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1 Introduction

Let X and Y be random variables defined on a probability space (Ω,A, P ) with EX2 < ∞
and EY 2 < ∞. Let F be a sub-σ algebra of A. The notion of the conditional covariance of X

and Y given F (F -covariance for short) is defined as

CovF(X, Y ) = EF((X − EFX)(Y − EFY )),

where EFZ denotes the conditional expectation of a random variable Z given F . In contrast
to the ordinary concept of variance, conditional variance of X given F is defined as VarFX =
CovF (X, X).

Firstly, let us recall some definitions.

Definition 1.1 Let S1, S2, · · · be an L1 sequence of random variables. Assume that for
j = 1, 2, · · · ,

E{(Sj+1 − Sj)f(S1, · · · , Sj)} ≥ 0 (1.1)

for all coordinatewise nondecreasing functions f , such that the expectation is defined. Then
{Sj, j ≥ 1} is called a demimartingale. If in addition, the function f is assumed to be nonneg-
ative, then the sequence {Sj, j ≥ 1} is called a demisubmartingale.
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Definition 1.2 Let S1, S2, · · · be an L1 sequence of random variables. Assume that for
j = 1, 2, · · · ,

E{(Sj+1 − Sj)f(S1, · · ·, Sj)} ≤ 0 (1.2)

for all coordinatewise nondecreasing functions f , such that the expectation is defined. Then
{Sj, j ≥ 1} is called an N -demimartingale. If in addition, the function f is assumed to be
nonnegative, then the sequence {Sj , j ≥ 1} is called an N -demisupermartingale.

Definition 1.1 is due to Newman and Wright [1]. Many authors studied this concept and
provided interesting results and applications (see [1–10]). Christofides [11] introduced the class
of N -demimartingales. Many authors obtained some results for N -demimartingales (see [8, 10,
12–17]).

Hadjikyriakou [18] introduced the following concept of conditional demimartingales.

Definition 1.3 A sequence of L1 random variables {Sn, n ≥ 1} is called an F-demimartin-
gale, if for 1 ≤ i < j < ∞,

EF{(Sj − Si)f(S1, S2, · · · , Si)} ≥ 0 a.s . (1.3)

for every componentwise nondecreasing function f and whenever the conditional expectation is
defined. If in addition, f is assumed to be nonnegative, the sequence {Sn, n ≥ 1} is called an
F-demisubmartingale.

It is easy to check that for i ≥ 1, (1.3) is equivalent to

EF{(Si+1 − Si)f(S1, S2, · · · , Si)} ≥ 0 a.s.

Definition 1.4 A finite collection of random variables {Xi, 1 ≤ i ≤ n} is said to be F-
associated if for any two componentwise nondecreasing functions f and g on R

n,

CovF (f(X1, X2, · · · , Xn), g(X1, X2, · · · , Xn)) ≥ 0 a.s .,

whenever the conditional covariance exists. An infinite collection {Xn, n ≥ 1} is said to be
F-associated if every finite subcollection is F-associated.

Remark 1.1 It is easy to verify that the partial sum of F -associated random variables
with conditional mean zero is an F -demimartingale by Property P2 in [19] and the definition of
F -association. The details on F -association are due to [20–21] etc. Yuan and Yang [19] pointed
out that the conditional association of random variables does not imply association and the
opposite implication is not true, either.

Hence one does have to derive some properties under certain conditions if there is a need
for such results even though the results and their proofs may be analogous to those under
the non-conditioning setup. This is one of the reasons for developing results for sequences of
conditional random variables in this paper.

The main purpose of this paper is to establish some maximal and moment inequalities for
F -demimartingales, which can be applied to obtain other inequalities for F -demimartingales.
The organization of this paper is as follows. Some useful lemmas are presented in Section 2.
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The Chow-type maximal inequality for F -demimartingales is established in Section 3, which
will be used to prove other maximal inequalities for F -demimartingales including the Doob’s
maximal inequality. The maximal inequalities for F -demimartingales based on concave Young
functions are provided in Section 4. Finally, the moment inequalities for F -demimartingales
are established in Section 5.

