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Abstract The authors establish a Serrin’s regularity criterion for the β-generalized dis-
sipative surface quasi-geostrophic equation. More precisely, it is shown that if the smooth
solution θ satisfies ∇θ ∈ Lq(0, T ; Lp(R2)) with α

q
+ 2

p
≤ α + β − 1, then the solution θ

can be smoothly extended after time T . In particular, when α + β ≥ 2, it is shown that if
∂yθ ∈ Lq(0, T ;Lp(R2)) with α

q
+ 2

p
≤ α + β − 1, then the solution θ can also be smoothly

extended after time T . This result extends the regularity result of Yamazaki in 2012.
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1 Introduction

In this paper, we study the two dimensional β-generalized surface quasi-geostrophic equation

as follows: {
∂tθ + u · ∇θ + κΛαθ = 0, (x, y) ∈ R

2, t > 0,

θ(0, x, y) = θ0(x, y), (x, y) ∈ R
2.

(1.1)

Here α ∈ (0, 1], β ∈ [1, 2), κ > 0 is the dissipative coefficient, and θ = θ(t, x, y) : (0,∞)×R
2 �→ R

is a real-valued function of a time variable t and two space variables (x, y), and represents the

potential temperature of the fluid, while u = (u1, u2) : (0,∞)×R
2 �→ R

2 is the velocity field of

the fluid which is defined by

u = (u1, u2) = Λ1−βR⊥θ = Λ1−β(−R2θ,R1θ), (1.2)

where the fractional power of the Laplacian Λα = (−Δ)
α
2 is defined by the Fourier transform

Λ̂αf(ξ) = |ξ|αf̂(ξ), and R1, R2 are Riesz transforms defined by R̂jf(ξ) = − iξj

|ξ| f̂(ξ) for j = 1, 2.
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The β-generalized surface quasi-geostrophic equation (1.1) was introduced by Kiselev in

[21]. For β = 1, (1.1) reduces to the following dissipative surface quasi-geostrophic equation:⎧⎪⎨⎪⎩
∂tθ + u · ∇θ + κΛαθ = 0, (x, y) ∈ R

2, t > 0,

u = R⊥θ = (−R2θ,R1θ), (x, y) ∈ R
2, t > 0,

θ(0, x, y) = θ0(x, y), (x, y) ∈ R
2.

(1.3)

(1.3) is an important model in geophysical fluid dynamics used in meteorology and oceanogra-

phy, and they are special cases of the general quasi-geostrophic approximations for atmosphere

and oceanic fluid flow with small Rossy and Ekman numbers (see [12, 27] for more details about

its physical background). Due to its analogy with 3D incompressible Navier-Stokes/Euler equa-

tions, in the last two decades, (1.3) attracted enormous attention and many important results

were obtained. For the global well-posedness of (1.3) in the subcritical case α > 1, we refer the

readers to [2, 13, 28]. For the global well-posedness with small initial data in various functional

spaces (e.g., Sobolev spaces, Besov spaces, Hölder spaces, etc.) of (1.3) in the critical case

α = 1, we refer the readers to [1, 7, 9–10, 14, 24]. Recently, the global regularity of weak

solutions in the critical case α = 1 was addressed by the following two mathematical groups:

Kiselev, Nazarov and Volberg [22] proved global well-posedness of (1.3) with periodic C∞ data

by using a certain non-local maximum principle for a suitable chosen modulus of continuity;

Caffarelli and Vasseur [4] obtained a global regular weak solution to (1.3) with merely L2 initial

data by using the modified De Georgi interation. For the global regularity of the supercritical

case α < 1, we refer the readers to [3, 8, 29, 35]. Parts of the above global well-posedness

results were subsequently extended to (1.1) with β ∈ [1, 2) by [11, 26, 31–32].

Although the global existence of smooth solutions to (1.1) with suitable choices of α and

β was established (see [32]), the regularity issue of weak solutions in the supercritical case is

still an open problem, so the development of the regularity criterion of weak solutions is of

major importance for both theoretical and practical purposes. For β = 1, Constantin, Majda

and Tabak [12] proved that the maximum norm of ∇⊥θ controls the breakdown of the smooth

solution to (1.3) in both viscous and invisid cases, i.e., they proved that if∫ T

0

‖∇⊥θ(t)‖L∞dt < ∞, (1.4)

then the solution θ can be extended beyond time T . Chae [6] established that if∫ T

0

‖∇θ(t)‖r
Lpdt < ∞ for

2
p

+
α

r
≤ α,

2
α

< p < ∞, (1.5)

then there is no singularity up to time T . For some improvements of (1.5), we refer the readers

to [15–17, 19, 30, 34]. For the β-generalized surface quasi-geostrophic equation (1.1), under the

hypothesis that α + β = 2, Yamazaki [33] established that if∫ T

0

‖∂yθ(t)‖q
Lp

ln(e + ‖∇θ(t)‖2
L2)

dt < ∞ for
2
p

+
α

q
≤ 1, 2 < p < ∞, (1.6)
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then there is no singularity up to time T .

