Chinese Annals of Mathematics, Series B © The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg 2015

On Locally Primitive Graphs of Order $18p^*$

Hua HAN¹ Zaiping LU^2

Abstract The authors investigate locally primitive bipartite regular connected graphs of order 18*p*. It is shown that such a graph is either arc-transitive or isomorphic to one of the Gray graph and the Tutte 12-cage.

 Keywords Locally primitive graph, Arc-transitive graph, Normal cover, Quasiprimitive group
2000 MR Subject Classification 05C25, 20B25

1 Introduction

All graphs in this paper are assumed to be finite and simple.

Let Γ be a graph. We use $V\Gamma$, $E\Gamma$ and Aut Γ to denote the vertex set, the edge set and the automorphism group of Γ , respectively. Then the graph Γ is said to be vertex-transitive or edge-transitive if some subgroup G of Aut Γ (denoted by $G \leq \operatorname{Aut} \Gamma$) acts transitively on $V\Gamma$ or $E\Gamma$, respectively. Recall that an arc in Γ is an ordered pair of adjacent vertices. Then the graph Γ is called arc-transitive if some $G \leq \operatorname{Aut} \Gamma$ acts transitively on the set of arcs of Γ . The graph Γ is said to be locally primitive if for some subgroup $G \leq \operatorname{Aut} \Gamma$ and each $v \in V\Gamma$, the stabilizer G_v induces a primitive permutation group $G_v^{\Gamma(v)}$ on the neighborhood $\Gamma(v)$, the set of neighbors, of v in Γ . For convenience, such subgroups G are called vertex-transitive, edge-transitive, arc-transitive and locally primitive groups of Γ , respectively.

The study of locally primitive graphs is one of the main themes in algebraic graph theory, which stems from a conjecture on bonding the stabilizers of locally primitive arc-transitive graphs (see [32, Conjecture 12]). The reader may consult [4, 9–12, 14, 21–24, 28–29, 31] for some known results in this area.

In this paper, we aim at determining the arc-transitivity of certain locally primitive graphs. Let Γ be a connected graph and G be a locally primitive group on Γ . It is easily shown that G acts transitively on $E\Gamma$, so Γ is edge-transitive. If G is vertex-transitive, then Γ is necessarily an arc-transitive graph. Thus, for our purpose, we always assume that Γ is regular, but G is not vertex-transitive. Then Γ is a bipartite graph with two bipartition subsets being the G-orbits on $V\Gamma$. Giudici et al. [14] established a reduction for studying locally primitive bipartite graphs, which was successfully applied in [23] to the characterization of locally primitive graphs

Manuscript received February 9, 2014. Revised June 30, 2014.

¹Center for Combinatorics, LPMC-TJKLC, Nankai University, Tianjin 300071, China; College of Science, Tianjin University of Technology, Tianjin 300384, China. E-mail: hh1204@mail.nankai.edu.cn

²College of Science, Tianjin University of Technology, Tianjin 300384, China. E-mail: lu@nankai.edu.cn *This work was supported by the National Natural Science Foundation of China (Nos. 11271267, 11371204).

of order twice a prime power. In this paper, we concentrate our attention on analyzing the locally primitive graphs of order 18*p*. Our main result is stated as follows.

Theorem 1.1 Let Γ be a connected regular graph of order 18p, where p is a prime. Assume that Γ is locally primitive. Then Γ is either arc-transitive or isomorphic to one of the Gray graph and the Tutte 12-cage.

2 Preliminaries

Let Γ be a graph and let $G \leq \operatorname{Aut} \Gamma$. Assume that G is edge-transitive but not vertextransitive; in this case, we call G semisymmetric if Γ is regular. Then Γ is a bipartite graph with two bipartition subsets being the G-orbits on $V\Gamma$. Moreover, Γ is arc-transitive provided that Γ has an automorphism interchanging two of its bipartition subsets. For a given vertex $u \in V\Gamma$, the stabilizer G_u acts transitively on $\Gamma(u)$. Take $w \in \Gamma(u)$. Then each vertex of Γ can be written as u^g or w^g for some $g \in G$. Then two vertices u^g and w^h are adjacent in Γ if and only if u and $w^{hg^{-1}}$ are adjacent, i.e., $hg^{-1} \in G_w G_u$. Moreover, it is well-known and easily shown that Γ is connected if and only if $\langle G_u, G_w \rangle = G$. In particular, the next simple fact follows.

Lemma 2.1 Let Γ be a connected graph and $G \leq \operatorname{Aut} \Gamma$. Assume that G is edge-transitive but not vertex-transitive. Let $\{u, w\}$ be an edge of Γ . Then

- (1) G_u and G_w contain no nontrivial normal subgroups in common.
- (2) $r \leq \max\{|\Gamma(u)|, |\Gamma(w)|\}$ for each prime divisor r of $|G_u|$.
- Moreover, Γ is arc-transitive if one of the following conditions holds:
- (3) G has an automorphism σ of order 2 with $G_u^{\sigma} = G_w$.
- (4) G has an abelian subgroup acting regularly on both bipartition subsets of Γ .

Proof Since Γ is connected, $\langle G_u, G_w \rangle = G \leq \operatorname{Aut} \Gamma$. Then (1) follows.

Let r be a prime divisor of $|G_u|$ with $r > \max\{|\Gamma(u)|, |\Gamma(w)|\}$, and let R be a Sylow rsubgroup of G_u . Then R fixes $\Gamma(u)$ point-wise, and so $R \leq G_{w'}$ for each $w' \in \Gamma(u)$. Take Q to be a Sylow r-subgroup of G_w with $Q \geq R$. Then Q fixes $\Gamma(w)$ point-wise, and hence $Q \leq G_u$. Thus R = Q. By the connectedness of Γ , for each $v \in V\Gamma$, it is easily shown that R is a Sylow r-subgroup of G_v . Thus R fixes $V\Gamma$ point-wise, and so R = 1 as $R \leq \operatorname{Aut} \Gamma$. Then (2) follows.

Suppose that G has an automorphism σ of order 2 with $G_u^{\sigma} = G_w$. Define a bijection $\iota : V\Gamma \to V\Gamma$ by $(u^g)^{\iota} = w^{g^{\sigma}}$ and $(w^h)^{\iota} = u^{h^{\sigma}}$. It is easy to check that $\iota \in \operatorname{Aut} \Gamma$ and ι interchanges two bipartition subsets of Γ . This implies that Γ is arc-transitive.

Suppose that G has a subgroup R, which is regular on both bipartition subsets of Γ . Then each vertex in $V\Gamma$ can be written uniquely as u^x or w^y for some $x, y \in R$. Set $S = \{s \in R \mid w^s \in \Gamma(u)\}$. Then u^x and w^y are adjacent if and only if $yx^{-1} \in S$. If R is abelian, then it is easy to show that $u^x \mapsto w^{x^{-1}}$, $w^x \mapsto u^{x^{-1}}$, $\forall x \in R$ is an automorphism of Γ , which leads to the arc-transitivity of Γ .

Let G be a finite transitive permutation group on a set Ω . The orbits of G on the cartesian product $\Omega \times \Omega$ are the orbitals of G, and the diagonal orbital $\{(\alpha, \alpha)^g \mid g \in G\}$ is said to be trivial. For a G-orbital Δ and $\alpha \in \Omega$, the set $\Delta(\alpha) = \{\beta \mid (\alpha, \beta) \in \Delta\}$ is a G_{α} -orbit on Ω , called a suborbit of G at α . The rank of G on Ω is the number of G-orbitals, which equals the number of G_{α} -orbits on Ω for any given $\alpha \in \Omega$. A G-orbital Δ is called self-paired if $(\beta, \alpha) \in \Delta$ for some $(\alpha, \beta) \in \Delta$, while the suborbit $\Delta(\alpha)$ is said to be self-paired. For a G-orbital Δ , the paired orbital Δ^* is defined as $\{(\beta, \alpha) \mid (\alpha, \beta) \in \Delta\}$. Then a G-orbital Δ is self-paired if and only if $\Delta^* = \Delta$. For a non-trivial G-orbital Δ , the orbital bipartite graph $B(G, \Omega, \Delta)$ is the graph on two copies of Ω , say $\Omega \times \{1, 2\}$, such that $\{(\alpha, 1), (\beta, 2)\}$ is an edge if and only if $(\alpha, \beta) \in \Delta$. Then $B(G, \Omega, \Delta)$ is G-semisymmetric, where G acts on $\Omega \times \{1, 2\}$ as follows:

$$(\alpha, i)^g = (\alpha^g, i), \quad g \in G, \ i = 1, 2.$$

If Δ is self-paired, then $(\alpha, 1) \leftrightarrow (\alpha, 2), \alpha \in \Omega$ gives an automorphism of $B(G, \Omega, \Delta)$, which yields that $B(G, \Omega, \Delta)$ is G-arc-transitive. The next lemma indicates the possibility that $B(G, \Omega, \Delta)$ is arc-transitive even if Δ is not self-paired.

Lemma 2.2 Let X be a permutation group on Ω , and G be a transitive subgroup of X with index |X : G| = 2. Let Δ be a G-orbital. If $\Delta \cup \Delta^*$ is an X-orbital, then $B(G, \Omega, \Delta)$ is arc-transitive.

Proof Assume that $\Delta \cup \Delta^*$ is an X-orbital. To show that $\Gamma := B(G, \Omega, \Delta)$ is arc-transitive, it suffices to find an automorphism of Γ , which interchanges two bipartition subsets of Γ . Take $x \in X \setminus G$. It is easily shown that $\Delta^x = \Delta^*$ and $(\Delta^*)^x = \Delta$. Define $\hat{x} : \Omega \times \{1, 2\} \to$ $\Omega \times \{1, 2\}; (\alpha, 1) \mapsto (\alpha^x, 2), (\beta, 2) \mapsto (\beta^x, 1)$. It is easy to check $\hat{x} \in \text{Aut } \Gamma$, so Lemma 2.2 follows.

Moreover, the next lemma is easily shown (see also [14]).

Lemma 2.3 Assume that Γ is a connected G-semisymmetric graph of valency at least 2 with bipartition subsets U and W, and that, for an edge $\{u, w\} \in E\Gamma$, two stabilizers G_u and G_w are conjugate in G. Then there is a bijection $\iota : U \leftrightarrow W$, such that $G_u = G_{\iota(u)}$ and $\{u, \iota(u)\} \notin E\Gamma$ for all $u \in U$. Moreover, $\Delta = \{(u, \iota^{-1}(w)) \mid \{u, w\} \in E\Gamma, u \in U, w \in W\}$ is a G-orbital on U. In particular, $\Gamma \cong B(G, U, \Delta)$, and ι extends to an automorphism of Γ if and only if Δ is self-paired.

Remark 2.1 Let Γ and $G \leq \operatorname{Aut} \Gamma$ be as in Lemma 2.3. Then $\{G_u \mid u \in U\} = \{G_w \mid w \in W\}$, so $\bigcap_{u \in U} G_u = \bigcap_{w \in W} G_w = 1$ as $G \leq \operatorname{Aut} \Gamma$. Thus G is faithful on both parts of Γ . Take $u \in U$ and $w \in W$ with $G_u = G_w$. Then $u^g \leftrightarrow w^g$, $g \in G$ gives a bijection meeting the requirement of Lemma 2.3. Thus one can define l^2 bijections ι , where l is the number of the points in U fixed by a stabilizer G_u . By [7, Theorem 4.2A], $l = |\mathcal{N}_G(G_u) : G_u|$.

