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1 Introduction

All graphs in this paper are assumed to be finite and simple.
Let Γ be a graph. We use V Γ , EΓ and Aut Γ to denote the vertex set, the edge set and

the automorphism group of Γ , respectively. Then the graph Γ is said to be vertex-transitive
or edge-transitive if some subgroup G of AutΓ (denoted by G ≤ AutΓ ) acts transitively on
V Γ or EΓ , respectively. Recall that an arc in Γ is an ordered pair of adjacent vertices. Then
the graph Γ is called arc-transitive if some G ≤ Aut Γ acts transitively on the set of arcs of Γ .
The graph Γ is said to be locally primitive if for some subgroup G ≤ AutΓ and each v ∈ V Γ ,
the stabilizer Gv induces a primitive permutation group G

Γ(v)
v on the neighborhood Γ (v), the

set of neighbors, of v in Γ . For convenience, such subgroups G are called vertex-transitive,
edge-transitive, arc-transitive and locally primitive groups of Γ , respectively.

The study of locally primitive graphs is one of the main themes in algebraic graph theory,
which stems from a conjecture on bonding the stabilizers of locally primitive arc-transitive
graphs (see [32, Conjecture 12]). The reader may consult [4, 9–12, 14, 21–24, 28–29, 31] for
some known results in this area.

In this paper, we aim at determining the arc-transitivity of certain locally primitive graphs.
Let Γ be a connected graph and G be a locally primitive group on Γ . It is easily shown that G

acts transitively on EΓ , so Γ is edge-transitive. If G is vertex-transitive, then Γ is necessarily
an arc-transitive graph. Thus, for our purpose, we always assume that Γ is regular, but G is
not vertex-transitive. Then Γ is a bipartite graph with two bipartition subsets being the G-
orbits on V Γ . Giudici et al. [14] established a reduction for studying locally primitive bipartite
graphs, which was successfully applied in [23] to the characterization of locally primitive graphs
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of order twice a prime power. In this paper, we concentrate our attention on analyzing the
locally primitive graphs of order 18p. Our main result is stated as follows.

Theorem 1.1 Let Γ be a connected regular graph of order 18p, where p is a prime. Assume
that Γ is locally primitive. Then Γ is either arc-transitive or isomorphic to one of the Gray
graph and the Tutte 12-cage.

2 Preliminaries

Let Γ be a graph and let G ≤ Aut Γ . Assume that G is edge-transitive but not vertex-
transitive; in this case, we call G semisymmetric if Γ is regular. Then Γ is a bipartite graph
with two bipartition subsets being the G-orbits on V Γ . Moreover, Γ is arc-transitive provided
that Γ has an automorphism interchanging two of its bipartition subsets. For a given vertex
u ∈ V Γ , the stabilizer Gu acts transitively on Γ (u). Take w ∈ Γ (u). Then each vertex of Γ
can be written as ug or wg for some g ∈ G. Then two vertices ug and wh are adjacent in Γ
if and only if u and whg−1

are adjacent, i.e., hg−1 ∈ GwGu. Moreover, it is well-known and
easily shown that Γ is connected if and only if 〈Gu, Gw〉 = G. In particular, the next simple
fact follows.

Lemma 2.1 Let Γ be a connected graph and G ≤ Aut Γ. Assume that G is edge-transitive
but not vertex-transitive. Let {u, w} be an edge of Γ . Then

(1) Gu and Gw contain no nontrivial normal subgroups in common.
(2) r ≤ max{|Γ (u)|, |Γ (w)|} for each prime divisor r of |Gu|.
Moreover, Γ is arc-transitive if one of the following conditions holds:
(3) G has an automorphism σ of order 2 with Gσ

u = Gw.
(4) G has an abelian subgroup acting regularly on both bipartition subsets of Γ .

Proof Since Γ is connected, 〈Gu, Gw〉 = G ≤ Aut Γ . Then (1) follows.
Let r be a prime divisor of |Gu| with r > max{|Γ (u)|, |Γ (w)|}, and let R be a Sylow r-

subgroup of Gu. Then R fixes Γ (u) point-wise, and so R ≤ Gw′ for each w′ ∈ Γ (u). Take Q to
be a Sylow r-subgroup of Gw with Q ≥ R. Then Q fixes Γ (w) point-wise, and hence Q ≤ Gu.
Thus R = Q. By the connectedness of Γ , for each v ∈ V Γ , it is easily shown that R is a Sylow
r-subgroup of Gv. Thus R fixes V Γ point-wise, and so R = 1 as R ≤ Aut Γ . Then (2) follows.

Suppose that G has an automorphism σ of order 2 with Gσ
u = Gw. Define a bijection

ι : V Γ → V Γ by (ug)ι = wgσ

and (wh)ι = uhσ

. It is easy to check that ι ∈ Aut Γ and ι

interchanges two bipartition subsets of Γ . This implies that Γ is arc-transitive.
Suppose that G has a subgroup R, which is regular on both bipartition subsets of Γ . Then

each vertex in V Γ can be written uniquely as ux or wy for some x, y ∈ R. Set S = {s ∈ R |
ws ∈ Γ (u)}. Then ux and wy are adjacent if and only if yx−1 ∈ S. If R is abelian, then it is
easy to show that ux �→ wx−1

, wx �→ ux−1
, ∀x ∈ R is an automorphism of Γ , which leads to

the arc-transitivity of Γ .

Let G be a finite transitive permutation group on a set Ω. The orbits of G on the cartesian
product Ω × Ω are the orbitals of G, and the diagonal orbital {(α, α)g | g ∈ G} is said to be
trivial. For a G-orbital Δ and α ∈ Ω, the set Δ(α) = {β | (α, β) ∈ Δ} is a Gα-orbit on Ω, called
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a suborbit of G at α. The rank of G on Ω is the number of G-orbitals, which equals the number
of Gα-orbits on Ω for any given α ∈ Ω. A G-orbital Δ is called self-paired if (β, α) ∈ Δ for some
(α, β) ∈ Δ, while the suborbit Δ(α) is said to be self-paired. For a G-orbital Δ, the paired
orbital Δ∗ is defined as {(β, α) | (α, β) ∈ Δ}. Then a G-orbital Δ is self-paired if and only if
Δ∗ = Δ. For a non-trivial G-orbital Δ, the orbital bipartite graph B(G, Ω, Δ) is the graph on
two copies of Ω, say Ω×{1, 2}, such that {(α, 1), (β, 2)} is an edge if and only if (α, β) ∈ Δ.
Then B(G, Ω, Δ) is G-semisymmetric, where G acts on Ω×{1, 2} as follows:

(α, i)g = (αg, i), g ∈ G, i = 1, 2.

If Δ is self-paired, then (α, 1) ↔ (α, 2), α ∈ Ω gives an automorphism of B(G, Ω, Δ), which
yields that B(G, Ω, Δ) is G-arc-transitive. The next lemma indicates the possibility that
B(G, Ω, Δ) is arc-transitive even if Δ is not self-paired.

Lemma 2.2 Let X be a permutation group on Ω, and G be a transitive subgroup of X

with index |X : G| = 2. Let Δ be a G-orbital. If Δ ∪ Δ∗ is an X-orbital, then B(G, Ω, Δ) is
arc-transitive.

Proof Assume that Δ∪Δ∗ is an X-orbital. To show that Γ := B(G, Ω, Δ) is arc-transitive,
it suffices to find an automorphism of Γ , which interchanges two bipartition subsets of Γ . Take
x ∈ X \ G. It is easily shown that Δx = Δ∗ and (Δ∗)x = Δ. Define x̂ : Ω×{1, 2} →
Ω×{1, 2}; (α, 1) �→ (αx, 2), (β, 2) �→ (βx, 1). It is easy to check x̂ ∈ Aut Γ , so Lemma 2.2
follows.

Moreover, the next lemma is easily shown (see also [14]).

Lemma 2.3 Assume that Γ is a connected G-semisymmetric graph of valency at least 2
with bipartition subsets U and W , and that, for an edge {u, w} ∈ EΓ, two stabilizers Gu and
Gw are conjugate in G. Then there is a bijection ι : U ↔ W , such that Gu = Gι(u) and
{u, ι(u)} �∈ EΓ for all u ∈ U . Moreover, Δ = {(u, ι−1(w)) | {u, w} ∈ EΓ , u ∈ U, w ∈ W} is a
G-orbital on U . In particular, Γ ∼= B(G, U, Δ), and ι extends to an automorphism of Γ if and
only if Δ is self-paired.

