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Abstract This paper deals with the conditional quantile estimation based on left-truncated
and right-censored data. Assuming that the observations with multivariate covariates form
a stationary α-mixing sequence, the authors derive the strong convergence with rate, strong
representation as well as asymptotic normality of the conditional quantile estimator. Also,
a Berry-Esseen-type bound for the estimator is established. In addition, the finite sample
behavior of the estimator is investigated via simulations.
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1 Introduction

In medical follow-up or engineering life testing studies, one may not be able to observe
the variable of interest, referred to hereafter as the lifetime. In this paper, we focus on the
lifetime data with multivariate covariates which are subject to both left truncation and right
censorship. Let (X, Y, T,W ) be a random vector, where Y is the random lifetime with the
distribution function (df) F , T is the random left truncation time with the df L, W denotes
the random right censoring time with df G and X is an R

d-valued random vector of covariates
related with Y . Assume that X admits the df M(·) and density m(·).

In the random left truncation and the right censoring (LTRC) model, one observes (X, Z, T, δ)
if Z ≥ T , where Z = min(Y,W ) and δ = I(Y ≤W ); when Z < T , nothing is observed. Clearly,
if Y is independent of W , then Z has df H = 1 − (1 − F )(1 − G). Taking θ = P (T ≤ Z),
then necessarily, we assume θ > 0. If (Xi, Zi, Ti, δi), for i = 1, 2, · · · , n, is a stationary random
sample from (X, Z, T, δ) which one observes, then (Ti ≤ Zi, ∀i). Without loss of generality,
we assume that Y , T and W are nonnegative random variables as are usual in survival anal-
ysis. Following the idea of Iglesias-Pérez and González-Manteiga [13], we define a generalized
product-limit estimator (GPLE) of the conditional distribution function F (y|x) of Y , given
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X = x for the LTRC data by

F̂n(y|x) = 1 −
n∏

i=1

(
1 − I(Zi ≤ y)δiBni(x)

n∑
j=1

I(Tj ≤ Zi ≤ Zj)Bnj(x)

)
,

where Bni(x) =
K(

x−Xi
hn

)
n∑

j=1
K(

x−Xj
hn

)
, K(·) denotes a kernel function on R

d, and 0 < hn → 0 is the

bandwith parameter. Note that the GPLE reduces to the estimator for left truncated data
when there is no right censoring (δ = 1, Z = Y ) (see [1]), and to the estimator for right
censored data when there is no left truncation (T = 0) (see [2, 9]).

One characteristic of the conditional distribution function F (y|x) that is of interest is the
conditional quantile function. It plays an important role in various statistical applications,
especially in data modeling, reliability, and medical studies. Let ξp(x) = inf{y : F (y|x) ≥ p}
for p ∈ (0, 1) be the conditional quantile function of F (y|x). We focus here on estimating ξp(x)
based on the LTRC data. A natural estimator of ξp(x) is given by ξ̂pn(x) = inf{y : F̂n(y|x) ≥ p}.
Iglesias-Pérez [14] first derived an almost sure representation and the asymptotic normality of
ξ̂pn(x) under i.i.d. assumptions and the case d = 1.

Asymptotic properties for different quantile estimators with censored and/or truncated data
have been studied by many authors. In the absence of covariables, representations of the
product-limit quantile estimator were obtained by Lo and Singh [21] for censored data, by
Gürler et al. [10] for truncated data; asymptotic normality and a Berry-Esseen-type bound for
the kernel quantile estimator were derived by Zhou et al. [31] for jointly censored and truncated
data. In the presence of covariables, we cite the representations derived by Dabrowska [6] and
Van Keilegom and Veraverbeke [28] for conditional quantile estimators with censored data,
the strong uniform convergence with rate for a kernel estimator of the conditional quantile
established by Ould-Säıd [23] for censored data, and the asymptotic properties of the kernel
conditional quantile estimator for the left-truncated model studied by Lemdani et al. [16]. In
all of these papers, it is assumed that the observations are independent.