Let G be a finite transitive permutation group on Ω . Let $N = \{x_1 = 1, x_2, \dots, x_n\}$ be a group of order n lying in the center $\mathbf{Z}(G)$ of G. Then N is normal in G, and N is semi-regular on Ω , that is, $N_{\alpha} = 1$ for all $\alpha \in \Omega$. Denote by $\overline{\alpha}$ the N-orbit containing $\alpha \in \Omega$ and by $\overline{\Omega}$ the set of all N-orbits. Then G induces a transitive permutation group \overline{G} on $\overline{\Omega}$. Take a \overline{G} -orbital $\overline{\Delta}$ and $(\overline{\alpha}, \overline{\beta}) \in \overline{\Delta}$. Noting that $G_{\overline{\alpha}} = N \times G_{\alpha}$, it follows that $\overline{\Delta}(\overline{\alpha}) = \{(\overline{\beta})^h \mid h \in G_{\alpha}\}$. Set

$$\Delta_i(\alpha) = \{ \beta^{x_i h} \mid h \in G_\alpha \}, \quad 1 \le i \le n.$$

Then all $\Delta_i(\alpha)$ are suborbits of G at α , which are not necessarily distinct. It is easily shown that $N \times G_\alpha$ acts transitively on $\Omega_1 := \{\beta^{x_i h} \mid 1 \le i \le n, h \in G_\alpha\}$. It follows that all G_α -orbits on

 Ω_1 have the same length divisible by $|\overline{\Delta}(\overline{\alpha})|$. For each *i*, let Δ_i be the *G*-orbital corresponding to $\Delta_i(\alpha)$.

Lemma 2.4 Let $G, N, \overline{\Delta}$ and Δ_i be as above.

- (1) All $\Delta_i(\alpha)$ are suborbits of G of the same length divisible by $|\overline{\Delta}(\overline{\alpha})|$.
- (2) If $\overline{\Delta}$ is self-paired, then for each *i*, there is some *j*, such that $\Delta_i(\alpha) = \Delta_i^*(\alpha)$.
- (3) $B(G, \Omega, \Delta_i) \cong B(G, \Omega, \Delta_j)$ for $1 \le i, j \le n$.

Proof (1) follows from the argument above the lemma.

Assume that $\overline{\Delta}$ is self-paired. Then there is some $g \in G$, such that $(\overline{\alpha}, \overline{\beta})^g = (\overline{\beta}, \overline{\alpha})$. Thus, for each *i*, there are some *i'* and *j'*, such that $(\alpha, \beta^{x_i})^g = (\beta^{x_{j'}}, \alpha^{x_{i'}}) = (\beta^{x_{i'}^{-1}x_{j'}}, \alpha)^{x_{i'}}$. Setting $x_{i'}^{-1}x_{j'} = x_j$, we have $(\alpha, \beta^{x_i})^g = (\beta^{x_j}, \alpha)^{x_{i'}}$. Then $\Delta_i = \Delta_j^*$.

For each *i*, define $f_i : \Omega \times \{1, 2\} \to \Omega \times \{1, 2\}$ by $f_i(\delta, 1) = (\delta, 1)$ and $f_i(\delta, 2) = (\delta^{x_i}, 2)$, where $\delta \in \Omega$. It is easily shown that f_i is an isomorphism from $B(G, \Omega, \Delta_1)$ to $B(G, \Omega, \Delta_i)$. Thus (3) follows.

Let Γ be a G-semisymmetric graph. Suppose that G has a normal subgroup N, which acts intransitively on at least one of the bipartition subsets of Γ . Then we define the quotient graph Γ_N to have vertices (the N-orbits) on $V\Gamma$, and two N-orbits B and B' are adjacent in Γ_N if and only if some $v \in B$ and some $v' \in B'$ are adjacent in Γ . It is easy to see that the quotient Γ_N is a regular graph if and only if all N-orbits have the same length. Moreover, if Γ_N is regular, then its valency is a divisor of that of Γ . The graph Γ is called a normal cover of Γ_N (with respect to G and N) if Γ_N and Γ have the same valency, which yields that N is the kernel of G acting the N-orbits (vertices of Γ_N). Thus, if Γ is a normal cover of Γ_N , then the quotient group G/N can be identified with a subgroup of Aut Γ_N , so Γ_N is G/N-semisymmetric.

Corollary 2.1 Let Γ and $G \leq \operatorname{Aut} \Gamma$ be as in Lemma 2.3. Let $N \leq \mathbb{Z}(G)$. Then N is intransitive and semiregular on both U and W. Assume further that |N| is odd and that Γ_N is the orbital bipartite graph of some self-paired orbital of \overline{G} , where \overline{G} is the subgroup of $\operatorname{Aut} \Gamma_N$ induced by G. Then Γ is arc-transitive.

Proof Recall that G is faithful on both U and W (see Remark 2.1). Since $N \leq \mathbf{Z}(G)$, every subgroup of N is normal in G, so $N_v \leq G_v^g = G_{v^g}$ for $v \in V\Gamma$ and $g \in G$. It follows that $N_v = 1$, so N is semi-regular on both U and W. Suppose that N is transitive on one of U and W, say U. Then $G = NG_u$ for $u \in U$, so G_u is normal in G as $N \leq \mathbf{Z}(G)$. It follows that G_u fixes every vertex in U, so $G_u = 1$, which contradicts the transitivity of G_u on $\Gamma(u)$.

By Lemma 2.3, there is bijection $\iota : U \leftrightarrow W$, such that for $u \in U$, the subset $\iota^{-1}(\Gamma(u))$ is a suborbit of G at u. By Remark 2.1, we may choose ι , such that it maps each N-orbit on U to some N-orbit on W. Thus ι induces a bijection $\overline{\iota}$ on $V\Gamma_N$ interchanging two bipartition subsets U_N and W_N of Γ_N , where U_N and W_N denote respectively the sets of N-orbits on Uand W. Moreover, it is easily shown that $\overline{G}_{\overline{v}} = \overline{G}_{\overline{\iota}(\overline{v})}$ for any N-orbit \overline{v} , and that $\iota^{-1}(\Gamma(u)) =$ $\{u'^h \mid h \in G_u\}$ for $u' \in U$, such that $\overline{u'} \in \overline{\iota}^{-1}(\Gamma_N(\overline{u}))$.

Assume that Γ_N is the orbital bipartite graph of some self-paired orbital of \overline{G} . Then, again by Lemma 2.3, $\overline{\tau} \in \operatorname{Aut} \Gamma_N$ and $\overline{\tau}^{-1}(\Gamma_N(\overline{u}))$ is a self-paired suborbit of \overline{G} at \overline{u} . If |N| is odd, then by Lemma 2.4, Γ is isomorphic to the orbital bipartite graph of some self-paired orbital of G on U, and hence Γ is arc-transitive.

Recall that, for a group G that acts transitively on a set Ω , a block B is a non-empty subset of Ω , such that $B = B^g$ or $B \cap B^g = \emptyset$ for every $g \in G$.

Lemma 2.5 Let Γ be a connected graph, and let $G \leq \operatorname{Aut} \Gamma$, such that G is locally primitive but not vertex-transitive. Assume that U and W are G-orbits on $V\Gamma$, and that B is a block of G on W. Then either B = W or $|\Gamma(u) \cap B| \leq 1$ for each $u \in U$.

Proof Note that for each $u \in U$, either $\Gamma(u) \cap B = \emptyset$ or $\Gamma(u) \cap B$ is a block of G_u on $\Gamma(u)$. Since G_u acts primitively on $\Gamma(u)$, we know that either $|\Gamma(u) \cap B| \leq 1$ or $\Gamma(u) \subseteq B$. Suppose that $\Gamma(u) \subseteq B$ for some $u \in U$. Take $w \in B$ and $v \in \Gamma(w)$. Since G is edge-transitive, there is $g \in G$ with $v^g = u$ and $w^g \in \Gamma(u) \subseteq B$. Then $w \in B^{g^{-1}} \cap B$, so $B = B^{g^{-1}}$. Thus $\Gamma(v) = (\Gamma(u))^{g^{-1}} \subseteq B^{g^{-1}} = B$. It follows that Γ has a connected component with vertex set $(\bigcup_{w \in B} \Gamma(w)) \cup B$. This yields B = W.

Lemma 2.6 Let Γ and G be as in Lemma 2.5. Let U and W be the G-orbits on $V\Gamma$. Suppose that G has a normal subgroup N, which acts transitively on U. Then one of the following holds:

- (1) Γ_N is a $|\Gamma(u)|$ -star, where $u \in U$.
- (2) Γ is N-edge-transitive.
- (3) N is regular on both U and W.

Proof If N is intransitive on W, then (1) follows from [14, Lemma 5.5]. Thus we assume that N is transitive on W. Take $u \in U$. If N_u is transitive on $\Gamma(u)$, then Γ is N-edge-transitive, so (2) holds. Suppose that N_u is not transitive on $\Gamma(u)$. Since N_u is normal in G_u and G is locally primitive, N_u fixes $\Gamma(u)$ point-wise. Thus $N_w \geq N_u$ for each $w \in \Gamma(u)$. If N_w is transitive on $\Gamma(w)$, then Γ is N-edge-transitive, so (2) holds. Thus we may further suppose that $N_w \leq N_{u'}$ for each $u' \in \Gamma(w)$. By the connectedness of Γ , we conclude that $N_u = N_w = 1$. Then (3) follows.

Recall that a quasi-primitive group is a permutation group with all minimal normal subgroups transitive. By [14, Theorem 1.1 and Lemma 5.1], the next lemma holds.

Lemma 2.7 Let Γ and G be as in Lemma 2.5. Suppose that N is a normal subgroup of G, which is intransitive on both bipartition subsets of Γ . Then Γ is a normal cover of Γ_N and Γ_N is G/N-locally primitive. If further N is maximal among the normal subgroups of G, which are intransitive on both bipartition subsets of Γ , then either Γ_N is a complete bipartite graph, or G/N acts faithfully on both parts and is quasi-primitive on at least one of the bipartition subsets of Γ_N .

For a finite group G, denote by $\operatorname{soc}(G)$ the subgroup generated by all minimal normal subgroups of G, which is called the socle of G. The next result describes the basic structural information for quasi-primitive permutation groups (see [30]).

Lemma 2.8 Let G be a finite quasi-primitive permutation group on Ω . Then G has at most two minimal normal subgroups, and one of the following statements holds:

(1) $|\Omega| = p^d$, $\operatorname{soc}(G) \cong \mathbb{Z}_p^d$, and $\operatorname{soc}(G)$ is the unique minimal normal subgroup of G, where $d \ge 1$ and p is a prime; in this case, G is primitive on Ω .

(2) $\operatorname{soc}(G) = T^l$ for $l \ge 1$ and a nonabelian simple group T, and either $\operatorname{soc}(G)$ is the unique minimal normal subgroup of G, or $\operatorname{soc}(G) = M \times N$ for two minimal normal subgroups M and N of G with $|M| = |N| = |\Omega|$.

