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1 Introduction

Consider the following first-order quasilinear hyperbolic system with one space variable:

∂u

∂t
+A(u)

∂u

∂x
= 0, 0 < x < L, (1.1)

where u = (u1, · · · , un)T∈ U is the unknown vector function of (t, x), taking values in a bounded
and connected domain U ⊂ R

n (for convenience, all equations hold for u ∈ U throughout this
paper, unless otherwise indicated), and A(u) = (aij(u)) is a C2 smooth n× n matrix function.
By hyperbolicity, the coefficient matrix A(u) possesses n real eigenvalues λi(u) (i = 1, · · · , n)
a complete set of left eigenvectors

li(u) = (li1(u), · · · , lin(u)), i = 1, · · · , n
satisfying

li(u)A(u) = λi(u)li(u), i = 1, · · · , n (1.2)

and

det(lij(u)) �= 0, (1.3)

and a complete set of right eigenvectors

ri(u) = (r1i(u), · · · , rni(u))T, i = 1, · · · , n
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satisfying

A(u)ri(u) = λi(u)ri(u), i = 1, · · · , n (1.4)

and

det(rij(u)) �= 0. (1.5)

Without loss of generality, one may assume that

li(u)rj(u) ≡ δij , i, j = 1, · · · , n, (1.6)

where δij is the Kronecker symbol. Suppose that λi(u), li(u) and ri(u) (i = 1, · · · , n) are also C2

smooth with respect to u. Since, generally speaking, first-order quasilinear hyperbolic systems
with zero eigenvalues do not have exact boundary controllability (see [12]), we assume that the
system possesses no zero eigenvalue, namely,

λr(u) < 0 < λs(u), r = 1, · · · ,m, s = m+ 1, · · · , n. (1.7)

Besides, for the simplicity of analyzing simple wave solutions, we assume the following condition
for each eigenvalue:

∇λi(u) · ri(u) ≥ 0, ∀u ∈ U , i = 1, · · · , n. (1.8)

Remark 1.1 For each eigenvalue λi(u) of the system, if either it is linearly degenerate,
namely,

∇λi(u) · ri(u) ≡ 0, ∀u ∈ U ,
or it is genuinely nonlinear, namely,

∇λi(u) · ri(u) ≡ 1, ∀u ∈ U ,

then the assumption (1.8) obviously holds.

We consider the mixed initial-boundary value problem for the system (1.1) with the initial
condition

t = 0 : u = φ(x) ∈ C1([0, L];U) (1.9)

and the following boundary conditions:

x = 0 : Hs(t, u) = hs(t), s = m+ 1, · · · , n, (1.10)

x = L : Hr(t, u) = hr(t), r = 1, · · · ,m, (1.11)

where Hi( i = 1, · · · , n) are C1 functions and satisfy the following solvability conditions:

det(∇uHs(t, u) · rs′ (u))n
s,s′=m+1 �= 0, ∀t ≥ 0, ∀u ∈ U , (1.12)

det(∇uHr(t, u) · rr′(u))m
r,r′=1 �= 0, ∀t ≥ 0, ∀u ∈ U , (1.13)

and hi(t) ∈ C1( i = 1, · · · , n) will be taken as boundary controls.
This mixed initial-boundary value problem (1.1) and (1.9)–(1.11) admits a unique local C1

solution u = u(t, x) for any given initial data satisfying suitable C1 compatibility conditions
(see [13]). Many papers, including the present one, consider the following problem of exact
boundary controllability: For any given initial data φ(x) and final data ψ(x) ∈ C1([0, L];U),
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under certain reasonable assumptions, it is asked to find a controlling time T0 > 0 and n

boundary controls
hi(t) ∈ C1[0, T0], i = 1, · · · , n,

such that the mixed initial-boundary value problem (1.1) and (1.9)–(1.11) admits a unique C1

solution u = u(t, x) on the domain [0, T0] × [0, L], which verifies the following final condition:

t = T0 : u = ψ(x). (1.14)