Remark 2.1 Let Γ and G ≤ Aut Γ be as in Lemma 2.3. Then {Gu | u ∈ U} = {Gw |
w ∈ W}, so

⋂
u∈U

Gu =
⋂

w∈W

Gw = 1 as G ≤ AutΓ . Thus G is faithful on both parts of Γ .

Take u ∈ U and w ∈ W with Gu = Gw. Then ug ↔ wg, g ∈ G gives a bijection meeting the
requirement of Lemma 2.3. Thus one can define l2 bijections ι, where l is the number of the
points in U fixed by a stabilizer Gu. By [7, Theorem 4.2A], l = |NG(Gu) : Gu|.

Let G be a finite transitive permutation group on Ω. Let N = {x1 = 1, x2, · · · , xn} be a
group of order n lying in the center Z(G) of G. Then N is normal in G, and N is semi-regular
on Ω, that is, Nα = 1 for all α ∈ Ω. Denote by α the N -orbit containing α ∈ Ω and by Ω the
set of all N -orbits. Then G induces a transitive permutation group G on Ω. Take a G-orbital
Δ and (α, β) ∈ Δ. Noting that Gα = N×Gα, it follows that Δ(α) = {(β)h | h ∈ Gα}. Set

Δi(α) = {βxih | h ∈ Gα}, 1 ≤ i ≤ n.

Then all Δi(α) are suborbits of G at α, which are not necessarily distinct. It is easily shown that
N×Gα acts transitively on Ω1 := {βxih | 1 ≤ i ≤ n, h ∈ Gα}. It follows that all Gα-orbits on



922 H. Han and Z. P. Lu

Ω1 have the same length divisible by |Δ(α)|. For each i, let Δi be the G-orbital corresponding
to Δi(α).

Lemma 2.4 Let G, N , Δ and Δi be as above.
(1) All Δi(α) are suborbits of G of the same length divisible by |Δ(α)|.
(2) If Δ is self-paired, then for each i, there is some j, such that Δi(α) = Δ∗

j (α).

(3) B(G, Ω, Δi) ∼= B(G, Ω, Δj) for 1 ≤ i, j ≤ n.

Proof (1) follows from the argument above the lemma.

Assume that Δ is self-paired. Then there is some g ∈ G, such that (α, β)g = (β, α). Thus,
for each i, there are some i′ and j′, such that (α, βxi)g = (βxj′ , αxi′ ) = (βx−1

i′ xj′ , α)xi′ . Setting
x−1

i′ xj′ = xj , we have (α, βxi)g = (βxj , α)xi′ . Then Δi = Δ∗
j .

For each i, define fi : Ω×{1, 2} → Ω×{1, 2} by fi(δ, 1) = (δ, 1) and fi(δ, 2) = (δxi , 2), where
δ ∈ Ω. It is easily shown that fi is an isomorphism from B(G, Ω, Δ1) to B(G, Ω, Δi). Thus (3)
follows.

Let Γ be a G-semisymmetric graph. Suppose that G has a normal subgroup N , which acts
intransitively on at least one of the bipartition subsets of Γ . Then we define the quotient graph
ΓN to have vertices (the N -orbits) on V Γ , and two N -orbits B and B′ are adjacent in ΓN if and
only if some v ∈ B and some v′ ∈ B′ are adjacent in Γ . It is easy to see that the quotient ΓN

is a regular graph if and only if all N -orbits have the same length. Moreover, if ΓN is regular,
then its valency is a divisor of that of Γ . The graph Γ is called a normal cover of ΓN (with
respect to G and N) if ΓN and Γ have the same valency, which yields that N is the kernel of
G acting the N -orbits (vertices of ΓN ). Thus, if Γ is a normal cover of ΓN , then the quotient
group G/N can be identified with a subgroup of AutΓN , so ΓN is G/N -semisymmetric.

Corollary 2.1 Let Γ and G ≤ AutΓ be as in Lemma 2.3. Let N ≤ Z(G). Then N is
intransitive and semiregular on both U and W . Assume further that |N | is odd and that ΓN is
the orbital bipartite graph of some self-paired orbital of G, where G is the subgroup of AutΓN

induced by G. Then Γ is arc-transitive.

Proof Recall that G is faithful on both U and W (see Remark 2.1). Since N ≤ Z(G),
every subgroup of N is normal in G, so Nv ≤ Gg

v = Gvg for v ∈ V Γ and g ∈ G. It follows that
Nv = 1, so N is semi-regular on both U and W . Suppose that N is transitive on one of U and
W , say U . Then G = NGu for u ∈ U , so Gu is normal in G as N ≤ Z(G). It follows that Gu

fixes every vertex in U , so Gu = 1, which contradicts the transitivity of Gu on Γ (u).
By Lemma 2.3, there is bijection ι : U ↔ W , such that for u ∈ U , the subset ι−1(Γ (u))

is a suborbit of G at u. By Remark 2.1, we may choose ι, such that it maps each N -orbit on
U to some N -orbit on W . Thus ι induces a bijection ι on V ΓN interchanging two bipartition
subsets UN and WN of ΓN , where UN and WN denote respectively the sets of N -orbits on U

and W . Moreover, it is easily shown that Gv = Gι(v) for any N -orbit v, and that ι−1(Γ (u)) =
{u′h | h ∈ Gu} for u′ ∈ U , such that u′ ∈ ι−1(ΓN (u)).

Assume that ΓN is the orbital bipartite graph of some self-paired orbital of G. Then, again
by Lemma 2.3, ι ∈ Aut ΓN and ι−1(ΓN (u)) is a self-paired suborbit of G at u. If |N | is odd,
then by Lemma 2.4, Γ is isomorphic to the orbital bipartite graph of some self-paired orbital
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of G on U , and hence Γ is arc-transitive.

Recall that, for a group G that acts transitively on a set Ω, a block B is a non-empty subset
of Ω, such that B = Bg or B ∩ Bg = ∅ for every g ∈ G.

Lemma 2.5 Let Γ be a connected graph, and let G ≤ Aut Γ, such that G is locally primitive
but not vertex-transitive. Assume that U and W are G-orbits on V Γ, and that B is a block of
G on W . Then either B = W or |Γ (u) ∩ B| ≤ 1 for each u ∈ U .

Proof Note that for each u ∈ U , either Γ (u) ∩ B = ∅ or Γ (u) ∩ B is a block of Gu on
Γ (u). Since Gu acts primitively on Γ (u), we know that either |Γ (u) ∩ B| ≤ 1 or Γ (u) ⊆ B.
Suppose that Γ (u) ⊆ B for some u ∈ U . Take w ∈ B and v ∈ Γ (w). Since G is edge-transitive,
there is g ∈ G with vg = u and wg ∈ Γ (u) ⊆ B. Then w ∈ Bg−1 ∩ B, so B = Bg−1

. Thus
Γ (v) = (Γ (u))g−1 ⊆ Bg−1

= B. It follows that Γ has a connected component with vertex set( ⋃
w∈B

Γ (w)
) ∪ B. This yields B = W .

Lemma 2.6 Let Γ and G be as in Lemma 2.5. Let U and W be the G-orbits on V Γ.
Suppose that G has a normal subgroup N , which acts transitively on U . Then one of the
following holds:

(1) ΓN is a |Γ (u)|-star, where u ∈ U .

(2) Γ is N -edge-transitive.

(3) N is regular on both U and W .

Proof If N is intransitive on W , then (1) follows from [14, Lemma 5.5]. Thus we assume
that N is transitive on W . Take u ∈ U . If Nu is transitive on Γ (u), then Γ is N -edge-transitive,
so (2) holds. Suppose that Nu is not transitive on Γ (u). Since Nu is normal in Gu and G is
locally primitive, Nu fixes Γ (u) point-wise. Thus Nw ≥ Nu for each w ∈ Γ (u). If Nw is
transitive on Γ (w), then Γ is N -edge-transitive, so (2) holds. Thus we may further suppose
that Nw ≤ Nu′ for each u′ ∈ Γ (w). By the connectedness of Γ , we conclude that Nu = Nw = 1.
Then (3) follows.

