (tn)n∈N can be

chosen such that the convergence of (Mtn
(v′))n∈N toward 0 is strong in L

15

2 (Ω) because the

injection

W 2, 5
4 (Ω) →֒ L

15

2 (Ω)

is compact. We now demonstrate each item of the above statement.

Proof of (i) By using decomposition (3.27), we write

v ⊗ v = v ⊗ v + v′ ⊗ v + v ⊗ v′ + v′ ⊗ v′, (3.34)

leading to

Mt(v ⊗ v) = v ⊗ v +Mt(v
′) ⊗ v + v ⊗Mt(v

′) +Mt(v
′ ⊗ v′) (3.35)

for each t > 0. As both v and Mt(v
′) ∈ L

15

2 (Ω), we obtain from Hölder’s inequality,

Mt(v
′) ⊗ v and v ⊗Mt(v

′) ∈ L1 5

4 (Ω)9 →֒ L
5

3 (Ω)9.

In particular, (3.33) yields

lim
n→∞

Mtn
(v′) ⊗ v = lim

n→∞
v ⊗Mtn

(v′) = 0, (3.36)

strongly in L
5

3 (Ω)9. Moreover, we infer from (3.2), combined with (2.23) and (2.26), that

‖Mt(v ⊗ v)‖0, 5

3
,Ω ≤ C

10

3

1 E
2

3

∞

(1

t

∫ t

0

∫

Ω

|∇v|2dxds
)

. (3.37)

We are led to rewrite (3.35) in the form of the asymptotic expansion, which holds in L
5

3 (Ω)9,

Mtn
(v ⊗ v) = v ⊗ v +Mtn

(v′ ⊗ v′) + o(1). (3.38)

We deduce from the estimate (3.37) that (Mtn
(v ⊗ v))n∈N is bounded in L

5

3 (Ω). Therefore,

we can extract a subsequence (written likewise), which converges weakly in L
5

3 (Ω) to some

ϑ ∈ L
5

3 (Ω)9. The expansion (3.38) shows that the sequence (Mtn
(v′⊗v′))n∈N weakly converges

to σ(R) ∈ L
5

3 (Ω)9, linked to ϑ by the relation

σ(R) = ϑ− v ⊗ v, (3.39)
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which proves (i).

Proof of (ii) According to (3.15) and the Reynolds rule (3.26), we note that ∇ · ϑ = B ∈

L
5

4 (Ω)9, and therefore (3.23) combined with (3.39) yields F = ∇ · σ(R).

Proof of (iii) As already quoted, v ∈ W2, 5
4 (Ω) →֒ W1, 15

7 (Ω) →֒ H1(Ω). Moreover, since

v = 0 on Γ and ∇ · v = 0, we have v ∈ Vdiv(Ω). Consequently, we can take v as a test in

formulation (2.13), which yields

d

dt
(v,v)Ω + b(v;v,v) + a(v,v) = (f ,v)Ω. (3.40)

We integrate (3.40) over [0, t] and divide the result by t, leading to

1

t
(v(t, ·) − v0(·),v(·))Ω + (Mt((v · ∇)v),v)Ω + ν(∇Vt,∇v)Ω = (f ,v)Ω. (3.41)

We take the limit of each term in (3.41). Firstly

1

t
|(v(t, ·) − v0(·),v(·))Ω| ≤

1

t
‖v(t, ·) − v0(·)‖0,2,Ω‖v‖0,2,Ω, (3.42)

which goes to zero when t→ ∞, due to the L2 uniform bound (2.23). We also have v ∈ L
15

2 (Ω),

and Mtn
((v · ∇)v) converges to B in L

5

4 (Ω)9. Fortunately, we observe that 2
15 + 4

5 = 14
15 < 1,

and thus, according to (3.23),

lim
n→∞

(Mtn
((v · ∇)v),v)Ω = (B,v)Ω = (F,v)Ω + ((v · ∇)v,v)Ω = (F,v)Ω, (3.43)

since it is easily verified from ∇ · v = 0 that ((v · ∇)v,v)Ω = 0.

Finally, we deduce from Theorem 3.1 and Sobolev embeddings that (∇Vtn
)n∈N converges

strongly to ∇v in Lq(Ω) for all q < 15
2 , and in particular, for q = 2, leading to

lim
n→∞

(∇Vtn
,∇v)Ω = (∇v,∇v)Ω = ‖∇v‖2

0,2,Ω, (3.44)

so the energy balance (3.30) follows from (3.41)–(3.44).

Proof of (iv) We start from the energy inequality (2.16) that we divide by tn, and we let

n go to infinity. Using again the strong convergence of (∇Vtn
)n∈N to ∇v in L2(Ω) and the L2

uniform bound as above, we obtain

ν‖∇v‖0,2,Ω ≤ (f ,v)Ω, (3.45)

which combined with (3.30) yields (3.31) and concludes the proof.

In summary, (v, p) ∈ W2, 5
4 (Ω) × W1, 5

4 (Ω)/R satisfies











(v · ∇)v − ν∆v + ∇p = −∇ · σ(R) + f in Ω,

∇ · v = 0 in Ω,

v = 0 on Γ,

(3.46)

in the sense of distributions, where in addition, (∇ · σ(R),v)Ω ≥ 0.
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