3 The Quasi-primitive Case

Let Γ be a *G*-locally primitive regular graph of order 18*p*, where $G \leq \operatorname{Aut} \Gamma$ and *p* is a prime. Assume that *G* is intransitive on $V\Gamma$. Then Γ is a bipartite graph with two bipartition subsets being *G*-orbits, say *U* and *W*.

Assume next that G acts faithfully on both U and W, and that G is quasi-primitive on one of U and W. If G acts primitively on one of U and W, then by [18], Γ is either arc-transitive or isomorphic to one of the Gray graph and the Tutte 12-cage. Thus we assume in the following that neither G^U nor G^W is a primitive permutation group. Then by Lemma 2.8, $N := \operatorname{soc}(G)$ is the direct product of isomorphic non-abelian simple groups. In particular, G is insoluble, so Γ is not a cycle.

Without loss of generality, we assume that G is quasi-primitive on U. Recall that G^U is not primitive. Take a maximal block $B \ (\neq U)$ of G on U. Then |B| is a proper divisor of |U| = 9pand $|G_B : G_u| = |N_B : N_u| = |B|$ for each $u \in B$. Set $\mathcal{B} = \{B^g \mid g \in G\}$. Then $|\mathcal{B}| = \frac{9p}{|B|}$, and G acts primitively on \mathcal{B} . Since G is quasi-primitive on U, we know that G acts faithfully on \mathcal{B} . Thus we may view G as a primitive permutation group (on \mathcal{B}) of degree $\frac{9p}{|B|}$.

Lemma 3.1 |B| = 3 or 9.

Proof It is easy to see that |B| = 3, 9 or p. Suppose that |B| = p. Then $|\mathcal{B}| = 9$ and by [7, Appendix B], $N = \operatorname{soc}(G) = A_9$ or PSL(2,8). If $N = A_9$ then $N_B \cong A_8$ and $p \leq 7$; however, A_8 has no subgroups of index p, a contradiction. Thus $N = \operatorname{PSL}(2,8)$, $N_B \cong \mathbb{Z}_2^3:\mathbb{Z}_7$ and p = 7, so $N_u \cong \mathbb{Z}_2^3$ and |U| = 63, where $u \in B$. Since Γ is G-locally primitive, G_u induces a primitive permutation group $G_u^{\Gamma(u)}$. If G = N, then $G_u^{\Gamma(u)} \cong \mathbb{Z}_2$, yielding that Γ is a cycle, a contradiction. It follows that $G = \operatorname{PSL}(2,8) \cong \operatorname{PSL}(2,8):\mathbb{Z}_3$ and $|G_v| = 24$, where v is an arbitrary vertex of Γ . Checking the subgroups of $\operatorname{PSL}(2,8)$ in the Atlas (see [6]), we know that N has no proper subgroups of index dividing 21. It implies that N is transitive on W, so G is also quasi-primitive on W. By the information given for $\operatorname{PSL}(2,8)$ in [6], $G_v \cong \mathbb{Z}_2^3:\mathbb{Z}_3 \cong \mathbb{Z}_2 \times A_4$ for each $v \in V\Gamma$. Then either $G_v^{\Gamma(v)} \cong \mathbb{Z}_3$ and Γ is cubic, or $G_v^{\Gamma(v)} \cong A_4$ and Γ has valency 4. Take $\{u, w\} \in E\Gamma$. Then $G_{uw} \cong \mathbb{Z}_2^3$ or \mathbb{Z}_6 . It follows that G_u and G_w have the same center, which contradicts Lemma 2.1.

Therefore, G is a primitive permutation group (on \mathcal{B}) of degree p or 3p. For further argument, we list in Tables 1–2 the insoluble primitive groups of degree p and of degree 3p, respectively. Noting that N_B has a subgroup of index |B| = 9 or 3, it is easy to check that $N = A_6$ or PSL(n,q). Suppose that $N = A_6$. Then |B| = 3 and p = 5. It follows that G_u is a 2-group. Since Γ is G-locally primitive,

$$G_u^{\Gamma(u)} \cong \mathbb{Z}_2.$$

Then Γ is a cycle, a contradiction. Thus the next lemma follows.

Degree p	11	11	23	p	$\frac{q^n - 1}{q - 1}$
Socle	PSL(2, 11)	M_{11}	M_{23}	A_p	$\mathrm{PSL}(n,q)$
Stabilizer	A_5	M_{10}	M_{22}	A_{p-1}	
Action				-	1- or $(n-1)$ -subspaces
Remark					prime $n \ge 3$ or $(n, q) = (2, 2^{2^s})$

Table 1 Insoluble transitive groups of prime degree (see [2, Table 7.4])

Degree $3p$	Socle	Action	Remark
6	A_5	cosets of D_{10}	
15	A_6	2-subsets or partitions	
21	A_7	2-subsets	
21	PSL(3,2)	(1,2)-flags	
57	PSL(2, 19)	cosets of A_5	two actions
15	A ₇	cosets of $PSL(2,7)$	two actions
3p	A_{3p}		
15	PSL(4,2)	1- or 3-subspaces	
$2^{f} + 1$	$\mathrm{PSL}(2,2^f)$	1-subspaces	odd prime f
$\frac{q^3-1}{a-1}$	PSL(3,q)	1- or 2-subspaces	$q \equiv 1 \; (\mathrm{mod} \; 3)$

Table 2 Insoluble primitive groups of degree 3p (see [16])

Lemma 3.2 Either |B| = 9 and N = PSL(n, q) with n prime, or |B| = 3 and N = PSL(3, q) with $q \equiv 1 \pmod{3}$.

Let \mathbb{F}_q be the Galois field of order q, and let \mathbb{F}_q^n be the *n*-dimensional linear space of row vectors over \mathbb{F}_q . Denote by \mathcal{P} and \mathcal{H} , respectively, the sets of 1-subspaces and (n-1)-subspaces of \mathbb{F}_q^n . Then the action of $N = \mathrm{SL}(n,q)/\mathbb{Z}(\mathrm{SL}(n,q))$ on \mathcal{B} is equivalent to one of the actions of N on \mathcal{P} and on \mathcal{H} induced by

$$(x_1, x_2, \cdots, x_n)\mathbf{A} = \Big(\sum_{i=1}^n a_{i1}x_i, \sum_{i=1}^n a_{i2}x_i, \cdots, \sum_{i=1}^n a_{in}x_i\Big),$$

where $\mathbf{A} = (a_{ij})_{n \times n} \in \mathrm{SL}(n,q)$. Let σ be the inverse-transpose automorphism of $\mathrm{SL}(n,q)$, that is,

$$\sigma: \mathrm{SL}(n,q) \to \mathrm{SL}(n,q), \quad \mathbf{A} \mapsto (\mathbf{A}')^{-1}.$$

Then σ gives an automorphism of N of order 2. Define

$$\iota: \mathcal{P} \to \mathcal{H}, \ \langle (x_1, x_2, \cdots, x_n) \rangle \mapsto \left\{ (y_1, y_2, \cdots, y_n) \middle| \sum_{i=1}^n x_i y_i = 0 \right\}.$$

Then

$$(\iota(\langle \mathbf{v} \rangle))^{\mathbf{A}} = \iota(\langle \mathbf{v} \mathbf{A} \rangle), \quad \forall \mathbf{A} \in \mathrm{SL}(n,q), \ \langle \mathbf{v} \rangle \in \mathcal{P}$$

For $1 \leq i \leq n$, let \mathbf{e}_i be the vector with the *i*th entry 1 and other entries 0. Then

$$(\operatorname{SL}(n,q))_{\langle \mathbf{e}_1 \rangle} = Q:H, \quad (\operatorname{SL}(n,q))_{\langle \mathbf{e}_i | 2 \le i \le n \rangle} = Q^{\sigma}:H,$$

where

$$Q = \left\{ \begin{pmatrix} 1 & \mathbf{0} \\ \mathbf{b}' & \mathbf{I}_{n-1} \end{pmatrix} \middle| \mathbf{b} \in \mathbb{F}_q^{n-1} \right\},$$
$$H = \left\{ \begin{pmatrix} a & \mathbf{0} \\ \mathbf{0}' & \mathbf{A} \end{pmatrix} \middle| \mathbf{A} \in \operatorname{GL}(n-1,q), \ a^{-1} = \det(\mathbf{A}) \right\}.$$

For a subgroup X of SL(n,q), we denote \overline{X} to be the image of X in N, that is, $\overline{X} = X/\mathbb{Z}(SL(n,q))$. Then the following lemma holds.

Lemma 3.3 If $B \in \mathcal{B}$, then N_B is conjugate in N to one of $\overline{Q}:\overline{H}$ and $\overline{Q}^{\sigma}:\overline{H}$.

The following simple fact may be shown by simple calculations.

Lemma 3.4 Set $\mathbb{F}_q \setminus \{0\} = \langle \eta \rangle$ and

$$L = \left\{ \left(\begin{array}{cc} 1 & \mathbf{0} \\ \mathbf{0}' & \mathbf{A} \end{array} \right) \middle| \mathbf{A} \in \mathrm{SL}(n-1,q) \right\}.$$

Then $\overline{Q}:\overline{L}$ acts transitively on $\mathcal{P} \setminus \langle \mathbf{e}_1 \rangle$, and has two orbits on \mathcal{H} with lengths $\frac{q^{n-1}-1}{q-1}$ and q^{n-1} , respectively. Moreover, for each divisor m of q-1, Q:H has a unique subgroup containing Q:L and having index m, which is

$$\left\{ \left(\begin{array}{cc} a & \mathbf{0} \\ \mathbf{b}' & \mathbf{A} \end{array} \right) \middle| \mathbf{b} \in \mathbb{F}_q^{n-1}, \ \mathbf{A} \in \mathrm{GL}(n-1,q), \ a^{-1} = \det(\mathbf{A}) \in \langle \eta^m \rangle \right\}.$$

Lemma 3.5 Write $q = r^f$ for a prime r and an integer $f \ge 1$. Assume that |B| = 9 for $B \in \mathcal{B}$. Then the following statements hold:

(1) $(n,q) \neq (2,2), (2,3), (3,2), (3,3).$

(2) n is an odd prime with $q \not\equiv 1 \pmod{n}$.

(3) n is the smallest prime divisor of nf.

Proof By Lemma 3.2, N = PSL(n,q) for a prime n. Since 9 is a divisor of |N| and N is simple, $(n,q) \neq (2,2), (2,3), (3,2)$.

Suppose that N = PSL(3,3). Then p = 13, G = N, $|G_B| = 2^4 \cdot 3^3$ and $|G_u| = 48$. Take $w \in \Gamma(u)$. Since Γ is regular, $|G_u| = 48 = |G_w|$. Checking the subgroups of SL(3,3) (see [6]), we have $G_u \cong G_w \cong 2S_4 \cong GL(2,3)$. Since Γ is G-locally primitive, $G_u^{\Gamma(u)} \cong S_4 \cong G_w^{\Gamma(w)}$ and Γ has valency 4. Thus $G_{uw} \cong D_{12}$. It follows that G_u and G_w have the same center isomorphic to \mathbb{Z}_2 , which contradicts Lemma 2.1. Thus (1) follows.