Throughout this paper, IA denotes the indicator function of the set A, and let PF (A) =
EF (IA), x+ = max{0, x}, x− = max{0,−x} and a ∨ b = max{a, b}. Let {Sn, n ≥ 1} be
an F -demimartingale, and g(·) be a nonnegative convex function on R with g(0) = 0. Let
{ck, k ≥ 1} be a nonincreasing sequence of positive F -measurable random variables. Denote

S∗
n = max

1≤k≤n
ckg(Sk), Tn =

n∑
j=1

cj(g(Sj) − g(Sj−1)), n ≥ 1, S0 = 0 and S∗
0 = 0.

2 Preliminaries

In this section, we give some lemmas which are very useful to prove the main results of this
paper. The first one is a very important property of F -demimartingales which was proved by
Hadjikyriakou [18].

Lemma 2.1 Let {Sn, n ≥ 1} be an F-demimartingale (or F-demisubmartingale), and g be
a nondecreasing convex function. Then {g(Sn), n ≥ 1} is an F-demisubmartingale.

The next one is a useful (deterministic) inequality for nonnegative real numbers obtained
by Christofides and Hadjikyriakou [14].

Lemma 2.2 Let x, y ≥ 0 and p ≥ 2. Then

yp ≥ xp + pxp−1(y − x) + (y − x)p.

The following conditional version of the Fubini theorem, which was proved by Roussas [20],
will play an essential role in the proof of the main results of this paper.

Lemma 2.3 Let X(·, ·, ·) : Ω × R
2 → R be A × B2-measurable and either nonnegative or

P × μ × μ-integrable, where μ is the Lebesgue measure, and let F be a sub-σ-field of A. Then

EF
∫

R2
X(·, t1, t2)dt1dt2 =

∫
R2

[EFX(·, t1, t2)]dt1dt2 a.s .

3 Chow-Type Maximal Inequality for F-Demimartingales

In this section, we present the Chow-type maximal inequality for F -demimartingales, which
will play an important role in the proof of other inequalities for F -demimartingales, such as
Doob’s maximal inequality. Denote S∗

n = max
1≤k≤n

ckg(Sk), n ≥ 1 and S∗
0 = 0. The Chow-type

maximal inequality for F -demimartingales is as follows.

Theorem 3.1 Let {Sn, n ≥ 1} be an F-demimartingale, and g(·) be a nonnegative convex
function on R with g(0) = 0. Let {ck, k ≥ 1} be a nonincreasing sequence of positive F-
measurable random variables. Then for any F-measurable random variable ε > 0 a.s.,

εPF(S∗
n ≥ ε) ≤

n∑
i=1

ciE
F [

(
g(Si) − g(Si−1)

)
I(S∗

n ≥ ε)] a.s . (3.1)
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Proof Let

u(x) =
{

g(x), x ≥ 0,
0, x < 0,

v(x) =
{

0, x ≥ 0,
g(x), x < 0.

By the definition of g, we have

g(x) = u(x) + v(x) = max{u(x), v(x)}, x ∈ R. (3.2)

It is easy to see that u(x) is a nonnegative nondecreasing convex function, and v(x) is a non-
negative nonincreasing convex function. By the definitions of u(x) and v(x), we have

εPF(S∗
n ≥ ε) = εPF

(
max

1≤k≤n
ck max(u(Sk), v(Sk)) ≥ ε

)

= εPF(max(c1 max(u(S1), v(S1)), . . . , cn max(u(Sn), v(Sn))) ≥ ε)

≤ εPF
(

max
1≤k≤n

cku(Sk) ≥ ε
)

+ εPF
(

max
1≤k≤n

ckv(Sk) ≥ ε
)
. (3.3)

Therefore, in order to prove (3.1), we only need to show that

εPF
(

max
1≤k≤n

cku(Sk) ≥ ε
)
≤

n∑
i=1

ciE
F [(u(Si) − u(Si−1))I(S∗

n ≥ ε)] a.s., (3.4)

εPF
(

max
1≤k≤n

ckv(Sk) ≥ ε
)
≤

n∑
i=1

ciE
F [(v(Si) − v(Si−1))I(S∗

n ≥ ε)] a.s. (3.5)

Now, we prove (3.4). Let m be a nonnegative nondecreasing function on R with m(0) = 0 and
define Hn = max

1≤k≤n
cku(Sk) with H0 = 0. First, we prove that

EF
[ ∫ Hn

0

tdm(t)
]
≤

n∑
i=1

ciE
F [(u(Si) − u(Si−1))m(Hn)] a.s. (3.6)

It is easy to see that

EF
[ ∫ Hn

0

tdm(t)
]

=
n∑

i=1

EF
[ ∫ Hi

Hi−1

tdm(t)
]