Recall that a quasi-primitive group is a permutation group with all minimal normal sub-
groups transitive. By [14, Theorem 1.1 and Lemma 5.1], the next lemma holds.

Lemma 2.7 Let Γ and G be as in Lemma 2.5. Suppose that N is a normal subgroup of
G, which is intransitive on both bipartition subsets of Γ . Then Γ is a normal cover of ΓN and
ΓN is G/N -locally primitive. If further N is maximal among the normal subgroups of G, which
are intransitive on both bipartition subsets of Γ , then either ΓN is a complete bipartite graph,
or G/N acts faithfully on both parts and is quasi-primitive on at least one of the bipartition
subsets of ΓN .

For a finite group G, denote by soc(G) the subgroup generated by all minimal normal
subgroups of G, which is called the socle of G. The next result describes the basic structural
information for quasi-primitive permutation groups (see [30]).

Lemma 2.8 Let G be a finite quasi-primitive permutation group on Ω. Then G has at most
two minimal normal subgroups, and one of the following statements holds:
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(1) |Ω| = pd, soc(G) ∼= Z
d
p , and soc(G) is the unique minimal normal subgroup of G, where

d ≥ 1 and p is a prime; in this case, G is primitive on Ω.
(2) soc(G) = T l for l ≥ 1 and a nonabelian simple group T , and either soc(G) is the unique

minimal normal subgroup of G, or soc(G) = M×N for two minimal normal subgroups M and
N of G with |M | = |N | = |Ω|.

3 The Quasi-primitive Case

Let Γ be a G-locally primitive regular graph of order 18p, where G ≤ Aut Γ and p is a
prime. Assume that G is intransitive on V Γ . Then Γ is a bipartite graph with two bipartition
subsets being G-orbits, say U and W .

Assume next that G acts faithfully on both U and W , and that G is quasi-primitive on one
of U and W . If G acts primitively on one of U and W , then by [18], Γ is either arc-transitive or
isomorphic to one of the Gray graph and the Tutte 12-cage. Thus we assume in the following
that neither GU nor GW is a primitive permutation group. Then by Lemma 2.8, N := soc(G)
is the direct product of isomorphic non-abelian simple groups. In particular, G is insoluble, so
Γ is not a cycle.

Without loss of generality, we assume that G is quasi-primitive on U . Recall that GU is not
primitive. Take a maximal block B (�= U) of G on U . Then |B| is a proper divisor of |U | = 9p

and |GB : Gu| = |NB : Nu| = |B| for each u ∈ B. Set B = {Bg | g ∈ G}. Then |B| = 9p
|B| , and

G acts primitively on B. Since G is quasi-primitive on U , we know that G acts faithfully on B.
Thus we may view G as a primitive permutation group (on B) of degree 9p

|B| .

Lemma 3.1 |B| = 3 or 9.

Proof It is easy to see that |B| = 3, 9 or p. Suppose that |B| = p. Then |B| = 9 and
by [7, Appendix B], N = soc(G) = A9 or PSL(2, 8). If N = A9 then NB

∼= A8 and p ≤ 7;
however, A8 has no subgroups of index p, a contradiction. Thus N = PSL(2, 8), NB

∼= Z
3
2:Z7

and p = 7, so Nu
∼= Z

3
2 and |U | = 63, where u ∈ B. Since Γ is G-locally primitive, Gu induces

a primitive permutation group G
Γ(u)
u . If G = N , then G

Γ(u)
u

∼= Z2, yielding that Γ is a cycle,
a contradiction. It follows that G = PΣL(2, 8) ∼= PSL(2, 8):Z3 and |Gv| = 24, where v is an
arbitrary vertex of Γ . Checking the subgroups of PSL(2, 8) in the Atlas (see [6]), we know that
N has no proper subgroups of index dividing 21. It implies that N is transitive on W , so G is
also quasi-primitive on W . By the information given for PΣL(2, 8) in [6], Gv

∼= Z
3
2:Z3

∼= Z2×A4

for each v ∈ V Γ . Then either G
Γ(v)
v

∼= Z3 and Γ is cubic, or G
Γ(v)
v

∼= A4 and Γ has valency 4.
Take {u, w} ∈ EΓ . Then Guw

∼= Z
3
2 or Z6. It follows that Gu and Gw have the same center,

which contradicts Lemma 2.1.

Therefore, G is a primitive permutation group (on B) of degree p or 3p. For further argument,
we list in Tables 1–2 the insoluble primitive groups of degree p and of degree 3p, respectively.
Noting that NB has a subgroup of index |B| = 9 or 3, it is easy to check that N = A6 or
PSL(n, q). Suppose that N = A6. Then |B| = 3 and p = 5. It follows that Gu is a 2-group.
Since Γ is G-locally primitive,

GΓ(u)
u

∼= Z2.
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Then Γ is a cycle, a contradiction. Thus the next lemma follows.

Table 1 Insoluble transitive groups of prime degree (see [2, Table 7.4])

Degree p 11 11 23 p qn−1
q−1

Socle PSL(2, 11) M11 M23 Ap PSL(n, q)
Stabilizer A5 M10 M22 Ap−1

Action 1- or (n − 1)-subspaces
Remark prime n ≥ 3 or (n, q) = (2, 22s

)

Table 2 Insoluble primitive groups of degree 3p (see [16])

Degree 3p Socle Action Remark
6 A5 cosets of D10

15 A6 2-subsets or partitions
21 A7 2-subsets
21 PSL(3, 2) (1, 2)-flags
57 PSL(2, 19) cosets of A5 two actions
15 A7 cosets of PSL(2, 7) two actions
3p A3p

15 PSL(4, 2) 1- or 3-subspaces
2f + 1 PSL(2, 2f) 1-subspaces odd primef
q3−1
q−1 PSL(3, q) 1- or 2-subspaces q ≡ 1 (mod 3)

Lemma 3.2 Either |B| = 9 and N = PSL(n, q) with n prime, or |B| = 3 and N = PSL(3, q)
with q ≡ 1 (mod 3).

Let Fq be the Galois field of order q, and let F
n
q be the n-dimensional linear space of row

vectors over Fq. Denote by P and H, respectively, the sets of 1-subspaces and (n−1)-subspaces
of F

n
q . Then the action of N = SL(n, q)/Z(SL(n, q)) on B is equivalent to one of the actions of

N on P and on H induced by

(x1, x2, · · · , xn)A =
( n∑

i=1

ai1xi,

n∑
i=1

ai2xi, · · · ,

n∑
i=1

ainxi

)
,

where A = (aij)n×n ∈ SL(n, q). Let σ be the inverse-transpose automorphism of SL(n, q), that
is,

σ : SL(n, q) → SL(n, q), A �→ (A′)−1.

Then σ gives an automorphism of N of order 2. Define

ι : P → H, 〈(x1, x2, · · · , xn)〉 �→
{
(y1, y2, · · · , yn)

∣∣∣ n∑
i=1

xiyi = 0
}
.

Then
(ι(〈v〉))A = ι(〈vA〉), ∀A ∈ SL(n, q), 〈v〉 ∈ P .

For 1 ≤ i ≤ n, let ei be the vector with the ith entry 1 and other entries 0. Then

(SL(n, q))〈e1〉 = Q:H, (SL(n, q))〈ei|2≤i≤n〉 = Qσ:H,
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where

Q =
{(

1 0
b′ In−1

)∣∣∣∣ b ∈ F
n−1
q

}
,

H =
{(

a 0
0′ A

)∣∣∣∣ A ∈ GL(n − 1, q), a−1 = det(A)
}

.

For a subgroup X of SL(n, q), we denote X to be the image of X in N , that is, X =
X/Z(SL(n, q)). Then the following lemma holds.

Lemma 3.3 If B ∈ B, then NB is conjugate in N to one of Q:H and Q
σ
:H.

The following simple fact may be shown by simple calculations.

Lemma 3.4 Set Fq \ {0} = 〈η〉 and

L =
{(

1 0
0′ A

)∣∣∣∣ A ∈ SL(n − 1, q)
}

.