For linear hyperbolic systems, the exact boundary controllability has a complete theory (see
[5, 14]). For semilinear hyperbolic systems, one can refer to [4] and [19–20]. For quasilinear
hyperbolic systems, the theory of local exact boundary controllability has been established
(see [1, 7, 9–10]). Roughly speaking, if the initial data φ(x) and the final data ψ(x) are both
small C1 perturbations around one constant equilibrium of the system, then one can find a
sharp controlling time T0 and use some or all of the boundary functions hi(t) ( i = 1, · · · , n) as
controls to achieve the exact boundary controllability in the framework of C1 classical solutions.
Since the whole controlling process is achieved around one point in the phase space, this result
is called to be the local controllability.

Now it is natural to ask that for general initial data and final data, whether or not one
has the global controllability. Since, in the general situation, the classical solutions may blow-
up in a finite time, the general global exact boundary controllability is hard to be built in
the framework of classical solutions. However, for linearly degenerate hyperbolic systems of
the diagonal form, since the blowup can be prevented for classical solutions, [18] presents the
corresponding results on the global exact boundary controllability.

On the other hand, we may consider the global exact boundary controllability in a slightly
different sense as follows. If the initial data and the final data are small C1 perturbations of
two distinct constant equilibria u∗ and u∗∗ of the system, namely,

‖φ(x) − u∗‖(C1[0,L])n 
 1, (1.15)

‖ψ(x) − u∗∗‖(C1[0,L])n 
 1, (1.16)

we wish to get the corresponding exact boundary controllability. For the results in this aspect,
one may refer to [2, 8, 11, 15] for hyperbolic systems of the diagonal form and wave equations,
and [3] for the Saint-Venant equations with slope and friction, which is a special hyperbolic
system of the diagonal form with source terms. The main method of these works is successively
using exact boundary controllable neighborhoods of finitely many constant equilibria of the
system to cover a curve connecting u∗ and u∗∗ composed of equilibria of the system, and
then using the local exact boundary controllability to move the solution step by step from the
controllable neighborhood of u∗ to the one of u∗∗. In this way, the total controlling time of the
global exact boundary controllability might be quite long. We point out that up to now, all
the known results on the global exact boundary controllability are only restricted to quasilinear
hyperbolic systems of the diagonal form, but not on the general quasilinear hyperbolic systems.

In this paper, the general quasilinear hyperbolic system (1.1) (not necessarily of the diagonal
form) is concerned with the initial data φ(x) and the final data ψ(x) as C1 perturbations of two
distinct constant equilibria u∗ and u∗∗, respectively. Besides, we hope to reduce the controlling
time of the global exact boundary controllability. Our strategy is listed as follows. The first
step is connecting those two constant equilibria with a set of characteristic trajectories of the
system, and along these characteristic trajectories we can construct the simple wave solutions
of the system which take values on them, respectively. By this analysis, a special solution
u = u(t, x) to system (1.1) with

u(T ′, x) ≡ u∗ and u(T ′′, x) ≡ u∗∗
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can be constructed with a possibly large C1 norm, which gives the exact boundary control-
lability connecting those two equilibria. Based on this, the desired global exact boundary
controllability can then be achieved by applying the local exact boundary controllability near
those two equilibria, respectively. Since the simple wave solutions used in this process may pos-
sess a large C1 norm, the values taken by this solution may change rapidly in the phase space,
which overcomes the long-time consumption of the original pointwise extension control method.
By means of characteristic trajectories, we are able to develop this simple wave method for the
general quasilinear hyperbolic systems.

In §2, special solutions with monotone initial data are analyzed for the transport equa-
tion. Based on this, in §3, simple wave solutions to system (1.1) are constructed along the
corresponding characteristic trajectories and are combined to form a special solution to system
(1.1) on the domain [0, T0] × [0, L] with u∗ as its initial data and u∗∗ as its final data. This
special solution, together with the local exact boundary controllability, then leads to the global
exact boundary controllability. In §4, the quasilinear hyperbolic system of the diagonal form
is analyzed as an example to show the reduction of the controlling time when using this new
method.