Suppose that n = 2. Then, since $p = \frac{r^{nf}-1}{r^f-1}$ is a prime, r = 2 and $f = 2^s$ for some integer $s \ge 1$. Thus $N_B \cong \mathbb{Z}_2^{2^s}:\mathbb{Z}_{2^{2^s}-1}$, and hence $N_u \cong \mathbb{Z}_2^{2^s}:\mathbb{Z}_{2^{2^s}-1}$. But $2^{2^s}-1$ is not divisible by 9, a contradiction. This implies that n is an odd prime. If $q \equiv 1 \pmod{n}$, then $p = \sum_{i=0}^{n-1} q^i \equiv 0 \pmod{n}$, a contradiction. Then (2) follows.

If nf = 6 and r = 2, then $p = \frac{q^n - 1}{q - 1} = 21$ or 63, a contradiction. Thus, by Zsigmondy's theorem (see [20, p. 508]), there is a prime, which divides $r^{nf} - 1$, but not $r^i - 1$ for all $1 \le i \le nf - 1$. Clearly, such a prime is p. Suppose that f has a prime divisor s, such that s < n. Then $q^n - 1$ has a divisor $r^{\frac{nf}{s}} - 1$. By Zsigmondy's theorem, either $(r, \frac{nf}{s}) = (2, 6)$, or $r^{\frac{nf}{s}} - 1$ has a prime divisor which does not divide $r^f - 1$. The latter case yields that $\frac{q^n - 1}{q - 1}$ has

two (distinct) prime divisors, a contradiction. Thus $(r, \frac{nf}{s}) = (2, 6)$, yielding that n = 3 and f = 4. Then $p = \frac{q^n - 1}{q - 1} = \frac{2^{12} - 1}{2^4 - 1} = 273$, a contradiction. Then (3) follows.

Lemma 3.6 Let $B \in \mathcal{B}$. If (n,q) = (3,8), then |B| = 9 and Γ is arc-transitive and of valency 8 or 64.

Proof Assume that (n,q) = (3,8). Then $N \cong SL(3,8)$, p = 73 and |G:N| = 1 or 3. By Lemma 3.2, |B| = 9. Without loss of generality, we assume that N = SL(3,8) and choose B, such that $N_B = P:H$, where $P \cong \mathbb{Z}_2^6$ and H is defined above Lemma 3.3.

Since N_B is transitive on B, it is easily shown that P acts trivially on B, so H acts transitively on B. Then $|H : H_u| = 9$. Note that $H \cong GL(2,8) \cong \mathbb{Z}_7 \times PSL(2,8)$. Checking the subgroups of PSL(2,8), we conclude that the action of H on B is equivalent to the action of H on the set of 1-subspaces of \mathbb{F}_8^2 . Then, without loss of generality, we may assume that H_u is conjugate to

$$\left\{ \left. \begin{pmatrix} a_1 & 0 & 0 \\ 0 & a_2 & 0 \\ 0 & b & a_3 \end{pmatrix} \right| a_1, a_2, a_3, b \in \mathbb{F}_8, a_1 a_2 a_3 = 1 \right\}.$$

Recall that a (1, 2)-flag of \mathbb{F}_8^3 is a pair $\{V_1, V_2\}$ of a 1-subspace and a 2-subspace with the 1-subspace contained in the 2-subspace. Since $P \leq N_u$, we have $N_u = N_u \cap (PH) = PH_u \cong \mathbb{Z}_2^6:(\mathbb{Z}_2^3:\mathbb{Z}_7^2)$. It is easily shown that N_u is the stabilizer of some (1, 2)-flag $\{V_1, V_2\}$ in N. It follows that the action of N on U is equivalent to the action of N on the set \mathcal{F} of (1, 2)-flags of \mathbb{F}_8^3 .

Now we show that the actions of N on U and W are equivalent. Note that |G:N| = 1 or 3. Thus, since W is a G-orbit, either N is transitive on W or N has 3 orbits on W. Checking the subgroups of SL(3,8), we know that N has no subgroups of index 219. It follows that Nis transitive on W. Note that N = SL(3,8) has no subgroups of index 3, 9 or 219. It follows that a maximal block of N on W has size 9. Then a similar argument as above implies that the action of N on W is also equivalent to that on \mathcal{F} . Moreover, Γ is N-edge-transitive by Lemma 2.6.

Identifying U with \mathcal{F} , and by Lemma 2.3, $\Gamma \cong B(N, \mathcal{F}, \Delta)$, where Δ is an N-orbital on \mathcal{F} . Without loss of generality, choose u to be the flag $\{\langle \mathbf{e}_3 \rangle, \langle \mathbf{e}_2, \mathbf{e}_3 \rangle\}$. Calculation shows that $\Delta(u)$ is one of the following 5 suborbits:

(i) $\{\{\langle \mathbf{e}_2 + a\mathbf{e}_3 \rangle, \langle \mathbf{e}_2, \mathbf{e}_3 \rangle\} \mid a \in \mathbb{F}_8\}$ and $\{\{\langle \mathbf{e}_3 \rangle, \langle \mathbf{e}_3, \mathbf{e}_1 + a\mathbf{e}_2 \rangle\} \mid a \in \mathbb{F}_8\}$, which are self-paired and of length 2^3 .

(ii) $\{\{\langle \mathbf{e}_2 + a\mathbf{e}_3 \rangle, \langle \mathbf{e}_1 + b\mathbf{e}_2, \mathbf{e}_2 + a\mathbf{e}_3 \rangle\} \mid a, b \in \mathbb{F}_8\}$ and $\{\{\langle \mathbf{e}_1 + a\mathbf{e}_2 + b\mathbf{e}_3 \rangle, \langle \mathbf{e}_1 + a\mathbf{e}_2, \mathbf{e}_3 \rangle\} \mid a, b \in \mathbb{F}_8\}$, which are paired to each other and of length 2^6 .

(iii) $\{\{\langle \mathbf{e}_1 + a\mathbf{e}_2 + b\mathbf{e}_3\rangle, \langle \mathbf{e}_1 + a\mathbf{e}_2 + b\mathbf{e}_3, \mathbf{e}_2 + c\mathbf{e}_3\rangle\} \mid a, b, c \in \mathbb{F}_8\}$, which is self-paired and of length 2⁹.

Suppose that $\Delta(u)$ is the suborbit in (iii). Then Γ has valency 2⁹. Recall that |G:N| = 1or 3, and $N_u = PH_u \cong \mathbb{Z}_2^6:(\mathbb{Z}_2^3:\mathbb{Z}_7^2)$. It follows that G_u/N_u is cyclic, and hence G_u is soluble. Since Γ is G-locally primitive, $G_u^{\Gamma(u)}$ is a soluble primitive permutation group of degree 2⁹. In particular, $\operatorname{soc}(G_u^{\Gamma(u)}) \cong \mathbb{Z}_2^9$ and $\operatorname{soc}(G_u^{\Gamma(u)})$ is the unique minimal normal subgroup of $G_u^{\Gamma(u)}$. Thus $N_u^{\Gamma(u)} \ge \operatorname{soc}(G_u^{\Gamma(u)})$ as N_u induces a normal transitive subgroup of $G^{\Gamma(u)}$. However, the unique Sylow 2-subgroup of N_u is non-abelian and has order 2⁹, a contradiction.

If $\Delta(u)$ is described in (i), then Γ has valency 8, and by Lemma 2.3, Γ is arc-transitive.

Assume that $\Delta(u)$ is one of the suborbits in (ii). Then Γ has valency 64. Let σ be the inverse-transpose automorphism of N = SL(3, 8). Then \mathcal{F} is σ -invariant. Consider the action $N:\langle \sigma \rangle$ on \mathcal{F} and take $\mathbf{a} \in SL(3, 8)$ with

$$\mathbf{a} = \left(\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{array} \right).$$

Then $(N\langle\sigma\rangle)_u = N_u:\langle\sigma \mathbf{a}\rangle$, which interchanges the two suborbits in (ii). It follows from Lemma 2.2 that Γ is arc-transitive.

Lemma 3.7 Assume that $(n,q) \neq (3,8)$. Then there is $u \in U$ with $N_u \geq \overline{Q}:\overline{L}$ or $\overline{Q}^{\circ}:\overline{L}$, where σ is the inverse-transpose automorphism of SL(n,q), and \overline{Q} and \overline{L} are described as in Lemmas 3.3 and 3.4, respectively. In particular, $q \equiv 1 \pmod{|B|}$.

Proof Recall that the action of $N = \operatorname{SL}(n, q)/\mathbb{Z}(\operatorname{SL}(n, q))$ on \mathcal{B} is equivalent to one of the actions of N on \mathcal{P} and on \mathcal{H} . Without loss of generality, we may choose $B \in \mathcal{B}$, such that $N_B = R:\overline{\mathcal{H}}$, where $R = \overline{Q}$ or \overline{Q}^{σ} , and $\overline{\mathcal{H}}$ is described as in Lemma 3.3. Set $q = r^f$ for some prime r and integer $f \geq 1$. Then R is a nontrivial r-group.

Take $u \in B$. Then $|N_B : N_u| = |B| = 3$ or 9. Suppose that $R \not\leq N_u$. Noting that RN_u is a subgroup of N_B as R is normal in N_B , it follows that $|R : (R \cap N_u)| = |(RN_u) : N_u| = 3$ or 9. In particular, R is a 3-group, and hence |B| = 9 by Lemma 3.2. Then, by Lemma 3.5, nand q-1 are coprime, so $\mathbb{Z}(SL(n,q)) = 1$. Thus $N \cong SL(n,q)$ and $R \cong Q \cong \mathbb{Z}_3^{(n-1)f}$. Assume that $|(RN_u) : N_u| = 9$. Then $N_B = RN_u$. It implies that $R \cap N_u$ is normal in N_B . Then $N_u > R \cap N_u = \langle (R \cap N_u)^x | x \in N_B \rangle = R$, yielding $R \cap N_u = 1$. It follows that $R \cong \mathbb{Z}_3^2$. By Lemma 3.5, we conclude that n = 3 and f = 1, that is, (n,q) = (3,3), a contradiction. Thus $|N_B : (RN_u)| = 3$. Noting that $GL(n-1,3^f) \cong H \cong \overline{H} \cong N_B/R$, it follows that $GL(n-1,3^f)$ has a subgroup of index 3. Note that $GL(n-1,3^f) = \mathbb{Z}_{3f-1}.(PSL(n-1,3^f)).\mathbb{Z}_d$, where d is the largest common divisor of n-1 and $3^f - 1$. It implies that $PSL(n-1,3^f)$ has a subgroup of index 3. Then n = 3 and f = 1, a contradiction. Therefore, R is contained in N_u .