Then Q:L acts transitively on P \ 〈e1〉, and has two orbits on H with lengths qn−1−1
q−1 and qn−1,

respectively. Moreover, for each divisor m of q− 1, Q:H has a unique subgroup containing Q:L
and having index m, which is{(

a 0
b′ A

)∣∣∣∣b ∈ F
n−1
q , A ∈ GL(n − 1, q), a−1 = det(A) ∈ 〈ηm〉

}
.

Lemma 3.5 Write q = rf for a prime r and an integer f ≥ 1. Assume that |B| = 9 for
B ∈ B. Then the following statements hold:

(1) (n, q) �= (2, 2), (2, 3), (3, 2), (3, 3).
(2) n is an odd prime with q �≡ 1 (mod n).
(3) n is the smallest prime divisor of nf .

Proof By Lemma 3.2, N = PSL(n, q) for a prime n. Since 9 is a divisor of |N | and N is
simple, (n, q) �= (2, 2), (2, 3), (3, 2).

Suppose that N = PSL(3, 3). Then p = 13, G = N , |GB | = 24 · 33 and |Gu| = 48. Take
w ∈ Γ (u). Since Γ is regular, |Gu| = 48 = |Gw|. Checking the subgroups of SL(3, 3) (see [6]),
we have Gu

∼= Gw
∼= 2S4

∼= GL(2, 3). Since Γ is G-locally primitive, G
Γ(u)
u

∼= S4
∼= G

Γ(w)
w and

Γ has valency 4. Thus Guw
∼= D12. It follows that Gu and Gw have the same center isomorphic

to Z2, which contradicts Lemma 2.1. Thus (1) follows.
Suppose that n = 2. Then, since p = rnf−1

rf−1
is a prime, r = 2 and f = 2s for some

integer s ≥ 1. Thus NB
∼= Z

2s

2 :Z22s−1, and hence Nu
∼= Z

2s

2 :Z 22s −1
9

. But 22s − 1 is not

divisible by 9, a contradiction. This implies that n is an odd prime. If q ≡ 1 (mod n), then

p =
n−1∑
i=0

qi ≡ 0 (mod n), a contradiction. Then (2) follows.

If nf = 6 and r = 2, then p = qn−1
q−1 = 21 or 63, a contradiction. Thus, by Zsigmondy’s

theorem (see [20, p. 508]), there is a prime, which divides rnf − 1, but not ri − 1 for all
1 ≤ i ≤ nf − 1. Clearly, such a prime is p. Suppose that f has a prime divisor s, such that
s < n. Then qn − 1 has a divisor r

nf
s − 1. By Zsigmondy’s theorem, either (r, nf

s ) = (2, 6), or
r

nf
s − 1 has a prime divisor which does not divide rf − 1. The latter case yields that qn−1

q−1 has
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two (distinct) prime divisors, a contradiction. Thus (r, nf
s ) = (2, 6), yielding that n = 3 and

f = 4. Then p = qn−1
q−1 = 212−1

24−1 = 273, a contradiction. Then (3) follows.

Lemma 3.6 Let B ∈ B. If (n, q) = (3, 8), then |B| = 9 and Γ is arc-transitive and of
valency 8 or 64.

Proof Assume that (n, q) = (3, 8). Then N ∼= SL(3, 8), p = 73 and |G : N | = 1 or 3. By
Lemma 3.2, |B| = 9. Without loss of generality, we assume that N = SL(3, 8) and choose B,
such that NB = P :H , where P ∼= Z

6
2 and H is defined above Lemma 3.3.

Since NB is transitive on B, it is easily shown that P acts trivially on B, so H acts tran-
sitively on B. Then |H : Hu| = 9. Note that H ∼= GL(2, 8) ∼= Z7×PSL(2, 8). Checking the
subgroups of PSL(2, 8), we conclude that the action of H on B is equivalent to the action of
H on the set of 1-subspaces of F

2
8. Then, without loss of generality, we may assume that Hu is

conjugate to ⎧⎨
⎩

⎛
⎝ a1 0 0

0 a2 0
0 b a3

⎞
⎠

∣∣∣∣∣∣ a1, a2, a3, b ∈ F8, a1a2a3 = 1

⎫⎬
⎭ .

Recall that a (1, 2)-flag of F
3
8 is a pair {V1, V2} of a 1-subspace and a 2-subspace with the

1-subspace contained in the 2-subspace. Since P ≤ Nu, we have Nu = Nu ∩ (PH) = PHu
∼=

Z
6
2:(Z

3
2:Z

2
7). It is easily shown that Nu is the stabilizer of some (1, 2)-flag {V1, V2} in N . It

follows that the action of N on U is equivalent to the action of N on the set F of (1, 2)-flags of
F

3
8.

Now we show that the actions of N on U and W are equivalent. Note that |G : N | = 1 or
3. Thus, since W is a G-orbit, either N is transitive on W or N has 3 orbits on W . Checking
the subgroups of SL(3, 8), we know that N has no subgroups of index 219. It follows that N

is transitive on W . Note that N = SL(3, 8) has no subgroups of index 3, 9 or 219. It follows
that a maximal block of N on W has size 9. Then a similar argument as above implies that
the action of N on W is also equivalent to that on F . Moreover, Γ is N -edge-transitive by
Lemma 2.6.

Identifying U with F , and by Lemma 2.3, Γ ∼= B(N,F , Δ), where Δ is an N -orbital on F .
Without loss of generality, choose u to be the flag {〈e3〉, 〈e2, e3〉}. Calculation shows that Δ(u)
is one of the following 5 suborbits:

(i) {{〈e2+ae3〉, 〈e2, e3〉} | a ∈ F8} and {{〈e3〉, 〈e3, e1+ae2〉} | a ∈ F8}, which are self-paired
and of length 23.

(ii) {{〈e2 + ae3〉, 〈e1 + be2, e2 + ae3〉} | a, b ∈ F8} and {{〈e1 + ae2 + be3〉, 〈e1 + ae2, e3〉} |
a, b ∈ F8}, which are paired to each other and of length 26.

(iii) {{〈e1 + ae2 + be3〉, 〈e1 + ae2 + be3, e2 + ce3〉} | a, b, c ∈ F8}, which is self-paired and of
length 29.

Suppose that Δ(u) is the suborbit in (iii). Then Γ has valency 29. Recall that |G : N | = 1
or 3, and Nu = PHu

∼= Z
6
2:(Z3

2:Z2
7). It follows that Gu/Nu is cyclic, and hence Gu is soluble.

Since Γ is G-locally primitive, G
Γ(u)
u is a soluble primitive permutation group of degree 29. In

particular, soc(GΓ(u)
u ) ∼= Z

9
2 and soc(GΓ(u)

u ) is the unique minimal normal subgroup of G
Γ(u)
u .

Thus N
Γ(u)
u ≥ soc(GΓ(u)

u ) as Nu induces a normal transitive subgroup of GΓ(u). However, the
unique Sylow 2-subgroup of Nu is non-abelian and has order 29, a contradiction.

If Δ(u) is described in (i), then Γ has valency 8, and by Lemma 2.3, Γ is arc-transitive.



928 H. Han and Z. P. Lu

Assume that Δ(u) is one of the suborbits in (ii). Then Γ has valency 64. Let σ be the
inverse-transpose automorphism of N = SL(3, 8). Then F is σ-invariant. Consider the action
N :〈σ〉 on F and take a ∈ SL(3, 8) with

a =

⎛
⎝ 0 0 1

0 1 0
1 0 0

⎞
⎠ .

Then (N〈σ〉)u = Nu:〈σa〉, which interchanges the two suborbits in (ii). It follows from
Lemma 2.2 that Γ is arc-transitive.

Lemma 3.7 Assume that (n, q) �= (3, 8). Then there is u ∈ U with Nu ≥ Q:L or Q
σ
:L,

where σ is the inverse-transpose automorphism of SL(n, q), and Q and L are described as in
Lemmas 3.3 and 3.4, respectively. In particular, q ≡ 1 (mod |B|).