2 Special Solutions to the Transport Equation

In this section, we consider the following transport equation:

∂z

∂t
+ λ(z)

∂z

∂x
= 0, x ∈ R, t ≥ 0, (2.1)

where z is the unknown function of (t, x), taking its values on a closed interval I ⊂ R, and
λ(z) ∈ C1(I; R) satisfies

dλ(z)
dz

≥ 0, ∀z ∈ I. (2.2)

Consider the Cauchy problem of (2.1) with the following initial condition:

t = 0 : z = ϕ(x) ∈ C1(R; I). (2.3)

From Theorem 1.1 of [6], we have the following lemma.

Lemma 2.1 Under the hypothesis (2.2), if

ϕ′(x) ≥ 0, ∀x ∈ R,

then the Cauchy problem (2.1) and (2.3) admits a unique global C1 solution

z = z(t, x) ∈ C1([0,∞) × R; I)

on t ≥ 0.

Using this result, some C1 solutions with specific properties to the equation (2.1) can be
constructed as follows.

Lemma 2.2 Under the hypothesis (2.2) and

λ(z) �= 0, (2.4)

if z∗ and z∗∗ are two given points on I, then for

T1 = max
z∈I

L

|λ(z)| (2.5)
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and any given δ > 0, there exists a C1 solution

z = z(t, x) ∈ C1([0, T1 + δ] × [0, L]; I)

to the equation (2.1), satisfying

z(0, x) = z∗, ∀x ∈ [0, L] (2.6)

and

z(T1 + δ, x) = z∗∗, ∀x ∈ [0, L]. (2.7)

Proof Set
θ = δ min

z∈I
|λ(z)|.

We construct z(t, x) according to the following different cases.

Case 1 (Forward rarefaction waves) If λ(z) > 0 and z∗∗ ≤ z∗, one may choose a monotone
function ϕ ∈ C1(R; I) satisfying

ϕ′(x) ≥0, ∀x ∈ R,

ϕ(x) ≡z∗, ∀x ≥ −1
3
θ,

ϕ(x) ≡z∗∗, ∀x ≤ −2
3
θ.

Then by Lemma 2.1, the Cauchy problem (2.1) and (2.3) admits a unique C1 solution z = z(t, x)
on t ≥ 0. Moreover, by the method of characteristics, one has

z(t, x) ≡z∗ for x− λ(z∗)t ≥ −1
3
θ,

z(t, x) ≡z∗∗ for x− λ(z∗∗)t ≤ −2
3
θ,

which imply that z = z(t, x) satisfies all the requirements of Lemma 2.2 on the domain [0, T1 +
δ] × [0, L] (see Fig. 1).

δ

− −

**

*

Figure 1 Forward rarefaction waves in the case λ(z) > 0 and z∗∗ ≤ z∗

Case 2 (Backward rarefaction waves) If λ(z) < 0 and z∗∗ ≥ z∗, one may choose a monotone
function ϕ ∈ C1(R; I) satisfying

ϕ′(x) ≥0, ∀x ∈ R,

ϕ(x) ≡z∗∗, ∀x ≥ L+
2
3
θ,

ϕ(x) ≡z∗, ∀x ≤ L+
1
3
θ.
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Then by Lemma 2.1, the Cauchy problem (2.1) and (2.3) admits a unique C1 solution z = z(t, x)
on t ≥ 0. Moreover, by the method of characteristics, it is easy to show that z = z(t, x) fulfills
all the requirements of Lemma 2.2 on the domain [0, T1 + δ] × [0, L] (see Fig. 2).