However, the dependent data scenario is an important one in a number of applications with
survival data. When sampling clusters of individuals (family members, or repeated measure-
ments on the same individual, for example), lifetimes within clusters are typically correlated
(see [3, 15]). There has been some literature devoted to the study of the conditional quantile
estimation under dependence. To mention some examples, Cai [4] investigated the asymptotic
normality of a weighted Nadaraya-Watson conditional quantile estimator for the α-mixing time
series. Honda [12] dealt with α-mixing processes and proved the uniform convergence and
asymptotic normality of an estimate of ξp(x) for the case d = 1 using the local polynomial
fitting method. Ferraty et al. [8] considered quantile regression under dependence when the
conditioning variable is infinite dimensional. A nice extension of the conditional quantile pro-
cess theory to set-indexed processes under strong mixing was establish in [26]. Ould-Säıd et al.
[24] recently discussed strong uniform convergence with rate of the kernel conditional quantile
estimator with left-truncated and dependent data. Liang and de Uña-Álvarez [18] proved the
strong uniform convergence and asymptotic normality for the kernel estimator of the condi-
tional quantile under censored and dependent assumptions. The asymptotic normality of the
conditional quantile estimator with auxiliary information for left-truncated and dependent data
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was discussed by Liang and de Uña-Álvarez [19]. However, to the best of our knowledge, the
asymptotic properties of the conditional quantile estimator with dependent data for the LTRC
model have not yet been investigated.

In this paper, we study the strong convergence with rate, strong representation as well as
asymptotic normality of the conditional quantile estimator ξ̂pn(x) when the observations with
multivariate covariates form a stationary α-mixing sequence. Also, a Berry-Esseen-type bound
for the estimator is established; this result is new, even for independent data. The finite sample
behavior of the estimator is also investigated via simulations.

In the sequel, {(Xi, Zi, Ti, δi), 1 ≤ i ≤ n} is assumed to be a stationary α-mixing sequence
of random vectors. Recall that a sequence {ζk, k ≥ 1} is said to be α-mixing if the α-mixing
coefficient

α(n) :def= sup
k≥1

sup{|P (AB) − P (A)P (B)| : A ∈ F∞
n+k, B ∈ Fk

1 }

converges to zero as n → ∞, where Fm
l = σ{ζl, ζl+1, · · · , ζm} denotes the σ-algebra generated

by ζl, ζl+1, · · · , ζm with l ≤ m. Among various mixing conditions used in the literature, α-
mixing is reasonably weak and known to be fulfilled for many stochastic processes including
many time series models. Withers [29] derived conditions under which a linear process is α-
mixing. In fact, under very mild assumptions, linear autoregressive and more generally bilinear
time series models are strongly mixing with mixing coefficients decaying exponentially, i.e.,
α(k) = O(ρk) for some 0 < ρ < 1. See [7, p. 99], for more details. We mention that α-mixing
has been used in applications with clustered survival data; see, for instance, Cai and Kim [5].

In the sequel, for any df Q(y) = P (η ≤ y), we denote its density function by q(y), and the
left and right support endpoints by aQ = inf{y : Q(y) > 0} and bQ = sup{y : Q(y) < 1},
respectively. For x ∈ R

d, define θ(x) = P (T ≤ Z | X = x),

C(y|x) = P (T ≤ y ≤ Z | X = x, T ≤ Z) and H∗
1 (y|x) = P (Z ≤ y, δ = 1 | X = x, T ≤ Z).

Also, we define Q(y|x) = P (η ≤ y | X = x) and Q∗(y) = P (η ≤ y | T ≤ Z), while their density
functions are denoted by q(y|x) and q∗(y), respectively. Thus M∗(x) = P (X ≤ x | T ≤ Z),
and its density function is m∗(x).

Remark 1.1 It is easy to verify that m∗(x) = θ−1θ(x)m(x). Assuming that Y, T and
W are conditionally independent at X = x, and F (·|x) and G(·|x) are continuous, then
C(y|x) = θ−1(x)L(y|x)(1 −G(y|x))(1 − F (y|x)) = θ−1(x)L(y|x)(1 −H(y|x)), and H∗

1 (y|x) =
θ−1(x)

∫ y

0 L(t|x)(1 −G(t|x))f(t|x)dt, which gives h∗1(y|x) = θ−1(x)L(y|x)(1 −G(y|x))f(y|x).

Define estimators of H∗
1 (·|x), C(·|x) and m∗(x) respectively as follows:

Ĥ∗
1n(y|x) =

n∑
i=1

I(Zi ≤ y, δi = 1)Bni(x), Ĉn(y|x) =
n∑

i=1

I(Ti ≤ y ≤ Zi)Bni(x)

and m̂∗
n(x) = 1

nhd
n

n∑
i=1

K(x−Xi

hn
).