Proof Recall that the action of N = SL(n, q)/Z(SL(n, q)) on B is equivalent to one of the
actions of N on P and on H. Without loss of generality, we may choose B ∈ B, such that
NB = R:H , where R = Q or Q

σ
, and H is described as in Lemma 3.3. Set q = rf for some

prime r and integer f ≥ 1. Then R is a nontrivial r-group.
Take u ∈ B. Then |NB : Nu| = |B| = 3 or 9. Suppose that R �≤ Nu. Noting that RNu is

a subgroup of NB as R is normal in NB, it follows that |R : (R ∩ Nu)| = |(RNu) : Nu| = 3 or
9. In particular, R is a 3-group, and hence |B| = 9 by Lemma 3.2. Then, by Lemma 3.5, n

and q − 1 are coprime, so Z(SL(n, q)) = 1. Thus N ∼= SL(n, q) and R ∼= Q ∼= Z
(n−1)f
3 . Assume

that |(RNu) : Nu| = 9. Then NB = RNu. It implies that R ∩ Nu is normal in NB. Then
Nu > R ∩ Nu = 〈(R ∩ Nu)x | x ∈ NB〉 = R, yielding R ∩ Nu = 1. It follows that R ∼= Z

2
3. By

Lemma 3.5, we conclude that n = 3 and f = 1, that is, (n, q) = (3, 3), a contradiction. Thus
|NB : (RNu)| = 3. Noting that GL(n − 1, 3f) ∼= H ∼= H ∼= NB/R, it follows that GL(n− 1, 3f)
has a subgroup of index 3. Note that GL(n − 1, 3f) = Z3f−1.(PSL(n − 1, 3f)).Zd, where d is
the largest common divisor of n− 1 and 3f − 1. It implies that PSL(n− 1, 3f) has a subgroup
of index 3. Then n = 3 and f = 1, a contradiction. Therefore, R is contained in Nu.

Since R:L is normal in NB, we know that LNu = (R:L)Nu is a subgroup of NB. Suppose
that R:L �≤ Nu. Then |L : (L ∩ Nu)| = |(LNu) : Nu| = 3 or 9. Let Z be the center of L.
Then L/Z ∼= PSL(n − 1, q) and |L/Z : (L ∩ Nu)Z/Z| divides 9. By Lemmas 3.2 and 3.5,
n ≥ 3 and (n, q) �= (3, 2), (3, 3). Thus L/Z is simple, and hence it has no subgroups of order 3.
Suppose that |L/Z : (L ∩ Nu)Z/Z| = 9. Then L/Z has a primitive permutation representation
of degree 9. By [7, Appendix B], we conclude that L/Z ∼= PSL(2, 8). Then (n, q) = (3, 8), a
contradiction. It follows that |L/Z : (L ∩ Nu)Z/Z| = 1, that is, L = (L ∩ Nu)Z. Consider
the commutator subgroups of L and L. By [19, Chapter II, Theorem 6.10], L′ = L, and hence
L = L

′
= (L ∩ Nu)′ ≤ L ∩ Nu �= Nu, a contradiction. Therefore, the first part of this lemma

follows.
Let X and Y be the pre-images of NB and Nu in SL(n, q). Then |X : Y | = |NB : Nu| = |B|.

Moreover, X = Q:H or Qσ:H and Y ≥ Q:L or Qσ:L, respectively. It follows that |B| is a
divisor of |H : L| = q − 1. Then q ≡ 1 (mod |B|).

Theorem 3.1 Γ is an arc-transitive graph, and one of the following holds:
(1) N = PSL(3, 8), p = 73 and Γ has valency 8 or 64.
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(2) N = PSL(n, q), p = qn−1
q−1 and Γ has valency qn−1, where q ≡ 1 (mod 9), n ≥ 5 and

(n, q) satisfies Lemma 3.5.
(3) N = PSL(3, q), 3p = q2 + q + 1 and Γ has valency q2, where q ≡ 1 (mod 3).

Proof By Lemmas 3.2 and 3.5, N = soc(G) = PSL(n, q) for some odd prime n. If
(n, q) = (3, 8), then (1) follows from Lemma 3.6. Thus we assume that (n, q) �= (3, 8) in the
following. Write q = rf for a prime r and an integer f ≥ 1.

Case 1 Assume that |B| = 9. Then |B| = p = qn−1
q−1 is a prime. By Lemma 3.7, q ≡

1 (mod 3), so n < p =
n−1∑
i=0

qi ≡ n (mod 3). It follows that n �= 3. By Lemmas 3.5, nf has no

prime divisors less than 5. Note that |G : N | divides nf and G is transitive on W . It follows
that the number of N -orbits on W is a divisor of nf . It implies that N is transitive on W , and
hence G is quasi-primitive on W .

Recall that G is faithful and imprimitive on W . Take a maximal block C of G on W , and
set C = {Cg | g ∈ G}. Then G acts primitively on C.

Since n ≥ 5, checking Table 3, we conclude that G has no primitive permutation represen-
tation of degree 3p. Then |C| �= 3. In addition, G has no subgroups of index 9, so |C| �= p.
It follows that |C| = 9 and |C| = p. Then the argument for the actions of N on B and U is
available for the actions on C and W . This allows us to view B as a copy of P , and to view C
as a copy of P or H.

Choose B ∈ B and C ∈ C, such that NB = Q:H and NC = NB or Nσ
B. Then, by Lemmas 3.4

and 3.7, Q:L ≤ Nu = X/Z(SL(n, q)) and Nw = Nu or Nσ
u , where u ∈ B, w ∈ C and X is a

subgroup of SL(n, q) consisting matrices of the following form:(
a 0
b′ A

)
, b ∈ F

n−1
q , A ∈ GL(n − 1, q), a−1 = det(A) ∈ 〈η9〉.

Note that Γ is G-locally primitive and N is not regular on both U and W . By Lemma 2.6,
Γ is N -edge-transitive. Then Γ (u) is an Nu-orbit on W . Thus, for an Nu-orbit C′ on C, either
Γ (u) =

⋃
C′∈C′

(Γ (u) ∩ C′) or Γ (u) ∩ C′ = ∅ for each C′ ∈ C′.

Suppose that NC = NB. Then both B and C correspond to 〈e1〉. By Lemma 3.4, for
each u ∈ B, the stabilizer Nu is transitive on C \ {C}. Thus either Γ (u) ⊆ C or Γ (u) =⋃
C′∈C\{C}

Γ (u) ∩ C′. Note that Nu fixes C point-wise as Nu = Nw is normal in NB = NC ,

where w ∈ C. Then Γ (u) =
⋃

C′∈C\{C}
Γ (u) ∩ C′. Choose C′ ∈ C corresponding to 〈e2〉, and

take w′ ∈ C′. Let Y1 and Y2 be the pre-images of Nu ∩ NC′ and Nu ∩ Nw′ , respectively. Then

Y1 =

⎧⎨
⎩

⎛
⎝ a 0 0

0 b 0
b′

1 b′
2 a1

⎞
⎠

∣∣∣∣∣∣ a1 ∈ GL(n − 2, q), a−1 = b det(a1) ∈ 〈η9〉
⎫⎬
⎭ ,

Y2 =

⎧⎨
⎩

⎛
⎝ a 0 0

0 b 0
b′

1 b′
2 a1

⎞
⎠

∣∣∣∣∣∣ a1 ∈ GL(n − 2, q), ab det(a1) = 1, a, b ∈ 〈η9〉
⎫⎬
⎭ .

It follows that |(Nu ∩ NC′) : (Nu ∩ Nw′)| = |Y1 : Y2| = |9| = |C′|, so Nu ∩ NC′ is transitive on
C′. Then C′ ⊂ Γ (u), which contradicts Lemma 2.5.
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Now let NC = Nσ
B. Then B and C correspond to 〈e1〉 and 〈ei | 2 ≤ i ≤ n〉, respectively.

By Lemma 3.4, Nu has two orbits C1 and C2 on C, where C1 has length qn−1−1
q−1 and contains C1

corresponding to 〈ei | 1 ≤ i ≤ n− 1〉, and C2 has length qn−1 and contains C2 corresponding to
〈ei | 2 ≤ i ≤ n〉. Calculation shows that |(Nu∩NC1) : (Nu∩Nw1)| = 9 and Nu∩NC2 = Nu∩Nw2 ,
where w1 ∈ C1 and w2 ∈ C2. If Γ (u) ⊆ ⋃

C′∈C1

C′, then we get a similar contradiction as above.