δ

**

*

Figure 2 Backward rarefaction waves in the case λ(z) < 0 and z∗∗ ≥ z∗

Case 3 (Compression waves) If λ(z) > 0 and z∗∗ > z∗, or λ(z) < 0 and z∗∗ < z∗, using
the results in Cases 1–2, one can get a solution

z = ẑ(t, x) ∈ C1([0, T1 + δ] × [0, L]; I)

to the equation (2.1), satisfying

ẑ(0, x) ≡ z∗∗, ∀x ∈ [0, L]

and

ẑ(T1 + δ, x) ≡ z∗, ∀x ∈ [0, L].

Setting

z(t, x) = ẑ(T1 + δ − t, L− x), t ∈ [0, T1 + δ], x ∈ [0, L],

it is easy to show that z = z(t, x) is a C1 solution to the equation (2.1) on the domain [0, T1 +
δ] × [0, L], which fulfills all the requirements of Lemma 2.2 (see Fig. 3).

δ

− −

ˆ *

ˆ **

**

*

δ

ˆ **

ˆ *

*

**

Figure 3 Compression waves
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3 Simple Wave Solutions to Quasilinear Hyperbolic Systems and Global
Exact Boundary Controllability

In this section, simple wave solutions to the quasilinear hyperbolic system (1.1), suitably
constructed based on the result of §2, are combined on the stripe x ∈ [0, L] to form a desired
special solution, and then the global exact boundary controllability can be realized.

For i = 1, · · · , n, the curve u = u(i)(s, uB) defined in U by the following initial value problem
of ODE: ⎧⎨

⎩
d
ds
u(i)(s, uB) = ri(u(i)(s, uB)),

u(i)(0, uB) = uB
(3.1)

is called the ith characteristic trajectory passing through the point u = uB (see [6]). By hy-
perbolicity of the system, there are n distinct characteristic trajectories passing through any
given point uB ∈ U , and they form a set of local curved coordinates in the neighborhood of uB.
Therefore, for any given points u∗ and u∗∗ in U , one can find a set of (finitely many) charac-
teristic trajectories to connect them successively. In other words, there exist K characteristic
trajectories u(ik)(s, u〈k−1〉) and K real numbers sk ∈ R ( k = 1, · · · ,K), such that

u〈k〉 = u(ik)(sk, u
〈k−1〉), 1 ≤ k ≤ K, (3.2)

and

u〈K〉 = u∗∗,

u〈0〉 = u∗.

Obviously, the selection of these characteristic trajectories is not unique. In applications, we
may choose the one with the least number of characteristic trajectories.

On each given characteristic trajectory, we have the following lemma.

Lemma 3.1 Suppose that u = u(i)(s, uB) is the ith characteristic trajectory of the system
(1.1) passing through u = uB, i = 1, · · · , n, and z = z(t, x) is a C1 solution to the following
transport equation:

∂z

∂t
+ λi(u(i)(z, uB))

∂z

∂x
= 0 (3.3)

on the domain [0, T ]× [0, L]. Then u = u(i)(z(t, x), uB) is a C1 solution to the system (1.1) on
the domain [0, T ]× [0, L].

Proof Due to the smoothness assumption of the right eigenvector ri(u), u = u(i)(z(t, x), uB)
is a C1 function on the domain [0, T ]× [0, L]. Substituting it into the equation (1.1) and noting
(3.1) and (1.4), we have

∂u

∂t
+A(u)

∂u

∂x
=

(∂z
∂t
ri(u)

)
+A(u)

( ∂z
∂x
ri(u)

)

=
(∂z
∂t

+ λi(u(i)(z, uB))
∂z

∂x

)
ri(u)

= 0.
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Note that the solution u = u(i)(z(t, x), uB) given above depends on one scalar function
z = z(t, x), which means it is a simple wave solution. Moreover, it is easy to show that for
i = 1, · · · , n, if (1.8) holds for the ith eigenvalue λi(u) of the system (1.1), then the function
λ(z) = λi(u(i)(z, uB)) satisfies (2.2). Then, using Lemmas 2.2 and 3.1, we get the following
corollary.