The rest of this paper is organized as follows. The main results are described in Section 2. A
simulation study is presented in Section 3. All proofs are given in Section 4. Some preliminary
lemmas, which are used in the proofs of the main results, are collected in Appendix.
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2 The Main Results

Throughout this paper, x = (x1, · · · , xd) ∈ R
d. For (i, j) = (i1, · · · , id, j) ∈ N

d+1, put
f (i,j)(y|x) := ∂i1+···+id+j

∂x
i1
1 ···∂x

id
d ∂yj

f(y|x). Let C,C1, · · · and c0, c1, · · · denote generic finite positive

constants, whose values may change from line to line, and let Φ(u) stand for the standard
normal distribution function and [t] be the integer part of t. The notation An = O(Bn) means
|An| ≤ C|Bn|, and U(x) represents a neighborhood of x. Let I be a compact set of R

d, which
is included in D = {x ∈ R

d | m(x) > 0, θ(x) > 0}. Set e = (e1, · · · , ed) for small ei > 0, and
Ie = {x± e,x ∈ I} with inf

x∈Ie
{m(x), θ(x)} ≥ δ0 > 0.

Throughout this paper, we assume that α(k) = O(k−λ) for some λ > 0. We first list the
following basic assumptions:

(A1) (i) K(·) is a Lipschitz-continuous density function with compact support on R
d;

(ii)
∫

Rd x
i1
1 · · ·xid

d K(x)dx = 0 for non-negative integers i1, · · · , id with i1 + · · ·+ id ≤ r0 − 1.
(A1’) (i) K(·) is a bounded density function with compact support on R

d;
(ii)

∫
Rd x

i1
1 · · ·xid

d K(x)dx = 0 for non-negative integers i1, · · · , id with i1 + · · ·+ id ≤ r0 − 1.
(A2) (i) Y, T and W are conditionally independent at X = s for s ∈ Ie;
(ii) τ1 and τ2 are two real numbers such that aL(·|x) < τ1 ≤ τ2 < bH(·|x) and aL(·|x) < aH(·|x)

for x ∈ I.
(A2’) (i) Y, T and W are conditionally independent at X = s for s ∈ U(x);
(ii) τ1 and τ2 are two real numbers such that aL(·|x) < τ1 ≤ τ2 < bH(·|x) and aL(·|x) < aH(·|x).
(A3) The first r0 partial derivatives of functions θ(s) and m(s) are bounded for s ∈ Ie, and

the first r0 partial derivatives with respect to s of functions L(y|s), G(y|s), F (y|s), l(y|s), g(y|s)
and f(y|s) are bounded for (s, y) ∈ Ie × R.

(A3’) The first r0 partial derivatives of functions θ(s) and m(s) are bounded for s ∈ U(x),
and the first r0 partial derivatives with respect to s of functions L(y|s), G(y|s), F (y|s), l(y|s),
g(y|s) and f(y|s) are bounded for (s, y) ∈ U(x) × R.

(A4) For all integers j ≥ 1, the joint conditional density v∗j (·, ·) of X1 and Xj+1 exists on
R

d × R
d and satisfies v∗j (s1, s2) ≤ C1 for (s1, s2) ∈ Ie × Ie.

(A4’) For all integers j ≥ 1, the joint conditional density v∗j (·, ·) of X1 and Xj+1 exists on
R

d × R
d and satisfies v∗j (s1, s2) ≤ C1 for (s1, s2) ∈ U(x) × U(x).

(A5) (i)
∞∑

n=1
h−2d

n

( nhd
n

ln(n)

)−λ−(2+d)
2 <∞; (ii) h−2d

n

( nhd
n

ln(n)

)−λ−(2+d)
2 = O(1).

(A5’) (i)
∞∑

n=1
h−d

n

( nhd
n

ln(n)

)−λ−2
2 <∞; (ii) h−d

n

( nhd
n

ln(n)

)−λ−2
2 = O(1).

(B1) sup
(s,y)∈U(x)×R

{|l(0,1)(y|s)|, |g(0,1)(y|s)|, |f (0,1)(y|s)|} <∞.

(B2) For all integers j ≥ 1, the joint conditional density f∗
j (·, ·, ·, ·) of (X1,Xj+1, H

∗
1 (Z1),

H∗
1 (Zj+1)) exists on R

d×R
d×[0, 1]×[0, 1] and satisfies f∗

j (s1, s2, y1, y2) ≤ C3 for (s1, s2, y1, y2) ∈
U(x) × U(x) × [0, 1] × [0, 1].

(B3) (i)
∞∑

n=2

n
ln(n)

( ln(n)
nhd

n

)λ−2
4 <∞; (ii) n

ln(n)

( ln(n)
nhd

n

)λ−2
4 = O(1).