Thus Γ (u) ⊆ ⋃
C′∈C2

C′, and Γ (u) is one of the 9-orbits of Nu on
⋃

C′∈C2

C′. Note that Nσ
u = Nw

for w ∈ C2. Then Γ is arc-transitive by Lemma 2.1, and (2) follows.
Case 2 Assume that |B| = 3. Then N = PSL(3, q) with q = rf ≡ 1 (mod 3). In particular,

|N | has at least 4 distinct prime divisors (see [15, p. 12]).
Let W1 be an arbitrary N -orbit on W . Take w ∈ W1. Then |W1| = |N : Nw| = 3, 9, p, 3p or

9p. Since N is simple, N has no subgroups of index 3. By [7, Appendix B], N has no subgroups
of index 9. By Table 3, N has no primitive permutation representations of prime degree, so N

has no subgroups of index p. Thus |W1| = 3p or 9p. Suppose that |W1| = 3p. Then N has
exactly three orbits on W . Since N is normal in G, each N -orbit on W is a block of G. By
Lemma 2.5, |Γ (u) ∩ W1| ≤ 1 for u ∈ U , yielding |Γ (u)| ≤ 3. By Lemma 2.1, |Gu| = 2s · 3t for
some integers s, t ≥ 0. Then |G| = 2s · 3t+2 · p. Thus |N | has at most 3 distinct prime divisors,
a contradiction. Then |W1| = 9p, that is, N is transitive on W .

Take a maximal block C of G on W , and set C = {Cg | g ∈ G}. Then G acts primitively
on C. Recall that N has no subgroups of index 3, 9 or p. It implies that |C| = 3p. Then (3)
follows from an analogous argument given in Case 1.

4 The Proof of Theorem 1.1

Let Γ be a G-locally primitive regular graph of order 18p, where G ≤ Aut Γ and p is a
prime. Assume that G is intransitive on V Γ . Let U and W be the G-orbits on V Γ . If G acts
unfaithfully on one of U and W , then Γ is the complete bipartite graph K9p,9p, and hence Γ
is arc-transitive. Thus we assume that G is faithful on both U and W . By the argument in
Section 3, we assume further that G has non-trivial normal subgroups, which are intransitive
on both U and W . Let M be maximal in such normal subgroups of G. Denote by Ũ and W̃

the sets of M -orbits on U and W , respectively. For each v ∈ V Γ , denote by ṽ the M -orbit
containing v.

By Lemma 2.7, Γ is a normal cover of ΓM . Then M is semi-regular on both U and W ; in
particular, |M | = 3, 9, p or 3p and |Ũ | = |W̃ | = 9p

|M| = 3p, p, 9 or 3, respectively. Note that M

is the kernel of G acting on V ΓM = Ũ ∪ W̃ . Then we identify X := G/M with a subgroup of
AutΓM . Then ΓM is X-locally primitive.

Next we finish the proof of Theorem 1.1 in two subsections depending on whether or not
ΓM is a bipartite complete graph.

4.1 Graphs with ΓM complete bipartite

In this subsection, we assume that ΓM is a complete bipartite graph, that is, ΓM
∼= K 9p

|M| ,
9p
|M|

.

Let u ∈ U and w ∈ W . Then Xũ and Xw̃ act primitively on W̃ and Ũ , respectively. Thus X

acts primitively on both Ũ and W̃ . Moreover, |Xũ : Xũw̃| = 9p
|M| = |X : Xũ|, so 81p2

|M|2 is a divisor
of |X |.
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Lemma 4.1 Assume that X is faithful on one of Ũ and W̃ . Then Γ is an arc-transitive
graph of order 36 and valency 6.

Proof Without loss of generality, we may assume that X is faithful on W̃ . Then both X

and Xũ are primitive permutation groups on W̃ . If |M | = 3p, then X ∼= Z3 or S3, and hence
X is intransitive on the edges of ΓM , a contradiction. If |M | = 9, then p2 is a divisor of X ;
however, each permutation group of degree prime p has order indivisible by p2, a contradiction.
If |M | = p, then soc(X) and soc(Xũ) are one of A9, PSL(2, 8) or Z

2
3, yielding 9 = |Ũ | = |X :

Xũ| �= 9, a contradiction.
Now let |M | = 3. Then M ∼= Z3 and |W̃ | = 3p. Since 9p2 is a divisor of |X |, checking

Table 3 implies that soc(X) = A3p or A5. Note that |X : Xũ| = 3p and |Xũ : Xũw̃| = 3p. It
follows that p = 2, ΓM

∼= K6,6, soc(X) ∼= A6 and soc(Xũ) ∼= A5.
By soc(X) ∼= A6, we know that X is isomorphic to a subgroup of Aut(A6) = A6.Z

2
2. In

particular, |X : soc(X)| is a divisor of 4. Since soc(X) is normal in X , all soc(X)-orbits on Ũ

have the same length dividing 3p. Thus the number of soc(X)-orbits on Ũ is a common divisor
of 4 and 3p. It follows that soc(X) acts transitively on Ũ . In addition, soc(X) is transitive
W̃ , as X is faithful and primitive on W̃ . Then ΓM is soc(X)-edge-transitive by Lemma 2.6.
In particular, soc(X)ũ and soc(X)w̃ act transitively on W̃ and Ũ , respectively. Checking the
subgroups of A6, we conclude that soc(X)ũ

∼= soc(X)w̃
∼= A5, and soc(X)ũ and soc(X)w̃ are

not conjugate in soc(X). It is easy to see that Γ is soc(X)-locally primitive.
Let H be the pre-image of soc(X) in G. Then H = M.soc(X), M = Z(H) and Γ is H-locally

primitive. Let H ′ be the commutator subgroup of H . Suppose that H ′ �= H . Then H = M×H ′

and H ′ ∼= A6. Thus H ′ is normal in H and intransitive on both U and W . By Lemma 2.7, H ′

is semi-regular on V Γ , which is impossible. Therefore, H = H ′. By the information given in
[6], we know that H has an automorphism σ of order 2 with Hσ

ũ = Hw̃ for suitable ũ ∈ Ũ and
w̃ ∈ W̃ . Noting that Hũ = M×Hu′ and Hw̃ = M×Hw′ for arbitrary u′ ∈ ũ and w′ ∈ w̃, it
follows that Hσ

u′ = Hw′ . Then, by Lemma 2.1, Γ is an arc-transitive graph.

Lemma 4.2 Assume that X acts unfaithfully on both Ũ and W̃ . Then Γ has valency 2, 3
or p, and Γ is either arc-transitive or isomorphic to the Gray graph.

Proof Let Y1 and Y2 be the corresponding kernels. Then Y1 ∩ Y2 = 1 and Y1Y2 = Y1×Y2.
Since X acts primitively on both Ũ and W̃ , we conclude that Y1 and Y2 act transitively on W̃

and Ũ , respectively. It follows that soc(X/Yi) ≤ Y1Y2/Y3−i, where i = 1, 2. Checking primitive
permutation groups of degree 9p

|M| , we conclude that Y1×Y2 contains a normal subgroup Y =
T1×T2, which is transitive on EΓM , such that Yi ≥ Ti

∼= soc(X/Yi) and one of the following
conditions holds:

(i) p = 2 and ΓM is a 4-cycle.
(ii) |M | = 9, p ≥ 5, ΓM

∼= Kp,p, T1 = soc(Y1) ∼= T2 = soc(Y2) and T1 is simple.
(iii) ΓM

∼= K3,3, T1 = soc(Y1) ∼= T2 = soc(Y2) ∼= Z3.
(iv) ΓM

∼= K9,9, T1
∼= T2

∼= Z
2
3.

(v) |M | = 3 or p, T1 = soc(Y1) ∼= T2 = soc(Y2) and T1 is non-abelian simple.
Let N be the pre-image of Y in G. Then Γ is N -edge-transitive. In particular, N is not

regular on U and W . Noting that N is faithful on both U and W , it follows that N is not
abelian.
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If (i) occurs, then ΓM is a cycle, so Γ is arc-transitive.
Assume that (ii) occurs. Then Y has a subgroup, which has order p and acts regularly on

both Ũ and W̃ . Thus N has a subgroup M.Zp acting regularly on both U and W . By Sylow’s
theorem, it is easily shown that N.Zp

∼= Z
2
3×Zp or Z9×Zp. It follows from Lemma 2.1 that Γ

is vertex-transitive, and hence Γ is arc-transitive.
Assume that (iii) occurs. Then |M | = 3p and N = M.Z2

3. If p = 3, then either Γ is
arc-transitive or by [26] or [27], Γ is isomorphic to the Gray graph. Assume that p = 2. Then
M has a characteristic subgroup K ∼= Z3, and hence K is normal in N . It is easily shown that
Γ is a normal cover of ΓK with respect to N and K. Thus ΓK is a cubic edge-transitive graph
of order 12. However, by [3, 5], there are no such graphs, a contradiction. Thus assume that
p ≥ 5. Then M has a unique Sylow p-subgroup. Let P be the unique Sylow p-subgroup of M .
Then P ∼= Zp and P is normal in N . Since Γ is cubic, Γ is N -locally primitive. Thus Γ is a
normal cover of ΓP , and hence ΓP is an N/P -edge-transitive cubic graph of order 18. Write
N = P :Q, where Q is a Sylow 3-subgroup of N . Then Q ∼= N/P is non-abelian.