Motivated by the above cited results, the first purpose of this paper is to establish a similar

Serrin’s regularity criterion (1.5) for the β-generalized surface dissipative quasi-geostrophic

equation (1.1). In the sequel, if β = 1, we let 2
β−1 = ∞.

Theorem 1.1 Let α ∈ (0, 1] and β ∈ [1, 2), such that α + 2β < 4. Assume that θ is a

smooth solution to (1.1) with initial data θ0 ∈ H3(R2). Assume further that for some T > 0,∫ T

0

‖∇θ(t)‖q
Lp

ln(e + ‖∇θ(t)‖2
L∞)

dt < ∞ for
2
p

+
α

q
≤ α + β − 1,

2
α + β − 1

< p <
2

β − 1
. (1.7)

Then the solution θ can be smoothly extended after time T .

Remark 1.1 (i) Theorem 1.1 is clearly a generalization of (1.5).

(ii) The conditions α+2β < 4 and p < 2
β−1 appear due to the Gagliardo-Nirenberg inequal-

ities and the Hardy-Littlewood-Sobolev inequalities which we will use in the proof of Theorem

1.1.

The second purpose of this paper is based on the observation that the velocity field u is

divergence free, i.e., ∂xu1 + ∂yu2 = 0, so we can establish the following regularity criterion in

terms of partial derivatives of the solution θ.

Theorem 1.2 Let α ∈ (0, 1] and β ∈ [1, 2), such that α + β ≥ 2 and α + 2β < 4. Assume

that θ is a smooth solution to (1.1) with initial data θ0 ∈ H3(R2). Assume further that for

some T > 0,∫ T

0

‖∂yθ(t)‖q
Lp

ln(e + ‖∇θ(t)‖2
L2)

dt < ∞ for
2
p

+
α

q
≤ α + β − 1,

2
α + β − 1

< p <
2

β − 1
. (1.8)

Then the solution θ can be smoothly extended after time T .

Remark 1.2 (i) The role of ∂yθ can be replaced by ∂xθ in Theorem 1.2. This implies that

one direction of the derivative of the solution θ controls the regularity of the solution θ.

(ii) Theorem 1.2 covers the supercritical case, and the distinction between Theorem 1.2 and

the regularity result of Yamazaki [33] is that we improve the condition α + β = 2 to α + β ≥ 2.

(iii) Using a single partial derivative of the solution to control the regularity of weak solutions

was observed in many equations in fluid dynamics, e.g., for the Navier-Stokes equations (see

[18, 23, 36]), for the MHD equations (see [5]), and for the nematic liquid crystal flows (see [25]).

The remaining part of this paper is organized as follows. In Section 2, we give the proof

of Theorem 1.1. Section 3 is devoted to the proof of Theorem 1.2. Throughout this paper, C

stands for a generic positive constant which may vary from line to line, and ‖ · ‖X denotes the

norm of the Banach space X .
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2 The Proof of Theorem 1.1

In this section, we present the proof of Theorem 1.1. Multiplying (1.1) by θ, integrating

over R
2 and using the fact ∇ · u = 0, one obtains

1
2

d
dt

‖θ(t)‖2
L2 + κ‖Λ α

2 θ(t)‖2
L2 = 0,

and it follows that

‖θ(t)‖2
L2 + 2κ

∫ t

0

‖Λ α
2 θ(τ)‖2

L2dτ ≤ ‖θ0‖2
L2 for all t ≥ 0. (2.1)

Applying Λ3θ to (1.1), multiplying the resulting identity by Λ3θ, and integrating over R
2,

we have

1
2

d
dt

‖Λ3θ‖2
L2 + κ‖Λ3+ α

2 θ‖2
L2 = −

∫
R2

Λ3(u · ∇θ)Λ3θdxdy. (2.2)