Remark 2.1 (a) (i) and (ii) in (B3) imply (i) and (ii) in (A5’), respectively.
(b) Similar conditions as (A1)–(A3), (A1’)–(A3’) and (B1) have been used commonly in the

literature, see, e.g., Iglesias-Pérez and González-Manteiga [13] in the cases d = 1 and r0 = 2.
The role of condition aL(·|x) < τ1 ≤ τ2 < bH(·|x) in (A2) and (A2’) is to avoid the problem
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that the conditional function C(y|x) may vanish. The conditions (A3) and (A3’) allow us to
apply Taylor expansions in the proofs to determine the order of convergence of the estimators.
Conditions (A4), (A4’) and (B2) are mainly technical, which are employed to simplify the
calculations of covariances in the proofs, and are otherwise redundant for the independent
setting.

(c) Assumptions (A5), (A5’) and (B3) imply restrictions on the degree of dependence of the
observable sequence; as we discuss now, the message under these assumptions is that one must
prevent strongly dependent data. Indeed, all these conditions are satisfied by appropriately
choosing the bandwidth hn when λ is large enough. Note that, if the exponential decay α(k) =
O(ρk) for some 0 < ρ < 1, which has been used by some authors (see [7]), we replace α(k) =
O(k−λ), and then λ can be arbitrarily large.

In order to give the strong convergence with rates of ξ̂pn(x), we need the following additional
assumptions:

(D1) For each fixed p ∈ (0, 1), the function ξp(x) satisfies that for any ε > 0 and any function
ηp(x), there exists β > 0 such that sup

x∈I
|ξp(x) − ηp(x)| ≥ ε implies that sup

x∈I
|F (ξp(x)|x) −

F (ηp(x)|x)| ≥ β.
(D1’) For each fixed p ∈ (0, 1), the function ξp(x) satisfies that for any ε > 0 and any function

ηp(x), there exists β > 0 such that |ξp(x)−ηp(x)| ≥ ε implies that |F (ξp(x)|x)−F (ηp(x)|x)| ≥ β.
(D2) There exists γ1 > 0 such that inf

(x,y)∈I×[τ1,τ2]
f(y|x) ≥ γ1.

(D2’) There exists γ1 > 0 such that inf
y∈[τ1,τ2]

f(y|x) ≥ γ1.

Theorem 2.1 Let α(n) = O(n−λ) for some λ > 2.
(a) Let 0 < p0 ≤ p1 < 1 be such that τ1 < ξp0(x) ≤ ξp1(x) < τ2 for all x ∈ I. Suppose that

(A1)–(A4) and (A5)(i) are satisfied. If (D1) holds, then lim
n→∞ sup

x∈I
|ξ̂pn(x) − ξp(x)| = 0 a.s. for

p ∈ [p0, p1]. If (D2) holds, then

sup
x∈I

sup
p0≤p≤p1

|ξ̂pn(x) − ξp(x)| = O
(

max
{( ln(n)

nhd
n

) 1
2
, hr0

n

})
a.s.

(b) Let x ∈ D and 0 < p0 ≤ p1 < 1 with τ1 < ξp0(x) ≤ ξp1(x) < τ2. Suppose that (A1′)–
(A4′) and (A5′)(i) are satisfied. If (D1′) holds, then lim

n→∞ ξ̂pn(x) = ξp(x) a.s. for p ∈ [p0, p1]. If

(D2′) holds, then

sup
p0≤p≤p1

|ξ̂pn(x) − ξp(x)| = O
(

max
{( ln(n)

nhd
n

) 1
2
, hr0

n

})
a.s.

In order to formulate the strong representation and asymptotic normality of ξ̂pn(x), we need
to impose the following additional assumptions:

(E1) f (0,1)(y|x) is bounded for y ∈ [τ1, τ2].
(E2) The sequence α(n) satisfies for positive integers q := qn that q = o((nhd

n)
1
2 ) and

lim
n→∞(nh−d

n )
1
2α(q) = 0.

(E3) nhd+2r0
n → 0, (ln(n))3

nhd
n

→ 0.

Theorem 2.2 Set ξ(Z, T, δ, y,x) = I(Z≤y,δ=1)
C(Z|x) −∫ y

0
I(T≤t≤Z)

C2(t|x) dH∗
1 (t|x). Let α(n) = O(n−λ)

for some λ > 6, let x ∈ D and 0 < p0 ≤ p1 < 1 with τ1 < ξp0(x) ≤ ξp1(x) < τ2, and let



974 H. Y. Liang, D. L. Li and T. X. Miao

p ∈ [p0, p1]. Suppose that (A1′)–(A4′), (B1)–(B2), (D2′) and (E1) are satisfied. If τ1 < aH(·|x)

and nhd+2r0
n

ln(n) = O(1), then

ξ̂pn(x) − ξp(x) =
p− F̂n(ξp(x)|x)
f(ξp(x)|x)

+Rn1(ξp(x)|x)

= − 1 − p

f(ξp(x)|x)

n∑
i=1

Bni(x)ξ(Zi, Ti, δi, ξp(x),x) +Rn2(ξp(x)|x),

where for i = 1, 2, sup
p0≤p≤p1

|Rni(ξp(x)|x)| = O
( ln(n)

(nhd
n)

3
4

)
a.s. when (B3)(i) holds; sup

p0≤p≤p1

·

|Rni(ξp(x)|x)| = Op

( ln(n)

(nhd
n)

3
4

)
when (A5′)(i) and (B3)(ii) hold.