Let S be the Sylow 3-subgroup of CN (P ). Then S is normal in N . It is easily shown that
S fixes both U and W set-wise, so S is intransitive on both U and W as |U | = |W | = 9p

and p �= 3. Then S is semi-regular on both U and W , so |S| = 1, 3 or 9; in particular,
S is ablelian. It implies that PS = P×S is abelian and semi-regular on both U and W .
Assume |S| = 3. Since S is normal in Q, it implies that S lies in the center of Q. Note that
Q/S = Q/Q∩CN (P ) ∼= QCN (P )/CN(P ) ≤ N/CN(P ) � Aut(P ) ∼= Zp−1. Then Q/S is cyclic.
It follows that Q is abelian, a contradiction. Therefore, |S| = 9, and hence PS is regular on
both U and W . Thus Γ is arc-transitive by Lemma 2.1.

Next we finish the proof by excluding (iv)–(v).
Suppose that (iv) occurs. Write N = P :Q, where Q is a Sylow 3-subgroup of N . Then

Q ∼= Z
4
3. Let S be the Sylow 3-subgroup of CN(P ). Then S is normal in N . Since N is

non-abelian, Q �= S. Consider the quotient N/CN (P ). We conclude that S ∼= Z
3
3. Since Γ

is bipartite, it is easily shown that S fixes the bipartition of Γ . If p �= 3, then S is neither
transitive nor semi-regular on both U and W , which contradicts Lemma 2.7. Thus p = 3, so
|V Γ | = 54 and |Aut Γ | is divisible by 35. By [3, 5], there exists no such cubic edge-transitive
graph, a contradiction.

Suppose that (v) occurs. Note that (N/M)/(CN (M)/M) ∼= N/CN(M) � Aut(M) ∼= Zp−1

or Z2. Since Y = N/M is the direct product of two isomorphic non-abelian simple groups, it
follows that N/M = CN (M)/M , so N = CN (M). Then M is the center of N . Take u ∈ U .
Then Nũ = M×Nu, so Nu

∼= Nũ/M = Yũ = (T2)ũ×T1. Then Nu acts transitively on W̃ , and
hence Nũ acts transitively on W . Note that Nu has a normal subgroup K ∼= (T2)ũ, which acts
trivially on W̃ . Then K fixes set-wise each M -orbit on W . It is easily shown that K is normal
in Nũ. It follows that all K-orbits on W have the same length. Thus either K acts trivially on
W , or K acts transitively on each M -orbit on W . The latter case implies that Γ ∼= K9p,9p, a
contradiction. Thus K = 1 as G is faithful on both U and W , so (T2)ũ = 1. Noting that T2 is
transitive on Ũ , it follows that |T2| = |T2 : (T2)ũ| = |Ũ | = 9 or 3p, which contradicts that T2 is
simple.

4.2 Graphs with ΓM not complete bipartite

Now we assume that ΓM is not a complete bipartite. Then X acts faithfully on both Ũ and
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W̃ . By Lemma 2.7, X is quasi-primitive on one of Ũ and W̃ . Recall that |Ũ | = |W̃ | = 9p
|M| =

3p, p, 9 or 3.

Lemma 4.3 |Ũ | = |W̃ | �= 9.

Proof Suppose that |Ũ | = |W̃ | = 9. Without loss of generality, we assume that X is quasi-
primitive on Ũ . Then it is easily shown that X is primitive on Ũ . Thus soc(X) is isomorphic
to one of A9, PSL(2, 8) or Z

2
3. Let N ≤ G with N/M = soc(X).

Assume that soc(X) ∼= PSL(2, 8). Then X is 3-transitive on both Ũ and W̃ . It follows
that ΓM

∼= K9,9 − 9K2, and that Γ is N -locally primitive. Moreover, it is easily shown that
M is the center of N . By [6], PSL(2, 8) has Schur multiplier 1. This implies that N = M×K

with PSL(2, 8) ∼= K < N . Thus N has a normal subgroup K acting neither transitively nor
semi-regularly on each of U and W , which contradicts Lemma 2.7.

Assume that soc(X) ∼= A9. A similar argument as above implies that ΓM
∼= K9,9 − 9K2 and

Γ is N -locally primitive. Moreover, N is a central extension of M by A9. If p �= 2, then noting
that A9 has Schur multiplier Z2, we have N = M×K for K < N with K ∼= A9, which yields
a similar contradiction as above. Suppose that p = 2. Take u ∈ Ũ . Then Nũ = M×Nu, so
Nu

∼= Nũ/M ∼= A8. Noting that M ∼= Z2 and Nũ contains a Sylow 2-subgroup of N , it follows
from Gaschtz’s theorem (see [1, 10.4]) that the extension N = M.soc(X) splits over M , that is,
N = M×K for K < N with K ∼= A9, a contradiction.

Assume that soc(X) ∼= Z
2
3. Then X � AGL(2, 3), and for some ũ ∈ W̃ , the stabilizer

Xũ is isomorphic to an irreducible subgroup of GL(2, 3). By [13, Theorem 2], there are no
semisymmetric graphs of order 18. It follows from [17, Lemma 2.5] that soc(X) acts transitively
on W̃ . Thus soc(X) is regular on both Ũ and W̃ . By [25], Xũ acts faithfully on the neighbors
of ũ. In addition, since ΓM is X-locally primitive, Xũ is a primitive permutation group on
ΓM (ũ). However, it is easy to check that GL(2, 3) has no irreducible subgroups satisfying the
conditions for Xũ, a contradiction.

Lemma 4.4 If |Ũ | = |W̃ | = 3 or p, then Γ is arc-transitive.

Proof If |Ũ | = 2, then X ∼= Z2 and ΓM is 4-cycle, which is impossible. If |Ũ | = 3, then
X ∼= S3 and ΓM is 6-cycle, and hence Γ is a cycle. Thus we assume that |Ũ | = p ≥ 5. Then
|M | = 9, and either X = G/M ≤ Zp:Zp−1 or X is a permutation group with soc(X) listed in
Table 3. In particular, G has a subgroup R = M.Zp, which acts regularly on both U and W .
By Sylow’s theorem, it is easily shown that R ∼= M×P , where P is a Sylow p-subgroup of R.
Then R is abelian, and hence Γ is arc-transitive by Lemma 2.1.

Finally, we deal with the case where |Ũ | = 3p �= 9, that is, p �= 3 and M ∼= Z3.

Lemma 4.5 Assume that |Ũ | = 3p �= 9. Then Γ is arc-transitive.

Proof Without loss of generality, we assume that X = G/M is a quasi-primitive group on
Ũ . Since |Ũ | = 3p �= 9, by Lemma 2.8, soc(X) is insoluble.

Case 1 Assume that X = G/M is primitive on Ũ . Then X is known as in Table 2. Since
soc(X) is non-abelian simple, it has no proper subgroups of index less than 5. Suppose that
soc(X) is not primitive on W̃ . Then either each soc(X)-orbit on W̃ has length p, or soc(X) is
transitive on W̃ with a block of size 3; moreover, p > 3 in both cases. Thus, for these two cases,
soc(X) can be viewed as a transitive permutation group of prime degree. Checking Tables
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1–2, we conclude that soc(X) ∼= A7 and soc(X)α
∼= A6, where α is either an M -orbit on W̃

or a block of soc(X) with size 3 on W̃ . For the former case, 3p = |W̃ | = |X : Xα| ≤ |X :
soc(X)α| ≤ |S7:A6| = 14, a contradiction; for the latter case, A6 has a subgroup of index 3,
which is impossible. It follows that soc(X) is primitive on both Ũ and W̃ ; in particular, ΓM is
soc(X)-edge-transitive.