Since $R:\overline{L}$ is normal in N_B , we know that $\overline{L}N_u = (R:\overline{L})N_u$ is a subgroup of N_B . Suppose that $R:\overline{L} \not\leq N_u$. Then $|\overline{L}: (\overline{L} \cap N_u)| = |(\overline{L}N_u): N_u| = 3$ or 9. Let Z be the center of \overline{L} . Then $\overline{L}/Z \cong PSL(n-1,q)$ and $|\overline{L}/Z: (\overline{L} \cap N_u)Z/Z|$ divides 9. By Lemmas 3.2 and 3.5, $n \geq 3$ and $(n,q) \neq (3,2), (3,3)$. Thus \overline{L}/Z is simple, and hence it has no subgroups of order 3. Suppose that $|\overline{L}/Z: (\overline{L} \cap N_u)Z/Z| = 9$. Then \overline{L}/Z has a primitive permutation representation of degree 9. By [7, Appendix B], we conclude that $\overline{L}/Z \cong PSL(2,8)$. Then (n,q) = (3,8), a contradiction. It follows that $|\overline{L}/Z: (\overline{L} \cap N_u)Z/Z| = 1$, that is, $\overline{L} = (\overline{L} \cap N_u)Z$. Consider the commutator subgroups of L and \overline{L} . By [19, Chapter II, Theorem 6.10], L' = L, and hence $\overline{L} = \overline{L}' = (\overline{L} \cap N_u)' \leq \overline{L} \cap N_u \neq N_u$, a contradiction. Therefore, the first part of this lemma follows.

Let X and Y be the pre-images of N_B and N_u in SL(n,q). Then $|X:Y| = |N_B:N_u| = |B|$. Moreover, X = Q:H or $Q^{\sigma}:H$ and $Y \ge Q:L$ or $Q^{\sigma}:L$, respectively. It follows that |B| is a divisor of |H:L| = q - 1. Then $q \equiv 1 \pmod{|B|}$.

Theorem 3.1 Γ is an arc-transitive graph, and one of the following holds: (1) N = PSL(3, 8), p = 73 and Γ has valency 8 or 64. (2) $N = PSL(n,q), p = \frac{q^n-1}{q-1}$ and Γ has valency q^{n-1} , where $q \equiv 1 \pmod{9}, n \geq 5$ and (n,q) satisfies Lemma 3.5.

(3) $N = PSL(3,q), 3p = q^2 + q + 1 and \Gamma$ has valency q^2 , where $q \equiv 1 \pmod{3}$.

Proof By Lemmas 3.2 and 3.5, N = soc(G) = PSL(n,q) for some odd prime n. If (n,q) = (3,8), then (1) follows from Lemma 3.6. Thus we assume that $(n,q) \neq (3,8)$ in the following. Write $q = r^f$ for a prime r and an integer $f \geq 1$.

Case 1 Assume that |B| = 9. Then $|\mathcal{B}| = p = \frac{q^{n-1}}{q-1}$ is a prime. By Lemma 3.7, $q \equiv 1 \pmod{3}$, so $n . It follows that <math>n \neq 3$. By Lemmas 3.5, nf has no prime divisors less than 5. Note that |G:N| divides nf and G is transitive on W. It follows that the number of N-orbits on W is a divisor of nf. It implies that N is transitive on W, and hence G is quasi-primitive on W.

Recall that G is faithful and imprimitive on W. Take a maximal block C of G on W, and set $\mathcal{C} = \{C^g \mid g \in G\}$. Then G acts primitively on \mathcal{C} .

Since $n \geq 5$, checking Table 3, we conclude that G has no primitive permutation representation of degree 3p. Then $|C| \neq 3$. In addition, G has no subgroups of index 9, so $|C| \neq p$. It follows that |C| = 9 and $|\mathcal{C}| = p$. Then the argument for the actions of N on \mathcal{B} and U is available for the actions on \mathcal{C} and W. This allows us to view \mathcal{B} as a copy of \mathcal{P} , and to view \mathcal{C} as a copy of \mathcal{P} or \mathcal{H} .

Choose $B \in \mathcal{B}$ and $C \in \mathcal{C}$, such that $N_B = \overline{Q}:\overline{H}$ and $N_C = N_B$ or N_B^{σ} . Then, by Lemmas 3.4 and 3.7, $\overline{Q}:\overline{L} \leq N_u = X/\mathbb{Z}(\mathrm{SL}(n,q))$ and $N_w = N_u$ or N_u^{σ} , where $u \in B$, $w \in C$ and X is a subgroup of $\mathrm{SL}(n,q)$ consisting matrices of the following form:

$$\begin{pmatrix} a & \mathbf{0} \\ \mathbf{b}' & \mathbf{A} \end{pmatrix}$$
, $\mathbf{b} \in \mathbb{F}_q^{n-1}$, $\mathbf{A} \in \operatorname{GL}(n-1,q)$, $a^{-1} = \det(\mathbf{A}) \in \langle \eta^9 \rangle$.

Note that Γ is *G*-locally primitive and *N* is not regular on both *U* and *W*. By Lemma 2.6, Γ is *N*-edge-transitive. Then $\Gamma(u)$ is an N_u -orbit on *W*. Thus, for an N_u -orbit \mathcal{C}' on \mathcal{C} , either $\Gamma(u) = \bigcup_{C' \in \mathcal{C}'} (\Gamma(u) \cap C')$ or $\Gamma(u) \cap C' = \emptyset$ for each $C' \in \mathcal{C}'$.

Suppose that $N_C = N_B$. Then both B and C correspond to $\langle \mathbf{e}_1 \rangle$. By Lemma 3.4, for each $u \in B$, the stabilizer N_u is transitive on $C \setminus \{C\}$. Thus either $\Gamma(u) \subseteq C$ or $\Gamma(u) = \bigcup_{\substack{C' \in C \setminus \{C\}}} \Gamma(u) \cap C'$. Note that N_u fixes C point-wise as $N_u = N_w$ is normal in $N_B = N_C$, where $w \in C$. Then $\Gamma(u) = \bigcup_{\substack{C' \in C \setminus \{C\}}} \Gamma(u) \cap C'$. Choose $C' \in C$ corresponding to $\langle \mathbf{e}_2 \rangle$, and take $w' \in C'$. Let Y_1 and Y_2 be the pre-images of $N_u \cap N_{C'}$ and $N_u \cap N_{w'}$, respectively. Then

$$Y_{1} = \left\{ \left(\begin{array}{ccc} a & 0 & \mathbf{0} \\ 0 & b & \mathbf{0} \\ \mathbf{b}_{1}' & \mathbf{b}_{2}' & \mathbf{a}_{1} \end{array} \right) \middle| \mathbf{a}_{1} \in \operatorname{GL}(n-2,q), \ a^{-1} = b \det(\mathbf{a}_{1}) \in \langle \eta^{9} \rangle \right\},$$
$$Y_{2} = \left\{ \left(\begin{array}{ccc} a & 0 & \mathbf{0} \\ 0 & b & \mathbf{0} \\ \mathbf{b}_{1}' & \mathbf{b}_{2}' & \mathbf{a}_{1} \end{array} \right) \middle| \mathbf{a}_{1} \in \operatorname{GL}(n-2,q), \ ab \det(\mathbf{a}_{1}) = 1, a, b \in \langle \eta^{9} \rangle \right\}$$

It follows that $|(N_u \cap N_{C'}) : (N_u \cap N_{w'})| = |Y_1 : Y_2| = |9| = |C'|$, so $N_u \cap N_{C'}$ is transitive on C'. Then $C' \subset \Gamma(u)$, which contradicts Lemma 2.5.

Now let $N_C = N_B^{\sigma}$. Then B and C correspond to $\langle \mathbf{e}_1 \rangle$ and $\langle \mathbf{e}_i \mid 2 \leq i \leq n \rangle$, respectively. By Lemma 3.4, N_u has two orbits C_1 and C_2 on C, where C_1 has length $\frac{q^{n-1}-1}{q-1}$ and contains C_1 corresponding to $\langle \mathbf{e}_i \mid 1 \leq i \leq n-1 \rangle$, and C_2 has length q^{n-1} and contains C_2 corresponding to $\langle \mathbf{e}_i \mid 2 \leq i \leq n \rangle$. Calculation shows that $|(N_u \cap N_{C_1}) : (N_u \cap N_{w_1})| = 9$ and $N_u \cap N_{C_2} = N_u \cap N_{w_2}$, where $w_1 \in C_1$ and $w_2 \in C_2$. If $\Gamma(u) \subseteq \bigcup_{C' \in C_1} C'$, then we get a similar contradiction as above. Thus $\Gamma(u) \subseteq \bigcup_{C' \in C_2} C'$, and $\Gamma(u)$ is one of the 9-orbits of N_u on $\bigcup_{C' \in C_2} C'$. Note that $N_u^{\sigma} = N_w$ for $w \in C_2$. Then Γ is arc-transitive by Lemma 2.1, and (2) follows.

Case 2 Assume that |B| = 3. Then N = PSL(3, q) with $q = r^f \equiv 1 \pmod{3}$. In particular, |N| has at least 4 distinct prime divisors (see [15, p. 12]).

Let W_1 be an arbitrary N-orbit on W. Take $w \in W_1$. Then $|W_1| = |N : N_w| = 3, 9, p, 3p$ or 9p. Since N is simple, N has no subgroups of index 3. By [7, Appendix B], N has no subgroups of index 9. By Table 3, N has no primitive permutation representations of prime degree, so N has no subgroups of index p. Thus $|W_1| = 3p$ or 9p. Suppose that $|W_1| = 3p$. Then N has exactly three orbits on W. Since N is normal in G, each N-orbit on W is a block of G. By Lemma 2.5, $|\Gamma(u) \cap W_1| \leq 1$ for $u \in U$, yielding $|\Gamma(u)| \leq 3$. By Lemma 2.1, $|G_u| = 2^s \cdot 3^t$ for some integers $s, t \geq 0$. Then $|G| = 2^s \cdot 3^{t+2} \cdot p$. Thus |N| has at most 3 distinct prime divisors, a contradiction. Then $|W_1| = 9p$, that is, N is transitive on W.

Take a maximal block C of G on W, and set $C = \{C^g \mid g \in G\}$. Then G acts primitively on C. Recall that N has no subgroups of index 3, 9 or p. It implies that |C| = 3p. Then (3) follows from an analogous argument given in Case 1.

4 The Proof of Theorem 1.1

Let Γ be a *G*-locally primitive regular graph of order 18*p*, where $G \leq \operatorname{Aut} \Gamma$ and *p* is a prime. Assume that *G* is intransitive on $V\Gamma$. Let *U* and *W* be the *G*-orbits on $V\Gamma$. If *G* acts unfaithfully on one of *U* and *W*, then Γ is the complete bipartite graph $\operatorname{K}_{9p,9p}$, and hence Γ is arc-transitive. Thus we assume that *G* is faithful on both *U* and *W*. By the argument in Section 3, we assume further that *G* has non-trivial normal subgroups, which are intransitive on both *U* and *W*. Let *M* be maximal in such normal subgroups of *G*. Denote by \widetilde{U} and \widetilde{W} the sets of *M*-orbits on *U* and *W*, respectively. For each $v \in V\Gamma$, denote by \widetilde{v} the *M*-orbit containing *v*.

By Lemma 2.7, Γ is a normal cover of Γ_M . Then M is semi-regular on both U and W; in particular, |M| = 3, 9, p or 3p and $|\widetilde{U}| = |\widetilde{W}| = \frac{9p}{|M|} = 3p, p, 9$ or 3, respectively. Note that M is the kernel of G acting on $V\Gamma_M = \widetilde{U} \cup \widetilde{W}$. Then we identify X := G/M with a subgroup of Aut Γ_M . Then Γ_M is X-locally primitive.

Next we finish the proof of Theorem 1.1 in two subsections depending on whether or not Γ_M is a bipartite complete graph.