Thanks to the fact that ∇ · u = 0, we have∫
R2

u · ∇Λ3θΛ3θdxdy = 0. (2.3)

Thus we get

1
2

d
dt

‖Λ3θ‖2
L2 + κ‖Λ3+ α

2 θ‖2
L2 = −

∫
R2

(Λ3(u · ∇θ) − u · ∇Λ3θ)Λ3θdxdy := I. (2.4)

To estimate the right-hand side of (2.4), we need to use the following well-known commutator

estimate (see [20]): For s > 1, we have

‖Λs(fg) − fΛsg‖Lp ≤ C(‖Λf‖Lp1‖Λs−1g‖Lq1 + ‖Λsf‖Lp2‖g‖Lq2 ) (2.5)

with 1 < p, q1, p2 < ∞, such that 1
p = 1

p1
+ 1

q1
= 1

p2
+ 1

q2
. Moreover, we split the proof of

Theorem 1.1 into the following two cases.

For the case of 2
α+β−1 < p < 4

α+2β−2 , by using (2.5), we see that

I ≤ ‖Λ3(u · ∇θ) − u · ∇Λ3θ‖
L

4p
4+4p−αp−2βp

‖Λ3θ‖
L

4p
αp+2βp−4

≤ C(‖∇θ‖Lp‖Λ3u‖
L

4
4−α−2β

+ ‖∇u‖
L

2p
2+p−βp

‖Λ3θ‖
L

4
2−α

)‖Λ3θ‖
L

4p
αp+2βp−4

≤ C(‖∇θ‖Lp‖Λ3+ α
2 R⊥θ‖L2 + ‖∇R⊥θ‖Lp‖Λ3θ‖

L
4

2−α
)‖Λ3θ‖

L
4p

αp+2βp−4

≤ C‖∇θ‖Lp‖Λ3+ α
2 θ‖L2‖Λ3θ‖

L
4p

αp+2βp−4

≤ C‖∇θ‖Lp‖Λ3θ‖
2αp+2βp−2p−4

αp

L2 ‖Λ3+ α
2 θ‖

4+2p−2βp
αp

L2

≤ κ

2
‖Λ3+ α

2 θ‖2
L2 + C‖∇θ‖

αp
αp+βp−p−2
Lp ‖Λ3θ‖2

L2 , (2.6)

where we used the Hardy-Littlewood-Sobolev inequalities (α + 2β < 4)

‖Λ1−βu‖
L

4
4−α−2β

≤ C‖Λ α
2 u‖L2, ‖Λ1−βu‖

L
2p

2+p−βp
≤ C‖u‖Lp,
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the boundedness of Riesz operators in Lp(R2) with 1 < p < ∞ and the following Gagliardo-

Nirenberg inequality ( 2
α+β−1 < p < 4

α+2β−2):

‖Λ3θ‖
L

4p
αp+2βp−4

≤ C‖Λ3θ‖
2αp+2βp−2p−4

αp

L2 ‖Λ3+ α
2 θ‖

4+2p−αp−2βp
αp

L2 .

For the case of 4
α+2β−2 ≤ p < 2

β−1 , by using (2.5) again, we obtain

I ≤ ‖Λ3(u · ∇θ) − u · ∇Λ3θ‖
L

2p
2+2p−βp

‖Λ3θ‖
L

2p
βp−2

≤ C(‖∇θ‖Lp‖Λ3u‖
L

2
2−β

+ ‖∇u‖
L

2p
2+p−βp

‖Λ3θ‖L2)‖Λ3θ‖
L

2p
βp−2

≤ C(‖∇θ‖Lp‖Λ3R⊥θ‖L2 + ‖∇R⊥θ‖Lp‖Λ3θ‖L2)‖Λ3θ‖
L

2p
βp−2

≤ C‖∇θ‖Lp‖Λ3θ‖L2‖Λ3θ‖
L

2p
βp−2

≤ C‖∇θ‖Lp‖Λ3θ‖
2αp+2βp−2p−4

αp

L2 ‖Λ3+ α
2 θ‖

4+2p−2βp
αp

L2

≤ κ

2
‖Λ3+ α

2 θ‖2
L2 + C‖∇θ‖

αp
αp+βp−2−p

Lp ‖Λ3θ‖2
L2 , (2.7)

where we used the Hardy-Littlewood-Sobolev’s inequalities (p < 2
β−1 )

‖Λ1−βu‖
L

2
2−β

≤ C‖u‖L2 and ‖Λ1−βu‖
L

2p
2+p−βp

≤ C‖u‖Lp ,

and the Gagliardo-Nirenberg’s inequality ( 4
α+2β−2 ≤ p < ∞)

‖Λ3θ‖
L

2p
βp−2

≤ C‖Λ3θ‖
αp+2βp−2p−4

αp

L2 ‖Λ3+ α
2 θ‖

4+2p−2βp
αp

L2 .