Corollary 3.1 Under hypotheses (1.7)–(1.8), if uE ∈ U is located on the ith characteristic
trajectory passing through uB ∈ U , namely,

uE = u(i)(sE , uB)

for sE ∈ R, then for

Ti,∗ = max
0≤s≤sE

or sE≤s≤0

L

|λi(u(i)(s, uB))| (3.4)

and any given δ > 0, there exists a C1 solution u = u(t, x) ∈ C1([0, Ti,∗ + δ] × [0, L];U) to the
system (1.1), satisfying

u(0, x) ≡ uB, ∀x ∈ [0, L] (3.5)

and

u(Ti,∗ + δ, x) ≡ uE , ∀x ∈ [0, L]. (3.6)

By this result, for k = 1, · · · ,K, on each characteristic trajectory u(ik)(s, u〈k−1〉) a simple
wave solution can be constructed to get a C1 solution developing from u〈k−1〉 to u〈k〉. After
suitable translations with respect to t, these solutions can be combined to get the following
result.

Proposition 3.1 Under hypotheses (1.7)–(1.8), for any given points u∗ and u∗∗ in U , if
they can be connected by K characteristic trajectories of the system (1.1), then for

T∗ = max
1≤i≤n

sup
u∈U

L

|λi(u)| (3.7)

and any given T0 > KT∗, there exists a C1 solution u = u(t, x) ∈ C1([0, T0] × [0, L];U) to the
system (1.1) on the domain [0, T0] × [0, L], satisfying

u(0, x) ≡ u∗, ∀x ∈ [0, L] (3.8)

and

u(T0, x) ≡ u∗∗, ∀x ∈ [0, L]. (3.9)

Remark 3.1 If we choose ϕ(x) ∈ Ck(R) (k ≥ 1) in the above process, u(t, x) may have
higher regularity: u(t, x) ∈ Ck([0, T0] × [0, L];U).
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Now the global exact boundary controllability can be precisely presented and proved by
means of Proposition 3.1 and the local exact boundary controllability.

Theorem 3.1 Under hypotheses (1.7)–(1.8) and (1.12)–(1.13), for any given initial data
φ(x) and final data ψ(x) satisfying (1.15)–(1.16), where u∗ and u∗∗ are constant equilibria of
the system (1.1), being connected by K characteristic trajectories, let T∗ be defined by (3.7).
Then for any given T0 > (K + 2)T∗, there exist C1 controls hi(t) (i = 1, · · · , n) on [0, T0],
such that the mixed initial-boundary value problem (1.1) and (1.9)–(1.11) admits a unique C1

solution u = u(t, x) on the domain [0, T0] × [0, L], which verifies exactly the final condition
(1.14).

Proof By the local exact boundary controllability given in [7, 10], a local control can be
performed to get a C1 solution u = u(t, x) on the domain [0, T∗ + δ]× [0, L] to the system (1.1),
satisfying

u(0, x) = φ(x), u(T∗ + δ, x) = u∗.

Then by Proposition 3.1, a C1 solution u = u(t, x) to the system (1.1) can be constructed on
the domain [T∗ + δ, (K + 1)(T∗ + δ)] × [0, L], satisfying

u(T∗ + δ, x) = u∗, u((K + 1)(T∗ + δ), x) = u∗∗.

Finally, another local control can be performed to get a C1 solution u = u(t, x) to the system
(1.1) on the domain [(K + 1)(T∗ + δ), (K + 2)(T∗ + δ)] × [0, L], satisfying

u((K + 1)(T∗ + δ), x) = u∗∗, u((K + 2)(T∗ + δ), x) = ψ(x).

Now a special solution u(t, x) ∈ C1([0, T0] × [0, L];U) to the system (1.1), which possesses the
initial data (1.9) and the final data (1.14), can be constructed just by combining the above three
solutions. Substituting this solution into boundary conditions (1.10)–(1.11), one can obtain the
C1 boundary controls

hs(t) = Hs(t, u(t, 0)), s = m+ 1, · · · , n, (3.10)

hr(t) = Hr(t, u(t, L)), r = 1, · · · ,m. (3.11)

Obviously, for these boundary controls, the aforementioned solution u = u(t, x) is the unique
C1 solution to the corresponding mixed initial-boundary value problem (1.1) and (1.9)–(1.11).
Moreover, u = u(t, x) satisfies the final condition (1.14).