4.1 Graphs with Γ_M complete bipartite

In this subsection, we assume that Γ_M is a complete bipartite graph, that is, $\Gamma_M \cong K_{\frac{9p}{|M|},\frac{9p}{|M|}}$. Let $u \in U$ and $w \in W$. Then $X_{\widetilde{u}}$ and $X_{\widetilde{w}}$ act primitively on \widetilde{W} and \widetilde{U} , respectively. Thus X acts primitively on both \widetilde{U} and \widetilde{W} . Moreover, $|X_{\widetilde{u}} : X_{\widetilde{u}\widetilde{w}}| = \frac{9p}{|M|} = |X : X_{\widetilde{u}}|$, so $\frac{81p^2}{|M|^2}$ is a divisor of |X|. **Lemma 4.1** Assume that X is faithful on one of \widetilde{U} and \widetilde{W} . Then Γ is an arc-transitive graph of order 36 and valency 6.

Proof Without loss of generality, we may assume that X is faithful on \widetilde{W} . Then both X and $X_{\widetilde{u}}$ are primitive permutation groups on \widetilde{W} . If |M| = 3p, then $X \cong \mathbb{Z}_3$ or S_3 , and hence X is intransitive on the edges of Γ_M , a contradiction. If |M| = 9, then p^2 is a divisor of X; however, each permutation group of degree prime p has order indivisible by p^2 , a contradiction. If |M| = p, then $\operatorname{soc}(X)$ and $\operatorname{soc}(X_{\widetilde{u}})$ are one of A_9 , $\operatorname{PSL}(2,8)$ or \mathbb{Z}_3^2 , yielding $9 = |\widetilde{U}| = |X : X_{\widetilde{u}}| \neq 9$, a contradiction.

Now let |M| = 3. Then $M \cong \mathbb{Z}_3$ and $|\widetilde{W}| = 3p$. Since $9p^2$ is a divisor of |X|, checking Table 3 implies that $\operatorname{soc}(X) = A_{3p}$ or A_5 . Note that $|X : X_{\widetilde{u}}| = 3p$ and $|X_{\widetilde{u}} : X_{\widetilde{u}\widetilde{w}}| = 3p$. It follows that p = 2, $\Gamma_M \cong K_{6,6}$, $\operatorname{soc}(X) \cong A_6$ and $\operatorname{soc}(X_{\widetilde{u}}) \cong A_5$.

By $\operatorname{soc}(X) \cong A_6$, we know that X is isomorphic to a subgroup of $\operatorname{Aut}(A_6) = A_6.\mathbb{Z}_2^2$. In particular, $|X : \operatorname{soc}(X)|$ is a divisor of 4. Since $\operatorname{soc}(X)$ is normal in X, all $\operatorname{soc}(X)$ -orbits on \widetilde{U} have the same length dividing 3p. Thus the number of $\operatorname{soc}(X)$ -orbits on \widetilde{U} is a common divisor of 4 and 3p. It follows that $\operatorname{soc}(X)$ acts transitively on \widetilde{U} . In addition, $\operatorname{soc}(X)$ is transitive \widetilde{W} , as X is faithful and primitive on \widetilde{W} . Then Γ_M is $\operatorname{soc}(X)$ -edge-transitive by Lemma 2.6. In particular, $\operatorname{soc}(X)_{\widetilde{u}}$ and $\operatorname{soc}(X)_{\widetilde{w}}$ act transitively on \widetilde{W} and \widetilde{U} , respectively. Checking the subgroups of A_6 , we conclude that $\operatorname{soc}(X)_{\widetilde{u}} \cong \operatorname{soc}(X)_{\widetilde{w}} \cong A_5$, and $\operatorname{soc}(X)_{\widetilde{u}}$ and $\operatorname{soc}(X)_{\widetilde{w}}$ are not conjugate in $\operatorname{soc}(X)$. It is easy to see that Γ is $\operatorname{soc}(X)$ -locally primitive.

Let H be the pre-image of $\operatorname{soc}(X)$ in G. Then $H = M.\operatorname{soc}(X)$, $M = \mathbb{Z}(H)$ and Γ is H-locally primitive. Let H' be the commutator subgroup of H. Suppose that $H' \neq H$. Then $H = M \times H'$ and $H' \cong A_6$. Thus H' is normal in H and intransitive on both U and W. By Lemma 2.7, H'is semi-regular on $V\Gamma$, which is impossible. Therefore, H = H'. By the information given in [6], we know that H has an automorphism σ of order 2 with $H^{\sigma}_{\tilde{u}} = H_{\tilde{w}}$ for suitable $\tilde{u} \in \tilde{U}$ and $\tilde{w} \in \tilde{W}$. Noting that $H_{\tilde{u}} = M \times H_{u'}$ and $H_{\tilde{w}} = M \times H_{w'}$ for arbitrary $u' \in \tilde{u}$ and $w' \in \tilde{w}$, it follows that $H^{\sigma}_{u'} = H_{w'}$. Then, by Lemma 2.1, Γ is an arc-transitive graph.

Lemma 4.2 Assume that X acts unfaithfully on both \tilde{U} and \tilde{W} . Then Γ has valency 2, 3 or p, and Γ is either arc-transitive or isomorphic to the Gray graph.

Proof Let Y_1 and Y_2 be the corresponding kernels. Then $Y_1 \cap Y_2 = 1$ and $Y_1Y_2 = Y_1 \times Y_2$. Since X acts primitively on both \widetilde{U} and \widetilde{W} , we conclude that Y_1 and Y_2 act transitively on \widetilde{W} and \widetilde{U} , respectively. It follows that $\operatorname{soc}(X/Y_i) \leq Y_1Y_2/Y_{3-i}$, where i = 1, 2. Checking primitive permutation groups of degree $\frac{9p}{|M|}$, we conclude that $Y_1 \times Y_2$ contains a normal subgroup $Y = T_1 \times T_2$, which is transitive on $E\Gamma_M$, such that $Y_i \geq T_i \cong \operatorname{soc}(X/Y_i)$ and one of the following conditions holds:

(i) p = 2 and Γ_M is a 4-cycle.

(ii) $|M| = 9, p \ge 5, \Gamma_M \cong K_{p,p}, T_1 = \operatorname{soc}(Y_1) \cong T_2 = \operatorname{soc}(Y_2)$ and T_1 is simple.

(iii) $\Gamma_M \cong K_{3,3}, T_1 = \operatorname{soc}(Y_1) \cong T_2 = \operatorname{soc}(Y_2) \cong \mathbb{Z}_3.$

(iv) $\Gamma_M \cong K_{9,9}, T_1 \cong T_2 \cong \mathbb{Z}_3^2$.

(v) |M| = 3 or $p, T_1 = \operatorname{soc}(Y_1) \cong T_2 = \operatorname{soc}(Y_2)$ and T_1 is non-abelian simple.

Let N be the pre-image of Y in G. Then Γ is N-edge-transitive. In particular, N is not regular on U and W. Noting that N is faithful on both U and W, it follows that N is not abelian.

If (i) occurs, then Γ_M is a cycle, so Γ is arc-transitive.

Assume that (ii) occurs. Then Y has a subgroup, which has order p and acts regularly on both \widetilde{U} and \widetilde{W} . Thus N has a subgroup $M.\mathbb{Z}_p$ acting regularly on both U and W. By Sylow's theorem, it is easily shown that $N.\mathbb{Z}_p \cong \mathbb{Z}_3^2 \times \mathbb{Z}_p$ or $\mathbb{Z}_9 \times \mathbb{Z}_p$. It follows from Lemma 2.1 that Γ is vertex-transitive, and hence Γ is arc-transitive.

Assume that (iii) occurs. Then |M| = 3p and $N = M.\mathbb{Z}_3^2$. If p = 3, then either Γ is arc-transitive or by [26] or [27], Γ is isomorphic to the Gray graph. Assume that p = 2. Then M has a characteristic subgroup $K \cong \mathbb{Z}_3$, and hence K is normal in N. It is easily shown that Γ is a normal cover of Γ_K with respect to N and K. Thus Γ_K is a cubic edge-transitive graph of order 12. However, by [3, 5], there are no such graphs, a contradiction. Thus assume that $p \ge 5$. Then M has a unique Sylow p-subgroup. Let P be the unique Sylow p-subgroup of M. Then $P \cong \mathbb{Z}_p$ and P is normal in N. Since Γ is cubic, Γ is N-locally primitive. Thus Γ is a normal cover of Γ_P , and hence Γ_P is an N/P-edge-transitive cubic graph of order 18. Write N = P:Q, where Q is a Sylow 3-subgroup of N. Then $Q \cong N/P$ is non-abelian.

Let S be the Sylow 3-subgroup of $C_N(P)$. Then S is normal in N. It is easily shown that S fixes both U and W set-wise, so S is intransitive on both U and W as |U| = |W| = 9pand $p \neq 3$. Then S is semi-regular on both U and W, so |S| = 1, 3 or 9; in particular, S is ablelian. It implies that $PS = P \times S$ is abelian and semi-regular on both U and W. Assume |S| = 3. Since S is normal in Q, it implies that S lies in the center of Q. Note that $Q/S = Q/Q \cap C_N(P) \cong QC_N(P)/C_N(P) \le N/C_N(P) \le \operatorname{Aut}(P) \cong \mathbb{Z}_{p-1}$. Then Q/S is cyclic. It follows that Q is abelian, a contradiction. Therefore, |S| = 9, and hence PS is regular on both U and W. Thus Γ is arc-transitive by Lemma 2.1.

Next we finish the proof by excluding (iv)-(v).

Suppose that (iv) occurs. Write N = P:Q, where Q is a Sylow 3-subgroup of N. Then $Q \cong \mathbb{Z}_3^4$. Let S be the Sylow 3-subgroup of $C_N(P)$. Then S is normal in N. Since N is non-abelian, $Q \neq S$. Consider the quotient $N/C_N(P)$. We conclude that $S \cong \mathbb{Z}_3^3$. Since Γ is bipartite, it is easily shown that S fixes the bipartition of Γ . If $p \neq 3$, then S is neither transitive nor semi-regular on both U and W, which contradicts Lemma 2.7. Thus p = 3, so $|V\Gamma| = 54$ and $|\operatorname{Aut} \Gamma|$ is divisible by 3^5 . By [3, 5], there exists no such cubic edge-transitive graph, a contradiction.

Suppose that (v) occurs. Note that $(N/M)/(C_N(M)/M) \cong N/C_N(M) \lesssim \operatorname{Aut}(M) \cong \mathbb{Z}_{p-1}$ or \mathbb{Z}_2 . Since Y = N/M is the direct product of two isomorphic non-abelian simple groups, it follows that $N/M = C_N(M)/M$, so $N = C_N(M)$. Then M is the center of N. Take $u \in U$. Then $N_{\widetilde{u}} = M \times N_u$, so $N_u \cong N_{\widetilde{u}}/M = Y_{\widetilde{u}} = (T_2)_{\widetilde{u}} \times T_1$. Then N_u acts transitively on \widetilde{W} , and hence $N_{\widetilde{u}}$ acts transitively on W. Note that N_u has a normal subgroup $K \cong (T_2)_{\widetilde{u}}$, which acts trivially on \widetilde{W} . Then K fixes set-wise each M-orbit on W. It is easily shown that K is normal in $N_{\widetilde{u}}$. It follows that all K-orbits on W have the same length. Thus either K acts trivially on W, or K acts transitively on each M-orbit on W. The latter case implies that $\Gamma \cong K_{9p,9p}$, a contradiction. Thus K = 1 as G is faithful on both U and W, so $(T_2)_{\widetilde{u}} = 1$. Noting that T_2 is transitive on \widetilde{U} , it follows that $|T_2| = |T_2 : (T_2)_{\widetilde{u}}| = |\widetilde{U}| = 9$ or 3p, which contradicts that T_2 is simple.