Let q = αp
αp+βp−2−p . It is easy to verify that α

q + 2
p = α + β − 1. Then, by (2.6)–(2.7), one

obtains that for 2
α+β−1 < p < 2

β−1 ,

d
dt

‖Λ3θ‖2
L2 + κ‖Λ3+ α

2 θ‖2
L2 ≤ C‖∇θ‖q

Lp‖Λ3θ‖2
L2

≤ C
‖∇θ‖q

Lp

ln(1 + ‖∇θ‖2
L∞)

ln(1 + ‖∇θ‖2
L∞)‖Λ3θ‖2

L2

≤ C
‖∇θ‖q

Lp

ln(1 + ‖∇θ‖2
L∞)

ln(1 + ‖Λ3θ‖2
L2)‖Λ3θ‖2

L2 , (2.8)

where we used the following Sobolev interpolation inequality:

ln(e + ‖∇θ‖2
L∞) ≤ C ln(e + ‖θ‖ 2

3
L2‖Λ3θ‖ 4

3
L2) ≤ C ln(e + ‖Λ3θ‖2

L2).

Hence, we obtain from (2.8) that

d
dt

ln(e + ‖Λ3θ(t)‖2
L2) ≤ C

‖∇θ(t)‖q
Lp

ln(1 + ‖∇θ(t)‖2
L∞)

ln(e + ‖Λ3θ(t)‖2
L2). (2.9)

Applying Gronwall’s inequality to (2.9) on the time interval [0, T ] and using the condition (1.7),

we can easily see that

ln(e + ‖Λ3θ(T )‖2
L2) ≤ ln(e + ‖Λ3θ0‖2

L2) exp
(
C

∫ T

0

‖∇θ(t)‖q
Lp

ln(1 + ‖∇θ(t)‖2
L∞)

dt
)

< ∞. (2.10)

Combining (2.10) with the energy inequality (2.1), we get the boundedness of ‖θ(t)‖H3 on the

time interval [0, T ]. The proof of Theorem 1.1 is complete.
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3 The Proof of Theorem 1.2

In this section, we present the proof of Theorem 1.2. Applying ∂x to (1.1), multiplying the

resultant by ∂xθ, and integrating over R
2, we see that

1
2

d
dt

‖∂xθ‖2
L2 + κ‖Λ α

2 ∂xθ‖2
L2 = −

∫
R2

∂x(u · ∇θ)∂xθdxdy. (3.1)

Since ∇ · u = 0, it follows that ∫
R2

u · ∇∂xθ∂xθdxdy = 0. (3.2)

Hence,

1
2

d
dt

‖∂xθ‖2
L2 + κ‖Λ α

2 ∂xθ‖2
L2 = −

∫
R2

∂xu · ∇θ∂xθdxdy

= −
∫

R2
(∂xu1∂xθ∂xθ + ∂xu2∂yθ∂xθ)dxdy

=
∫

R2
∂yu2∂xθ∂xθdxdy −

∫
R2

∂xu2∂yθ∂xθdxdy. (3.3)

Similarly,

1
2

d
dt

‖∂yθ‖2
L2 + κ‖Λ α

2 ∂yθ‖2
L2 = −

∫
R2

∂yu · ∇θ∂yθdxdy

= −
∫

R2
∂yu1∂xθ∂yθdxdy −

∫
R2

∂yu2∂yθ∂yθdxdy. (3.4)

Hence, by (3.3)–(3.4), we obtain

1
2

d
dt

‖∇θ‖2
L2 + κ‖Λ α

2 ∇θ‖2
L2 =

∫
R2

∂yu2∂xθ∂xθdxdy −
∫

R2
∂xu2∂yθ∂xθdxdy

−
∫

R2
∂yu1∂xθ∂yθdxdy −

∫
R2

∂yu2∂yθ∂yθdxdy

= I1 + I2 + I3 + I4. (3.5)