≤
n∑

i=1

EF [Hi(m(Hi) − m(Hi−1))] a.s. (3.7)

By the definitions of Hn and m, we can see that for Hi ≥ Hi−1, either Hi = ciu(Si) or
m(Hi) = m(Hi−1). Hence, we have by (3.7) that

EF
[ ∫ Hn

0

tdm(t)
]

≤
n∑

i=1

ciE
F [u(Si)(m(Hi) − m(Hi−1))]

=
n∑

i=1

ciE
F [(u(Si) − u(Si−1))m(Hn)]

−
{ n−1∑

i=1

EF [(ci+1u(Si+1) − ciu(Si))m(Hi)] +
n−1∑
i=1

(ci − ci+1)EF [u(Si)m(Hn)]
}

.=
n∑

i=1

ciE
F [(u(Si) − u(Si−1))m(Hn)] − A a.s.
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To prove (3.6), it suffices to show that

A
.=

n−1∑
i=1

EF [(ci+1u(Si+1) − ciu(Si))m(Hi)]

+
n−1∑
i=1

(ci − ci+1)EF [u(Si)m(Hn)] ≥ 0 a.s. (3.8)

Denote the left-hand derivative of function u by

h(x) = lim
�x→0−

u(x + �x) − u(x)
�x

.

By the convexity of u, h is a nondecreasing function, and furthermore, we have

u(y) − u(x) ≥ (y − x)h(x). (3.9)

Since (ci − ci+1)u(Si) ≥ 0, i = 1, 2, · · · , n − 1, it follows by (3.9) that

A ≥
n−1∑
i=1

EF [(ci+1u(Si+1) − ciu(Si))m(Hi)] +
n−1∑
i=1

(ci − ci+1)EF [u(Si)m(Hi)]

=
n−1∑
i=1

ci+1E
F [(u(Si+1) − u(Si))m(Hi)]

≥
n−1∑
i=1

ci+1E
F [(Si+1 − Si)h(Si)m(Hi)] a.s. (3.10)

It is a simple fact that h(Si)m(Hi) is a nondecreasing function of S1, S2, · · · , Si, so the right-
hand side of (3.10) is nonnegative by the definition of F -demimartingale which yields (3.6).

Taking m(t) = I(t ≥ ε) in (3.6), by the definition of Hn, we have

εPF
(

max
1≤k≤n

cku(Sk) ≥ ε
)

≤
n∑

i=1

ciE
F [

(
u(Si) − u(Si−1)

)
I(Hn ≥ ε)]

=
n−1∑
i=1

(ci − ci+1)EF [u(Si)I(Hn ≥ ε)] + cnE[u(Sn)I(Hn ≥ ε)]

≤
n−1∑
i=1

(ci − ci+1)EF [u(Si)I(S∗
n ≥ ε)] + cnE[u(Sn)I(S∗

n ≥ ε)]

=
n−1∑
i=1

ciE
F [

(
u(Si) − u(Si−1)

)
I(S∗

n ≥ ε)] a.s.,

where the second inequality follows from the simple fact that Hn ≤ S∗
n. Hence, (3.4) has been

proved. Similarly, we can get (3.5). Finally, (3.1) follows from (3.3)–(3.5) immediately. This
completes the proof of the theorem.
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Remark 3.1 If we take ck ≡ 1 for each k ≥ 1 in Theorem 3.1, then we have by Theorem
3.1 that

εPF
(

max
1≤k≤n

g(Sk) ≥ ε
)
≤

n∑
i=1

EF
[
(g(Si) − g(Si−1))I

(
max

1≤k≤n
g(Sk) ≥ ε

)]

= EF
[
g(Sn)I

(
max

1≤k≤n
g(Sk) ≥ ε

)]
a.s.

Furthermore, if g(x) = |x|r for some r ≥ 1, then we can obtain by the inequality above that

εPF
(

max
1≤k≤n

|Sk|r ≥ ε
)
≤ EF

[
|Sn|rI

(
max

1≤k≤n
|Sk|r ≥ ε

)]
a.s.

4 Maximal Inequality for F-Demimartingales Based on Concave Young
Functions

Let φ be a right continuous nonincreasing function on (0,∞), which satisfies the condition

φ(∞) .= lim
t→∞φ(t) = 0.

Assume further that φ is also integrable with respect to the Lebesgue measure on any finite
interval (0, x). Let

Φ(x) =
∫ x

0

φ(t)dt, x ≥ 0.