4.2 Graphs with Γ_M not complete bipartite

Now we assume that Γ_M is not a complete bipartite. Then X acts faithfully on both \widetilde{U} and

 \widetilde{W} . By Lemma 2.7, X is quasi-primitive on one of \widetilde{U} and \widetilde{W} . Recall that $|\widetilde{U}| = |\widetilde{W}| = \frac{9p}{|M|} = 3p, p, 9 \text{ or } 3$.

Lemma 4.3 $|\widetilde{U}| = |\widetilde{W}| \neq 9.$

Proof Suppose that $|\widetilde{U}| = |\widetilde{W}| = 9$. Without loss of generality, we assume that X is quasiprimitive on \widetilde{U} . Then it is easily shown that X is primitive on \widetilde{U} . Thus $\operatorname{soc}(X)$ is isomorphic to one of A₉, PSL(2,8) or \mathbb{Z}_3^2 . Let $N \leq G$ with $N/M = \operatorname{soc}(X)$.

Assume that $\operatorname{soc}(X) \cong \operatorname{PSL}(2,8)$. Then X is 3-transitive on both \widetilde{U} and \widetilde{W} . It follows that $\Gamma_M \cong \operatorname{K}_{9,9} - \operatorname{9K}_2$, and that Γ is N-locally primitive. Moreover, it is easily shown that M is the center of N. By [6], $\operatorname{PSL}(2,8)$ has Schur multiplier 1. This implies that $N = M \times K$ with $\operatorname{PSL}(2,8) \cong K < N$. Thus N has a normal subgroup K acting neither transitively nor semi-regularly on each of U and W, which contradicts Lemma 2.7.

Assume that $\operatorname{soc}(X) \cong A_9$. A similar argument as above implies that $\Gamma_M \cong K_{9,9} - 9K_2$ and Γ is N-locally primitive. Moreover, N is a central extension of M by A₉. If $p \neq 2$, then noting that A₉ has Schur multiplier \mathbb{Z}_2 , we have $N = M \times K$ for K < N with $K \cong A_9$, which yields a similar contradiction as above. Suppose that p = 2. Take $u \in \widetilde{U}$. Then $N_{\widetilde{u}} = M \times N_u$, so $N_u \cong N_{\widetilde{u}}/M \cong A_8$. Noting that $M \cong \mathbb{Z}_2$ and $N_{\widetilde{u}}$ contains a Sylow 2-subgroup of N, it follows from Gaschtz's theorem (see [1, 10.4]) that the extension $N = M.\operatorname{soc}(X)$ splits over M, that is, $N = M \times K$ for K < N with $K \cong A_9$, a contradiction.

Assume that $\operatorname{soc}(X) \cong \mathbb{Z}_3^2$. Then $X \leq \operatorname{AGL}(2,3)$, and for some $\widetilde{u} \in \widetilde{W}$, the stabilizer $X_{\widetilde{u}}$ is isomorphic to an irreducible subgroup of $\operatorname{GL}(2,3)$. By [13, Theorem 2], there are no semisymmetric graphs of order 18. It follows from [17, Lemma 2.5] that $\operatorname{soc}(X)$ acts transitively on \widetilde{W} . Thus $\operatorname{soc}(X)$ is regular on both \widetilde{U} and \widetilde{W} . By [25], $X_{\widetilde{u}}$ acts faithfully on the neighbors of \widetilde{u} . In addition, since Γ_M is X-locally primitive, $X_{\widetilde{u}}$ is a primitive permutation group on $\Gamma_M(\widetilde{u})$. However, it is easy to check that $\operatorname{GL}(2,3)$ has no irreducible subgroups satisfying the conditions for $X_{\widetilde{u}}$, a contradiction.

Lemma 4.4 If $|\widetilde{U}| = |\widetilde{W}| = 3$ or p, then Γ is arc-transitive.

Proof If $|\tilde{U}| = 2$, then $X \cong \mathbb{Z}_2$ and Γ_M is 4-cycle, which is impossible. If $|\tilde{U}| = 3$, then $X \cong S_3$ and Γ_M is 6-cycle, and hence Γ is a cycle. Thus we assume that $|\tilde{U}| = p \ge 5$. Then |M| = 9, and either $X = G/M \le \mathbb{Z}_p:\mathbb{Z}_{p-1}$ or X is a permutation group with $\operatorname{soc}(X)$ listed in Table 3. In particular, G has a subgroup $R = M.\mathbb{Z}_p$, which acts regularly on both U and W. By Sylow's theorem, it is easily shown that $R \cong M \times P$, where P is a Sylow p-subgroup of R. Then R is abelian, and hence Γ is arc-transitive by Lemma 2.1.

Finally, we deal with the case where $|\widetilde{U}| = 3p \neq 9$, that is, $p \neq 3$ and $M \cong \mathbb{Z}_3$.

Lemma 4.5 Assume that $|\widetilde{U}| = 3p \neq 9$. Then Γ is arc-transitive.

Proof Without loss of generality, we assume that X = G/M is a quasi-primitive group on \widetilde{U} . Since $|\widetilde{U}| = 3p \neq 9$, by Lemma 2.8, $\operatorname{soc}(X)$ is insoluble.

Case 1 Assume that X = G/M is primitive on U. Then X is known as in Table 2. Since $\operatorname{soc}(X)$ is non-abelian simple, it has no proper subgroups of index less than 5. Suppose that $\operatorname{soc}(X)$ is not primitive on \widetilde{W} . Then either each $\operatorname{soc}(X)$ -orbit on \widetilde{W} has length p, or $\operatorname{soc}(X)$ is transitive on \widetilde{W} with a block of size 3; moreover, p > 3 in both cases. Thus, for these two cases, $\operatorname{soc}(X)$ can be viewed as a transitive permutation group of prime degree. Checking Tables

1-2, we conclude that $\operatorname{soc}(X) \cong A_7$ and $\operatorname{soc}(X)_{\alpha} \cong A_6$, where α is either an *M*-orbit on \widetilde{W} or a block of $\operatorname{soc}(X)$ with size 3 on \widetilde{W} . For the former case, $3p = |\widetilde{W}| = |X : X_{\alpha}| \leq |X :$ $\operatorname{soc}(X)_{\alpha}| \leq |S_7:A_6| = 14$, a contradiction; for the latter case, A_6 has a subgroup of index 3, which is impossible. It follows that $\operatorname{soc}(X)$ is primitive on both \widetilde{U} and \widetilde{W} ; in particular, Γ_M is $\operatorname{soc}(X)$ -edge-transitive.

Let $N \leq G$ with $N/M = \operatorname{soc}(X)$. Clearly, N is normal in G and Γ is N-edge-transitive. Moreover, it is easily shown that M is the center of N.

Subcase 1.1 Assume that the extension $N = M.\operatorname{soc}(X)$ splits over M, that is, $N = M \times K$ for $\operatorname{soc}(X) \cong K < N$. Then K is a normal subgroup of G, and K acts primitively on both \widetilde{U} and \widetilde{W} . Since K is a non-abelian simple group, its order has at least three distinct prime divisors. It follows that K is not semi-regular on both U and W. Then K is transitive on one of U and W. This implies that 9p is a divisor of |K|, so K is not isomorphic to one of A_5 , $\operatorname{PSL}(3,2)$ and $\operatorname{PSL}(2,2^f)$.

Without loss of generality, assume that K is transitive on U. Then, for $u \in U$, the stabilizer $K_{\tilde{u}}$ is transitive on the *M*-orbit \tilde{u} . Thus $3 = |M| = |\tilde{u}| = |K_{\tilde{u}} : K_u|$, so K has a subgroup of index 3. Noting that $N_{\tilde{u}} = MK_{\tilde{u}}$, it implies that $K_{\tilde{u}} \cong N_{\tilde{u}}/M = \operatorname{soc}(X)_{\tilde{u}}$. Checking the subgroups of $\operatorname{soc}(X)_{\tilde{u}}$, we know that either $K \cong \operatorname{soc}(X) = A_6$ and p = 5, or $K \cong \operatorname{soc}(X) = \operatorname{PSL}(3,q)$ and $3p = q^2 + q + 1$, where q is a power of a prime with $q \equiv 1 \pmod{3}$.

Assume $\operatorname{soc}(X) = A_6$. Then Γ has order 90. Suppose that K is intransitive on W. Then K has three orbits on W, so Γ is cubic by Lemma 2.6. Thus Γ is a semisymmetric cubic graph by [5, Theorem 5.2]. Again by [5], there is no semisymmetric cubic graphs of order 90, a contradiction. Then K is also transitive on W. By Lemma 2.6, Γ is K-edge-transitive. Checking the subgroups of A_6 , we know that $K_u \cong D_8$ for $u \in U$. It follows that Γ has valency 4 or 8. Since Γ is G-locally primitive, $G_u^{\Gamma(u)}$ is a primitive group of degree 4 or 8. Since $K_u^{\Gamma(u)}$ is a transitive normal subgroup of $G_u^{\Gamma(u)}$, it follows that Γ has valency 4. Consider the actions of $\operatorname{soc}(X)$ on \widetilde{U} and \widetilde{W} . If these two actions are equivalent, then Γ_M has valency 6 or 8; otherwise, Γ_M has valency 3 or 12. This is a contradiction.

Assume that $\operatorname{soc}(X) = \operatorname{PSL}(3, q)$. Then Γ_M has valency q^2 , q+1 or q^2+q . If K is intransitive on W, then K has three orbits on W, and hence Γ is cubic by Lemma 2.6, a contradiction. Thus K is also transitive on W, so Γ is K-edge-transitive. Arguing similarly as in the proof of Theorem 3.1, we conclude that Γ is arc-transitive and has valency q^2 .

Subcase 1.2 Assume that the extension $N = M.\operatorname{soc}(X)$ does not split over M. Then checking the Schur multipliers of the simple groups in Table 3, we conclude that $N = 3.A_6$ with p = 5 or 2, or $N = 3.A_7$ with p = 5 or 7, or $N = \operatorname{SL}(3,q)$ with $3 \mid q = 1$.

Let $N = \mathrm{SL}(3, q)$ with $3 \mid q-1$. Using the notation defined above in Lemma 3.3, we identify \widetilde{U} with \mathcal{P} and \widetilde{W} with \mathcal{P} or \mathcal{H} . Then there are $\widetilde{u} \in \widetilde{U}$ and $\widetilde{w} \in \widetilde{W}$, such that

$$N_{\widetilde{u}} = \left\{ \left(\begin{array}{cc} a & \mathbf{0} \\ \mathbf{b}' & \mathbf{A} \end{array} \right) \middle| \mathbf{b} \in \mathbb{F}_q^2, \ \mathbf{A} \in \mathrm{GL}(2,q), \ a^{-1} = \mathrm{det}(\mathbf{A}) \right\}$$

and $N_{\tilde{w}} = N_{\tilde{u}}$ or $N_{\tilde{u}}^{\sigma}$. By Lemma 3.4 and a similar argument as in the proof of Theorem 3.1, it is easily shown that Γ is an arc-transitive graph of valency q^2 .