For the case of 2
α+β−1 < p < 4

α+2β−2 , we proceed in the same way as the proof of (2.6) to

estimate the terms Ii (i = 1, 2, 3, 4) as follows:

I1 ≤ ‖∂yu2‖
L

2p
2+p−βp

‖∂xθ‖
L

4
2−α

‖∂xθ‖
L

4p
αp+2βp−4

≤ C‖∂yθ‖Lp‖∇θ‖
2αp+2βp−2p−4

αp

L2 ‖Λ α
2 ∇θ‖

4+2p−2βp
αp

L2

≤ κ

8
‖Λ α

2 ∇θ‖2
L2 + C‖∂yθ‖

αp
αp+βp−p−2
Lp ‖∇θ‖2

L2 , (3.6)

I2 ≤ ‖∂yθ‖Lp‖∂xu2‖
L

4
4−α−2β

‖∂xθ‖
L

4p
αp+2βp−4

≤ C‖∂yθ‖Lp‖Λ α
2 ∇θ‖L2‖∇θ‖

L
4p

αp+2βp−4

≤ κ

8
‖Λ α

2 ∇θ‖2
L2 + C‖∂yθ‖

αp
αp+βp−p−2
Lp ‖∇θ‖2

L2 , (3.7)

I3 ≤ ‖∂yθ‖Lp‖∂yu1‖
L

4
4−α−2β

‖∂xθ‖
L

4p
αp+2βp−4
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≤ C‖∂yθ‖Lp‖Λ α
2 ∇θ‖L2‖∇θ‖

L
4p

αp+2βp−4

≤ κ

8
‖Λ α

2 ∇θ‖2
L2 + C‖∂yθ‖

αp
αp+βp−p−2
Lp ‖∇θ‖2

L2 , (3.8)

I4 ≤ ‖∂yθ‖Lp‖∂yu2‖
L

4
4−α−2β

‖∂yθ‖
L

4p
αp+2βp−4

≤ C‖∂yθ‖Lp‖Λ α
2 ∇θ‖L2‖∇θ‖

L
4p

αp+2βp−4

≤ κ

8
‖Λ α

2 ∇θ‖2
L2 + C‖∂yθ‖

αp
αp+βp−p−2
Lp ‖∇θ‖2

L2 . (3.9)

For the case of 4
α+2β−2 ≤ p < 2

β−1 , in a way similar to the proof of (2.7), we estimate the

terms Ii (i = 1, 2, 3, 4) as follows:

I1 ≤ ‖∂yu2‖
L

2p
2+p−βp

‖∂xθ‖L2‖∂xθ‖
L

2p
βp−2

≤ C‖∂yθ‖Lp‖∇θ‖
2αp+2βp−2p−4

αp

L2 ‖Λ α
2 ∇θ‖

4+2p−2βp
αp

L2

≤ κ

8
‖Λ α

2 ∇θ‖2
L2 + C‖∂yθ‖

αp
αp+βp−p−2
Lp ‖∇θ‖2

L2 , (3.10)

I2 ≤ ‖∂yθ‖Lp‖∂xu2‖
L

2
2−β

‖∂xθ‖
L

2p
βp−2

≤ C‖∂yθ‖Lp‖∇θ‖
2αp+2βp−2p−4

αp

L2 ‖Λ α
2 ∇θ‖

4+2p−2βp
αp

L2

≤ κ

8
‖Λ α

2 ∇θ‖2
L2 + C‖∂yθ‖

αp
αp+βp−p−2
Lp ‖∇θ‖2

L2 , (3.11)

I3 ≤ ‖∂yθ‖Lp‖∂yu1‖
L

2
2−β

‖∂xθ‖
L

2p
βp−2

≤ C‖∂yθ‖Lp‖∇θ‖
2αp+2βp−2p−4

αp

L2 ‖Λ α
2 ∇θ‖

4+2p−2βp
αp

L2

≤ κ

8
‖Λ α

2 ∇θ‖2
L2 + C‖∂yθ‖

αp
αp+βp−p−2
Lp ‖∇θ‖2

L2 , (3.12)

I4 ≤ ‖∂yθ‖Lp‖∂yu2‖
L

2
2−β

‖∂yθ‖
L

2p
βp−2

≤ C‖∂yθ‖Lp‖∇θ‖
2αp+2βp−2p−4

αp

L2 ‖Λ α
2 ∇θ‖

4+2p−2βp
αp

L2

≤ κ

8
‖Λ α

2 ∇θ‖2
L2 + C‖∂yθ‖

αp
αp+βp−p−2
Lp ‖∇θ‖2

L2 . (3.13)