Then the function Φ(x) is a nonnegative nondecreasing concave function such that Φ(0) = 0.
Further assume that Φ(∞) = ∞. Then Φ(x) is called a concave Young function.

For more details and properties of concave Young functions, one can refer to [22]. An
example of such a function is Φ(x) = xp, 0 < p < 1. Agbeko [22] obtained the max-
imal inequality for nonnegative submartingales based on the class of concave Young func-
tions. Inspired by [22], Christofides [11] obtained some maximal inequalities for concave Young
functions for N -demimartingales. Our goal in this paper is to extend these results to F -
demimartingales based on the classes of concave Young functions. Denote S∗

n = max
1≤k≤n

ckg(Sk),

Tn =
n∑

j=1

cj(g(Sj) − g(Sj−1)), n ≥ 1 and S∗
0 = 0. Our results are as follows.

Theorem 4.1 Suppose that the conditions of Theorem 3.1 are satisfied. Let Φ(x) be a
concave Young function. Denote ξ(x) = Φ(x) − xφ(x). Then we have

(i)

EFξ(S∗
n) ≤ inf

x0>0
[ξ(x0) + φ(x0)EFTn] a.s . (4.1)

(ii) If

lim sup
x→∞

xφ(x)
Φ(x)

< 1, (4.2)

then the inequality

(1 − b)EFΦ(S∗
n) − a ≤ EFξ(S∗

n) a.s . (4.3)
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is valid for some constants a ≥ 0 and 0 < b < 1.
(iii) If (4.2) holds true, then

EFΦ(S∗
n) ≤ CΦ

(
1 + inf

x0>0
[ξ(x0) + φ(x0)EFTn]

)
a.s . (4.4)

for some positive constant CΦ depending only on Φ.

Proof (i) Theorem 3.1 implies that for all real numbers x > 0,

xPF (S∗
n ≥ x) ≤ EF [TnI(S∗

n ≥ x)] a.s. (4.5)

By integrating on [x0,∞), x0 > 0, with respect to the measure d(−φ(x)), we can get by (4.5)
and Lemma 2.3 that

EF
[ ∫ S∗

n∨x0

x0

xd(−φ(x))
]
≤ EF

[
Tn

∫ S∗
n∨x0

x0

d(−φ(x))
]

= −EF [Tnφ(S∗
n ∨ x0)] + φ(x0)EFTn

≤ φ(x0)EFTn a.s. (4.6)

The last inequality follows from the fact that Tnφ(S∗
n∨x0) ≥ 0. Integrating by parts, we obtain

by the notation of ξ that

EF
[ ∫ S∗

n∨x0

x0

xd(−φ(x))
]

= x0φ(x0) − EF [(S∗
n ∨ x0)φ(S∗

n ∨ x0)] + EF
[ ∫ S∗

n∨x0

x0

φ(x)dx
]

= x0φ(x0) − EF [(S∗
n ∨ x0)φ(S∗

n ∨ x0)] + EFΦ(S∗
n ∨ x0) − Φ(x0)

= EFξ(S∗
n ∨ x0) − ξ(x0) a.s. (4.7)

Combining (4.6) and (4.7), we can get that

EFξ(S∗
n ∨ x0) ≤ ξ(x0) + φ(x0)EFTn a.s. (4.8)

It is easy to check that the function ξ(x) = Φ(x) − xφ(x) is nondecreasing for x > 0. Thus, by
(4.8), we have

EFξ(S∗
n) ≤ EFξ(S∗

n ∨ x0) ≤ ξ(x0) + φ(x0)EFTn a.s.

The desired result (4.1) follows from the inequality above immediately.
(ii) By (4.2), we can see that there exist constants a ≥ 0 and 0 < b < 1, such that for all

x > 0,

xφ(x) ≤ a + bΦ(x). (4.9)

It follows by (4.9) and the definition of ξ that

EFξ(S∗
n) = EFΦ(S∗

n) − EF [S∗
nφ(S∗

n)] ≥ EFΦ(S∗
n) − bEFΦ(S∗

n) − a a.s.,

which yields the desired result (4.3) by reorganizing the inequality above.
(iii) The validity of inequality (4.4) follows from (i)–(ii) immediately. This completes the

proof of the theorem.
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Corollary 4.1 Suppose that the conditions of Theorem 4.1 are satisfied. Then for any
0 < p < 1,

EF (S∗
n)p ≤ 1

1 − p
(EFTn)p a.s . (4.10)

Proof Taking Φ(x) = xp, 0 < p < 1, we have

φ(x) = pxp−1, ξ(x) = Φ(x) − xφ(x) = (1 − p)xp.