Let $N = 3.A_6$. If p = 2, then $\Gamma_M \cong K_{6,6} - 6K_2$, and hence Γ is arc-transitive by Lemma 2.4. Now let p = 5. Then Γ_M has valency 6, 8, 3 or 12. Take $u \in U$. Then $N_{\tilde{u}} = M \times N_u$, so $N_u \cong N_{\tilde{u}}/M = \operatorname{soc}(X)_{\tilde{u}} \cong S_4$. Since Γ is *G*-locally primitive, $G_u^{\Gamma(u)}$ is a primitive group. Noting that $N_u^{\Gamma(u)}$ is a transitive normal subgroup of $G_u^{\Gamma(u)}$, it follows that Γ has valency 4 or 3. Since Γ is a normal cover of Γ_M , we conclude that Γ has valency 3. By [5], there is no semi-symmetric cubic graphs of order 90. Thus Γ is arc-transitive.

Let $N = 3.A_7$ with p = 5 or 7. Assume first that $\operatorname{soc}(X)$ acts equivalently on \widetilde{U} and \widetilde{W} . Then by Lemma 2.3, Γ_M is isomorphic to an orbital bipartite graph of $\operatorname{soc}(X)$ on \widetilde{U} . Calculation shows that the suborbits of $\operatorname{soc}(X)$ on \widetilde{U} are all self-paired. Then Γ is arc-transitive by Colloray 2.1. If p = 5, then $X = \operatorname{soc}(X) \cong A_7$, $X_{\widetilde{u}} \cong \operatorname{PSL}(2,7)$ and Γ_M has valency 14; however, $\operatorname{PSL}(2,7)$ has no primitive permutation representations of degree 14, a contradiction. Then p = 7. It is easily shown that Γ has valency 10.

Assume that the actions of $\operatorname{soc}(X)$ on \widetilde{U} and \widetilde{W} are not equivalent. Then $X = \operatorname{soc}(X) = A_7$ and $X_{\widetilde{u}} \cong \operatorname{PSL}(2,7)$, so $G = N = 3.A_7$. In particular, p = 5 and Γ_M has order 30. Take $\widetilde{w} \in \Gamma_M(\widetilde{u})$. Checking the subgroups of A_7 , we conclude that $|X_{\widetilde{u}} : (X_{\widetilde{u}} \cap X_{\widetilde{w}})| = 7$ or 8. Then Γ_M has valency 7 or 8, and so does Γ . Verified by GAP, there are two involutions $\sigma_1, \sigma_2 \in S_7$, such that $|X_{\widetilde{u}} : (X_{\widetilde{u}} \cap X_{\widetilde{u}}^{\sigma_1})| = 7$ and $|X_{\widetilde{u}} : (X_{\widetilde{u}} \cap X_{\widetilde{u}}^{\sigma_2})| = 8$. Note that $G_{\widetilde{v}} = N \times G_v$ and $X_{\widetilde{v}} \cong G_v$ for $v \in V\Gamma$. Thus we may choose a suitable $w \in \Gamma(u)$, such that $G_u^{\sigma} = G_w$ for an automorphism of G of order 2. Then Γ is arc-transitive by Lemma 2.1.

Case 2 Assume that X = G/M is quasi-primitive, but not primitive on \widetilde{U} . Let B be a maximal block of X on \widetilde{U} . Then |B| = 3. Set $\mathcal{B} = \{B^x \mid x \in X\}$. Then $|\mathcal{B}| = p$ and X acts faithfully on \mathcal{B} . Thus X is known as in Table 3. Let $\widetilde{u} \in B$. Then $|X_B : X_u| = |B| = 3$. Checking one by one the groups listed in Table 3, we conclude that $\operatorname{soc}(X) = \operatorname{PSL}(n,q)$ with $p = \frac{q^n - 1}{q - 1}$.

Suppose that n = 2. Then $q = 2^{2^s}$ for some integer $s \ge 1$, and $N = M.\text{soc}(X) \cong \mathbb{Z}_3 \times \text{PSL}(2, 2^{2^s})$. It follows that G has a normal subgroup K isomorphic to $\text{PSL}(2, 2^{2^s})$. Note that 9 is not a divisor of |K|. It follows that K is intransitive on both U and W. By Lemma 2.7, K is semi-regular on U, which is impossible. Then $n \ge 3$.

A similar argument as above implies that $(n,q) \neq (3,2)$. Then by [15, p.12], $|\operatorname{soc}(X)|$ has at least four distinct prime divisors. Noting $|X| = 3p|X_{\widetilde{u}}|$, it follows that $|X_{\widetilde{u}}|$ has an odd prime divisor other than 3. This implies that the valency of Γ_M is no less than 5. If $\operatorname{soc}(X)$ is intransitive on \widetilde{W} , then $\operatorname{soc}(X)$ has exactly three orbits on \widetilde{W} , so Γ_M has valency 3 by Lemma 2.6, a contradiction. Therefore, $\operatorname{soc}(X)$ is transitive on \widetilde{W} , and hence Γ_M is $\operatorname{soc}(X)$ -edge-transitive. Let $N \leq G$ with $N/M = \operatorname{soc}(X)$. Then N is normal in G and Γ is N-edge-transitive.

It is easily shown that n is an odd prime with $q \not\equiv 1 \pmod{n}$ (see the proof of Lemma 3.5). Then the Schur multiplier of PSL(n,q) is 1. Recalling $M \cong \mathbb{Z}_3$, it yields that $N = M \times K$, where $K \cong PSL(n,q)$. Clearly, K is a normal subgroup of G. Recalling that soc(X) is transitive on both \widetilde{U} and \widetilde{W} , we conclude that each K-orbit on $V\Gamma$ has length at least 3p. Since K is not semi-regular and Γ has valency no less than 5, by Lemma 2.6, we know that Γ is K-edge-transitive. Then the argument in Section 3 implies that Γ is an arc-transitive graph.

Acknowledgement The authors would like to thank the referees for valuable comments and careful reading.

References

[1] Aschbacher, M., Finite Group Theory, Cambridge University Press, Cambridge, 1993.

- [2] Cameron, P. J., Permutation Groups, Cambridge University Press, Cambridge, 1999.
- [3] Conder, M. and Dobcsányi, P., Trivalent symmetric graphs on up to 768 vertices, J. Combin. Math. Combin. Comput., 40, 2002, 41–63.
- [4] Conder, M. D., Li, C. H. and Praeger, C. E., On the Weiss conjecture for finite locally primitive graphs, Proc. Edinburgh Math. Soc. (2), 43, 2000, 129–138.
- [5] Conder, M., Malnič, A., Marušič, D. and Potočnik, P., A census of semisymmetric cubic graphs on up to 768 vertices, J. Algebr. Comb., 23, 2006, 255–294.
- [6] Conway, J. H., Curtis, R. T., Noton, S. P., et al., Atlas of Finite Groups, Clarendon Press, Oxford, 1985.
- [7] Dixon, J. D. and Mortimer, B., Permutation Groups, Springer-Verlag, New York, Berlin, Heidelberg, 1996.
- [8] Du, S. F. and Xu, M. Y., A classification of semisymmetric graphs of order 2pq, Comm. Algebra, 28(6), 2000, 2685–2714.
- [9] Fang, X. G., Havas, G. and Praeger, C. E., On the automorphism groups of quasi-primitive almost simple graphs, J. Algebra, 222, 1999, 271–283.
- [10] Fang, X. G., Ma, X. S. and Wang, J., On locally primitive Cayley graphs of finite simple groups, J. Combin. Theory Ser. A, 118, 2011, 1039–1051.
- [11] Fang, X. G. and Praeger, C. E., On graphs admitting arc-transitive actions of almost simple groups, J. Algebra, 205, 1998, 37–52.
- [12] Fang, X. G., Praeger, C. E. and Wang, J., Locally primitive Cayley graphs of finite simple groups, Sci. China Ser. A, 44, 2001, 58–66.
- [13] Folkman, J., Regular line-symmetric graphs, J. Combin Theory Ser. B, 3, 1967, 215–232.
- [14] Giudici, M., Li, C. H. and Praeger, C. E., Analysing finite locally s-arc transitive graphs, Trans. Amer. Math. Soc., 356, 2004, 291–317.
- [15] Gorenstein, D., Finite Simple Groups, Plenum Press, New York, 1982.
- [16] Han, H. and Lu, Z. P., Semisymmetric graphs of order 6p² and prime valency, Sci. China Math., 55, 2012, 2579–2592.
- [17] Han, H. and Lu, Z. P., Affine primitive permutation groups and semisymmetric graphs, *Electronic J. Combin.*, 20(2), 2013, Research Paper 39.
- [18] Han, H. and Lu, Z. P., Semisymmetric graphs arising from primitive permutation groups of degree 9p, Sci. China Math., 58, 2015, to appear. DOI: 10.1007/s11425-000-0000-0
- [19] Huppert, B., Endliche Gruppen I, Springer-Verlag, Berlin, 1967.
- [20] Huppert, B. and Blackburn, N., Finite Groups II, Springer-Verlag, Berlin, 1982.
- [21] Iranmanesh, M. A., On finite G-locally primitive graphs and the Weiss conjecture, Bull. Austral. Math. Soc., 70, 2004, 353–356.
- [22] Li, C. H., Lou, B. G. and Pan, J. M., Finite locally primitive abelian Cayley graphs, Sci. China Math., 54, 2011, 845–854.
- [23] Li, C. H. and Ma, L., Locally primitive graphs and bidirect products of graphs, J. Aust. Math. Soc., 91, 2011, 231–242.
- [24] Li, C. H., Pan, J. M. and Ma, L., Locally primitive graphs of prime-power order, J. Aust. Math. Soc., 86, 2009, 111–122.
- [25] Lu, Z. P., On the automorphism groups of bi-Cayley graphs, Beijing Daxue Xuebao, 39, 2003, 1–5.
- [26] Lu, Z. P., Wang, C. Q. and Xu, M. Y., On semisymmetric cubic graphs of order 6p², Sci. China Ser. A, 47(1), 2004, 1–17.
- [27] Malnič, A., Marušič, D. and Wang, C. Q., Cubic edge-transitive graphs of order 2p³, Discrete Math, 274, 2004, 187–198.
- [28] Pan, J. M., Locally primitive normal Cayley graphs of metacyclic groups, *Electron. J. Combin.*, 16, 2009, Research Paper 96.
- [29] Praeger, C. E., Imprimitive symmetric graphs, Ars. Combin., 19A, 1985, 149–163.
- [30] Praeger, C. E., An o'Nan-Scott theorem for finite quasi-primitive permutation groups and an application to 2-arc transitive graphs, J. London Math. Soc., 47, 1992, 227–239.
- [31] Spiga, P., On G-locally primitive graphs of locally twisted wreath type and a conjecture of Weiss, J. Combin. Theory Ser. A, 118, 2011, 2257–2260.
- [32] Weiss, R., s-Transitive graphs, Algebraic methods in graph theory, Colloq. Math. Soc. János Bolyai, 25, 1981, 827–847.