Let N ≤ G with N/M = soc(X). Clearly, N is normal in G and Γ is N -edge-transitive.
Moreover, it is easily shown that M is the center of N .

Subcase 1.1 Assume that the extension N = M.soc(X) splits over M , that is, N = M×K

for soc(X) ∼= K < N . Then K is a normal subgroup of G, and K acts primitively on both
Ũ and W̃ . Since K is a non-abelian simple group, its order has at least three distinct prime
divisors. It follows that K is not semi-regular on both U and W . Then K is transitive on one
of U and W . This implies that 9p is a divisor of |K|, so K is not isomorphic to one of A5,
PSL(3, 2) and PSL(2, 2f ).

Without loss of generality, assume that K is transitive on U . Then, for u ∈ U , the stabilizer
Kũ is transitive on the M -orbit ũ. Thus 3 = |M | = |ũ| = |Kũ : Ku|, so K has a subgroup
of index 3. Noting that Nũ = MKũ, it implies that Kũ

∼= Nũ/M = soc(X)ũ. Checking the
subgroups of soc(X)ũ, we know that either K ∼= soc(X) = A6 and p = 5, or K ∼= soc(X) =
PSL(3, q) and 3p = q2 + q + 1, where q is a power of a prime with q ≡ 1 (mod 3).

Assume soc(X) = A6. Then Γ has order 90. Suppose that K is intransitive on W . Then
K has three orbits on W , so Γ is cubic by Lemma 2.6. Thus Γ is a semisymmetric cubic
graph by [5, Theorem 5.2]. Again by [5], there is no semisymmetric cubic graphs of order
90, a contradiction. Then K is also transitive on W . By Lemma 2.6, Γ is K-edge-transitive.
Checking the subgroups of A6, we know that Ku

∼= D8 for u ∈ U . It follows that Γ has valency
4 or 8. Since Γ is G-locally primitive, G

Γ(u)
u is a primitive group of degree 4 or 8. Since K

Γ(u)
u

is a transitive normal subgroup of G
Γ(u)
u , it follows that Γ has valency 4. Then ΓM has valency

4. Consider the actions of soc(X) on Ũ and W̃ . If these two actions are equivalent, then ΓM

has valency 6 or 8; otherwise, ΓM has valency 3 or 12. This is a contradiction.
Assume that soc(X) = PSL(3, q). Then ΓM has valency q2, q+1 or q2+q. If K is intransitive

on W , then K has three orbits on W , and hence Γ is cubic by Lemma 2.6, a contradiction.
Thus K is also transitive on W , so Γ is K-edge-transitive. Arguing similarly as in the proof of
Theorem 3.1, we conclude that Γ is arc-transitive and has valency q2.

Subcase 1.2 Assume that the extension N = M.soc(X) does not split over M . Then
checking the Schur multipliers of the simple groups in Table 3, we conclude that N = 3.A6 with
p = 5 or 2, or N = 3.A7 with p = 5 or 7, or N = SL(3, q) with 3

∣∣ q − 1.
Let N = SL(3, q) with 3

∣∣ q−1. Using the notation defined above in Lemma 3.3, we identify
Ũ with P and W̃ with P or H. Then there are ũ ∈ Ũ and w̃ ∈ W̃ , such that

Nũ =
{(

a 0
b′ A

)∣∣∣∣b ∈ F
2
q, A ∈ GL(2, q), a−1 = det(A)

}

and Nw̃ = Nũ or Nσ
ũ . By Lemma 3.4 and a similar argument as in the proof of Theorem 3.1,

it is easily shown that Γ is an arc-transitive graph of valency q2.
Let N = 3.A6. If p = 2, then ΓM

∼= K6,6−6K2, and hence Γ is arc-transitive by Lemma 2.4.
Now let p = 5. Then ΓM has valency 6, 8, 3 or 12. Take u ∈ U . Then Nũ = M×Nu, so
Nu

∼= Nũ/M = soc(X)ũ
∼= S4. Since Γ is G-locally primitive, G

Γ(u)
u is a primitive group.
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Noting that N
Γ(u)
u is a transitive normal subgroup of G

Γ(u)
u , it follows that Γ has valency 4

or 3. Since Γ is a normal cover of ΓM , we conclude that Γ has valency 3. By [5], there is no
semi-symmetric cubic graphs of order 90. Thus Γ is arc-transitive.

Let N = 3.A7 with p = 5 or 7. Assume first that soc(X) acts equivalently on Ũ and W̃ . Then
by Lemma 2.3, ΓM is isomorphic to an orbital bipartite graph of soc(X) on Ũ . Calculation shows
that the suborbits of soc(X) on Ũ are all self-paired. Then Γ is arc-transitive by Colloray 2.1.
If p = 5, then X = soc(X) ∼= A7, Xũ

∼= PSL(2, 7) and ΓM has valency 14; however, PSL(2, 7)
has no primitive permutation representations of degree 14, a contradiction. Then p = 7. It is
easily shown that Γ has valency 10.

Assume that the actions of soc(X) on Ũ and W̃ are not equivalent. Then X = soc(X) = A7

and Xũ
∼= PSL(2, 7), so G = N = 3.A7. In particular, p = 5 and ΓM has order 30. Take

w̃ ∈ ΓM (ũ). Checking the subgroups of A7, we conclude that |Xũ : (Xũ ∩Xw̃)| = 7 or 8. Then
ΓM has valency 7 or 8, and so does Γ . Verified by GAP, there are two involutions σ1, σ2 ∈ S7,
such that |Xũ : (Xũ ∩ Xσ1

ũ )| = 7 and |Xũ : (Xũ ∩ Xσ2
ũ )| = 8. Note that Gṽ = N×Gv and

Xṽ
∼= Gv for v ∈ V Γ . Thus we may choose a suitable w ∈ Γ (u), such that Gσ

u = Gw for an
automorphism of G of order 2. Then Γ is arc-transitive by Lemma 2.1.

Case 2 Assume that X = G/M is quasi-primitive, but not primitive on Ũ . Let B be a
maximal block of X on Ũ . Then |B| = 3. Set B = {Bx | x ∈ X}. Then |B| = p and X acts
faithfully on B. Thus X is known as in Table 3. Let ũ ∈ B. Then |XB : Xu| = |B| = 3.
Checking one by one the groups listed in Table 3, we conclude that soc(X) = PSL(n, q) with
p = qn−1

q−1 .
Suppose that n = 2. Then q = 22s

for some integer s ≥ 1, and N = M.soc(X) ∼=
Z3×PSL(2, 22s

). It follows that G has a normal subgroup K isomorphic to PSL(2, 22s

). Note
that 9 is not a divisor of |K|. It follows that K is intransitive on both U and W . By Lemma 2.7,
K is semi-regular on U , which is impossible. Then n ≥ 3.

A similar argument as above implies that (n, q) �= (3, 2). Then by [15, p.12], |soc(X)|
has at least four distinct prime divisors. Noting |X | = 3p|Xũ|, it follows that |Xũ| has an
odd prime divisor other than 3. This implies that the valency of ΓM is no less than 5. If
soc(X) is intransitive on W̃ , then soc(X) has exactly three orbits on W̃ , so ΓM has valency
3 by Lemma 2.6, a contradiction. Therefore, soc(X) is transitive on W̃ , and hence ΓM is
soc(X)-edge-transitive. Let N ≤ G with N/M = soc(X). Then N is normal in G and Γ is
N -edge-transitive.

It is easily shown that n is an odd prime with q �≡ 1 (mod n) (see the proof of Lemma 3.5).
Then the Schur multiplier of PSL(n, q) is 1. Recalling M ∼= Z3, it yields that N = M×K, where
K ∼= PSL(n, q). Clearly, K is a normal subgroup of G. Recalling that soc(X) is transitive on
both Ũ and W̃ , we conclude that each K-orbit on V Γ has length at least 3p. Since K is not
semi-regular and Γ has valency no less than 5, by Lemma 2.6, we know that Γ is K-edge-
transitive. Then the argument in Section 3 implies that Γ is an arc-transitive graph.
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