Therefore, by (4.1), we have

EF (S∗
n)p ≤ inf

x0>0

(
xp

0 +
pxp−1

0

1 − p
EFTn

)
a.s. (4.11)

The right-hand side of (4.11) is minimized at x0 = EFTn. Hence, the desired result (4.10) can
be easily obtained by taking x0 = EFTn in the right-hand side of (4.11).

If ck ≡ 1 for each k ≥ 1 in Corollary 4.1, we can get the following result.

Corollary 4.2 Suppose that the conditions of Corollary 4.1 are satisfied with ck ≡ 1 for
each k ≥ 1. Then

EF
[

max
1≤k≤n

g(Sk)
]p

≤ 1
1 − p

[EFg(Sn)]p a.s . (4.12)

If we take g(x) = |x| in Corollary 4.2, then we have the following corollary.

Corollary 4.3 Let {Sn, n ≥ 1} be an F-demisubmartingale. Then for any 0 < p < 1,

EF
(

max
1≤k≤n

|Sk|
)p

≤ 1
1 − p

(EF |Sn|)p a.s . (4.13)

If we take Φ(x) = ln(1 + x) in Theorem 4.1, then we can get the following result.

Corollary 4.4 Suppose that the conditions of Theorem 4.1 are satisfied. Then

EF ln(1 + S∗
n) ≤ 1 + ln(1 + EFTn) a.s . (4.14)

Particularly, if ck ≡ 1 for each k ≥ 1, then

EF ln[1 + g(Sn)] ≤ EF ln
[
1 + max

1≤k≤n
g(Sk)

]
≤ 1 + ln[1 + EFg(Sn)] a.s . (4.15)

Proof Taking Φ(x) = ln(1 + x), x ≥ 0 in Theorem 4.1, we have

φ(x) =
1

1 + x
, ξ(x) = Φ(x) − xφ(x) = ln(1 + x) − x

1 + x
.

Therefore, we have by (4.1) that

EFξ(S∗
n) = EF ln(1 + S∗

n) − EF
( S∗

n

1 + S∗
n

)

≤ inf
x0>0

(
ln(1 + x0) − x0

1 + x0
+

1
1 + x0

EFTn

)
a.s. (4.16)
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The right-hand side of (4.16) is minimized at x0 = EFTn. Hence, the desired result (4.14) can
be easily obtained by taking x0 = EFTn in the right-hand side of (4.16). (4.15) follows from
(4.14) by taking ck ≡ 1 for each k ≥ 1 immediately. This completes the proof of the corollary.

In the following, we will continue to study the estimate for EFΦ(S∗
n) under a different

assumption from (4.2).

Theorem 4.2 Suppose that the conditions of Theorem 3.1 are satisfied. Let Φ(x) be a
concave Young function, and suppose that∫ ∞

1

φ(t)
t

dt = Cφ < ∞, (4.17)

where Cφ is a positive constant depending only on φ. Then

EFΦ(S∗
n) ≤ Φ(1) + Cφ

n∑
j=1

cjE
F (g(Sj) − g(Sj−1)) = Φ(1) + CφEFTn a.s . (4.18)

Proof Theorem 3.1 implies that for all real numbers x > 0,

xPF (S∗
n ≥ x) ≤

n∑
j=1

cjE
F [(g(Sj) − g(Sj−1))I(S∗

n ≥ x)], x > 0, (4.19)

which we shall integrate on [1,∞), with respect to the measure generated by the nondecreasing
function

∫ x

1
φ(t)

t dt, x ≥ 1. It follows by (4.19) and Lemma 2.3 that
∫ ∞

1

PF(S∗
n ≥ x)φ(x)dx ≤

∫ ∞

1

n∑
j=1

cjE
F [(g(Sj) − g(Sj−1))I(S∗

n ≥ x)]
φ(x)

x
dx

=
n∑

j=1

cjE
F

[
(g(Sj) − g(Sj−1))

∫ S∗
n∨1

1

φ(x)
x

dx
]

=
n−1∑
j=1

(cj − cj+1)EF
[
g(Sj)

∫ S∗
n∨1

1

φ(x)
x

dx
]