4 Further Discussions

First, we take the quasilinear hyperbolic system of the diagonal form as an example to show
the validity of our methods as well as the reduction of the controlling time.

Consider the following quasilinear hyperbolic system of the diagonal form:

∂ui

∂t
+ λi(u)

∂ui

∂x
= 0, i = 1, · · · , n, (4.1)
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where λi(u) (i = 1, · · · , n) are smooth and bounded, satisfying

λr(u) < 0 < λs(u), ∀u ∈ R
n, r = 1, · · · ,m, s = m+ 1, · · · , n (4.2)

and

∂λi(u)
∂ui

≥ 0, ∀u ∈ R
n, i = 1, · · · , n. (4.3)

For the following boundary conditions given at x = 0 and x = L:

x = 0 : us = Gs(t, u1, · · · , um) + hs(t), s = m+ 1, · · · , n, (4.4)

x = L : ur = Gr(t, um+1, · · · , un) + hr(t), r = 1, · · · ,m, (4.5)

we hope to find suitable boundary controls hi(t) (i = 1, · · · , n) such that there exists a C1

solution u = u(t, x) which develops from the initial data

t = 0 : u = φ(x) (4.6)

in a neighborhood of one given constant equilibrium to the final data

t = T0 : u = ψ(x) (4.7)

in a neighborhood of another given constant equilibrium. Since the ith characteristic trajectory
of (4.1) passing through any given point is a straight line parallel to the ui axis, it is possible
to give a much clearer estimate on the controlling time. Actually, from Theorem 3.1 we have
the following result.

Corollary 4.1 Under hypotheses (4.2)–(4.3), for any given points u∗ and u∗∗ in R
n, any

given controlling time

T0 > (n+ 2) max
1≤i≤n

sup
u∈U

L

|λi(u)|
and any given initial data φ(x) and final data ψ(x) satisfying

‖φ− u∗‖(C1[0,L])n 
 1 and ‖ψ − u∗∗‖(C1[0,L])n 
 1,

there exist boundary controls hi(t) ∈ C1[0, T0] (i = 1, · · · , n) such that the mixed initial-boundary
value problem (4.1) and (4.4)–(4.6) admits a unique C1 solution u = u(t, x) on the domain
[0, T0]×[0, L], which verifies exactly the final data (4.7). Here U can be chosen as any rectangular
domain containing u∗ and u∗∗.

Roughly speaking, the global controllability time given in Corollary 4.1 is (n + 2) times of
the time of two-sided local exact boundary controllability (see [7]), which, in general, is much
shorter than that consumed by the method of pointwise extension control.

Compared with the method given in previous results, the process shown in this paper has the
following advantages: First, the global exact boundary controllability is established for general
hyperbolic systems, but not just for systems of the diagonal form. Secondly, the controlling
time can be significantly reduced. However, the result given in this paper is only feasible to



Boundary Controllability for First-Order Hyperbolic Systems 905

homogeneous systems, since the constant equilibria of an inhomogeneous system generally form
a complicated manifold in the phase space, and there may not exist a set of finite characteristic
trajectories, composed of equilibria, that connect any two given equilibria. Moreover, the
global exact boundary controllability is established only with two-sided boundary controls. In
general, since the simple waves do not satisfy the uncontrolled boundary conditions, the global
one-sided exact boundary controllability or the two-sided one with less controls (see [7] for the
corresponding theories of local controllability) can not be achieved using the above method of
simple waves.
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et Appliquées, 69(1), 1990, 1–31.

[20] Zuazua, Enrique, Exact controllability for semilinear wave equations in one space dimension, Annales de
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