Note that if we set q = αp
αp+βp−p−2 , which satisfies α

q + 2
p = α + β − 1, then by putting the

above estimates (3.6)–(3.13) together, we get for all 2
α+β−1 < p < 2

β−1 ,

d
dt

‖∇θ‖2
L2 + κ‖Λ α

2 ∇θ‖2
L2 ≤ C‖∂yθ‖q

Lp‖∇θ‖2
L2

≤ C
‖∂yθ‖q

Lp

ln(1 + ‖∇θ‖2
L2)

ln(1 + ‖∇θ‖2
L2)‖∇θ‖2

L2 . (3.14)

Dividing both sides of (3.14) by (e + ‖∇θ‖2
L2), we get

d
dt

ln(e + ‖∇θ‖2
L2) ≤ C

‖∂yθ‖q
Lp

ln(1 + ‖∇θ‖2
L2)

ln(e + ‖∇θ‖2
L2). (3.15)

Applying Gronwall’s inequality to (3.15), it follows from the condition (1.8) that

‖∇θ(T )‖2
L2 ≤ (e + ‖∇θ0‖2

L2) exp
(
C

∫ T

0

‖∂yθ‖q
Lp

ln(1 + ‖∇θ‖2
L2)

dt
)

< ∞. (3.16)
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Going back to (3.14), and integrating on the time interval [0, T ], we obtain

‖∇θ(T )‖2
L2 + κ

∫ T

0

‖Λ α
2 ∇θ(t)‖2

L2dt

≤ ‖∇θ0‖2
L2 + sup

0≤t≤T
(ln(e + ‖∇θ(t)‖2

L2)‖∇θ(t)‖2
L2)

∫ T

0

‖∂yθ‖q
Lp

ln(1 + ‖∇θ‖2
L2)

dt < ∞. (3.17)

In particular, we notice that
∫ T

0 ‖Λ α
2 ∇θ(t)‖2

L2dt < ∞.

Now we are in a position to derive the desired estimate of Λ3θ. In a way similar to the proof

of Theorem 1.1, by using (2.5), we have

1
2

d
dt

‖Λ3θ‖2
L2 + κ‖Λ3+ α

2 θ‖2
L2

= −
∫

R2
(Λ3(u · ∇θ) − u · ∇Λ3θ) · Λ3θdxdy

≤ ‖Λ3(u · ∇θ) − u · ∇Λ3θ‖L2‖Λ3θ‖L2

≤ C(‖∇u‖
L

4
4−α−2β

‖Λ3θ‖
L

4
α+2β−2

+ ‖∇θ‖
L

4
2−α

‖Λ3u‖
L

4
α

)‖Λ3θ‖L2

≤ C(‖Λ α
2 ∇R⊥θ‖L2‖Λ3θ‖

L
4

α+2β−2

+ ‖Λ α
2 ∇θ‖L2‖Λ4−βR⊥θ‖

L
4
α

)‖Λ3θ‖L2

≤ C‖Λ α
2 ∇θ‖L2‖Λ3θ‖

3α+2β−4
α

L2 ‖Λ3+ α
2 θ‖

4−α−2β
α

L2

≤ κ

2
‖Λ3+ α

2 θ‖2
L2 + C‖Λ α

2 ∇θ‖
2α

3α+2β−4

L2 ‖Λ3θ‖2
L2 , (3.18)

where we used, under the assumptions α + β ≥ 2 and α + 2β < 4, the following Gagliardo-

Nirenberg inequalities:

‖Λ3θ‖
L

4
α+2β−2

≤ C‖Λ3θ‖
2α+2β−4

α

L2 ‖Λ3+ α
2 θ‖

α+2β−4
α

L2 ,

‖Λ4−βθ‖
L

4
α
≤ C‖Λ3θ‖

2α+2β−4
α

L2 ‖Λ3+ α
2 θ‖

α+2β−4
α

L2 .

Since
∫ T

0
‖Λ α

2 ∇θ(t)‖2
L2dt < ∞ and 2α

3α+2β−4 ≤ 2, it follows from Gronwall’s inequality that

‖Λ3θ(t)‖L2 < ∞ for all t ∈ [0, T ].

Combining this with (2.1) yields the boundedness of ‖θ(t)‖H3 on the time interval [0, T ]. We

complete the proof of Theorem 1.2.
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