+ cnEF
[
g(Sn)

∫ S∗
n∨1

1

φ(x)
x

dx
]

≤ Cφ

n−1∑
j=1

(cj − cj+1)EFg(Sj) + CφcnEFg(Sn)

= Cφ

n∑
j=1

cjE
F(g(Sj) − g(Sj−1)) a.s. (4.20)

On the other hand, it follows by Lemma 2.3 that
∫ ∞

1

PF(S∗
n ≥ x)φ(x)dx = EF

[ ∫ S∗
n∨1

1

φ(x)dx
]

= EFΦ(S∗
n ∨ 1) − Φ(1)

≥ EFΦ(S∗
n) − Φ(1). (4.21)

Together with (4.20)–(4.21), we can get the desired result (4.18) immediately. This completes
the proof of the theorem.
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Remark 4.1 If we take Φ(x) = xp, 0 < p < 1 in Theorem 4.2, then we have φ(x) = pxp−1

and Cφ =
∫ ∞
1

φ(t)
t dt = p

1−p . Therefore, (4.18) implies that

EF(S∗
n)p ≤ 1 +

p

1 − p

n∑
j=1

cjE
F (g(Sj) − g(Sj−1)).

Furthermore, if we set ck ≡ 1 for each k ≥ 1, then we have

EF
(

max
1≤k≤n

g(Sk)
)p

≤ 1 +
p

1 − p
EFg(Sn).

5 Moment Inequalities for F-Demimartingales

In this section, we provide some moment inequalities for F -demimartingales. The main idea
is inspired by Christofides and Hadjikyriakou [14]. Our main results are as follows.

Theorem 5.1 Let {Sn, n ≥ 1} be a nonnegative F-demisubmartingale. Then for p ≥ 2,

EFSp
n ≥

n∑
j=1

EFdp
j a.s ., (5.1)

where dj = Sj − Sj−1, j = 1, 2, · · · , n.

Proof By Lemma 2.2, we can see that

EFSp
j+1 ≥ EFSp

j + pEF [Sp−1
j (Sj+1 − Sj)] + EFdp

j+1

≥ EFSp
j + EFdp

j+1 a.s.,

where the last inequality follows from the definition of F -demisubmartingales. The desired
result (5.1) can be obtained by using induction. The proof is complete.

For the special case of p being a positive even number, the previous result can be extended
to F -demimartingales.

Theorem 5.2 Let {Sn, n ≥ 1} be an F-demimartingale and p be a positive even integer.
Then

EF |Sn|p ≥ 1
2p−1

n∑
j=1

EF |dj |p a.s ., (5.2)

where dj = Sj − Sj−1, j = 1, 2, · · · , n.

Proof Applying the Cr-inequality for a positive even integer p, we have

(x − y)p ≤ 2p−1[(x+ − y+)p + (x− − y−)p]. (5.3)

By Lemma 2.1, we can see that {S+
n , n ≥ 1} is a nonnegative F -demisubmartingale. Let

Yn = −Sn, n ≥ 1. It is easy to see that the sequence {Yn, n ≥ 1} is also an F -demimartingale
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and Y +
n = S−

n . Hence it follows that the sequence {S−
n , n ≥ 1} is also a nonnegative F -

demisubmartingale. Thus, by Theorem 5.1 and (5.3), we have

EF |Sn|p = EF(S+
n )p + EF (S−

n )p

≥
n∑

j=1

EF (S+
j − S+

j−1)
p +

n∑
j=1

EF (S−
j − S−

j−1)
p (by Theorem 5.1)

≥ 1
2p−1

n∑
j=1

EF (Sj − Sj−1)p (by (5.3))

=
1

2p−1

n∑
j=1

EF |dj |p a.s.,

which implies (5.2). This completes the proof of theorem.

An immediate application of Theorem 5.2 for F -associated random variables with condi-
tional mean zero is as follows.

Corollary 5.1 Let {Xn, n ≥ 1} be F-associated random variables with conditional mean
zero. Then for a positive even integer p,

EF |Sn|p ≥ 1
2p−1

n∑
j=1

EF |Xj |p, (5.4)

where Sn =
n∑

j=1

Xj.

Proof It follows by Remark 1.1 that the partial sum of F -associated random variables
with conditional mean zero is an F -demimartingale. Hence, the desired result (5.4) follows
from Theorem 5.2 immediately. The proof is complete.
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