Theorem 2.3 Let α(n) = O(n−λ) for some λ > 6, let x ∈ D and 0 < p0 ≤ p1 < 1 with
τ1 < ξp0(x) ≤ ξp1(x) < τ2, and let p ∈ [p0, p1]. Suppose that (A1′)–(A4′), (A5′)(i), (B1)–(B2),
(B3)(ii), (D2′) and (E1)–(E3) are satisfied. If τ1 < aH(·|x), then for p ∈ [p0, p1], we have

(nhd
n)

1
2 (ξ̂pn(x) − ξp(x)) D→ N(0,Δ2(p|x)),

where Δ2(p|x) = θ(1−p)2

m(x)f2(ξp(x)|x)

∫ ξp(x)

0
f(t|x)dt

L(t|x)(1−G(t|x))(1−F (t|x))2

∫
Rd K

2(s)ds.

In order to give a Berry-Esseen-type bound for ξ̂pn(x) which will assess the quality of the
normal approximation in Theorem 2.3, we need the following additional assumption.

(Q) p := pn and q := qn are positive integers such that p+ q ≤ n, p
n → 0 and qp−1 → 0.

Put γ1n =
( ln4(n)

nhd
n

) 1
6 , γ2n = (nhd+2r0

n )
1
2 , γ3n = qp−1h

− dδ
2+δ

n u(p), γ4n = (p/n)βh
− dδ(1+β)

2+δ
n , γ5n =

np−1α(q) and u(p) =
∞∑

i=p

[α(i)]
δ

2+δ .

Theorem 2.4 Let α(n) = O(n−λ) for some λ > 2+δ
δ with 0 < δ ≤ 2

5 , and let x ∈ D

and 0 < p0 ≤ p1 < 1 with τ1 < ξp0(x) ≤ ξp1(x) < τ2. Suppose that (A1′)–(A4′), (B1)–(B2),
(B3)(i), (D2′), (E1) and (Q) are satisfied, and that τ1 < aH(·|x). If γin → 0 (i = 1, · · · , 5) for
0 < 2β < δ and β ≤ δλ−(2+δ)

2λ+(2+δ) , then for 20λ−1
λ(10λ−1) ≤ ρ < 1 and p ∈ [p0, p1], we have

sup
u

∣∣∣P((nhd
n)

1
2 (ξ̂pn(x) − ξp(x))

Δ(p|x)
≤ u

)
− Φ(u)

∣∣∣
= O

(
hn + (qp−1)

1
3 + (pn−1)

1
3 + h

d(1−ρ)
3

n + γ1n + γ2n + γ
1
3
3n + γ4n + γ

1
4
5n

)
.

Remark 2.2 The assumptions γin → 0 (i = 1, · · · , 5) in Theorem 2.4 can be satisfied by
appropriate choice of hn, p and q, when λ is large enough (note that if we replace α(n) = O(n−λ)
by the exponential decay α(n) = O(ρn) for some 0 < ρ < 1, then λ can be arbitrarily large).
In particular, choosing p = [ns] and q = [n2s−1] for some 1

2 < s < 1 − dδ(1+β)
β(2+δ)(d+2r0)

, and

hd
n = n− 1

M for δ(1+β)
β(2+δ)(1−s) < M < 1 + 2r0

d , if λ > max{ (2s−1)(2+δ)
sδ + 1

Ms ,
1−s
2s−1 ,

2+δ
δ , 10 + 8

M−1},
then γin → 0 (i = 1, · · · , 5), qp−1 → 0, pn−1 → 0, and (B3)(i) holds.
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3 Simulation Study

In this section, we investigate with simulated data the finite sample performance of the
proposed estimator ξ̂pn(x) with p = 0.5 in the case d = 1. In particular, we calculate the mean
squared error (MSE), plot the Boxplots of the estimator ξ̂pn(x) at x = 0.5, and explore the
estimator’s graphical fit to the true underlying curve. We also investigate the goodness-of-fit
to the normal distribution which is expected from our theoretical results in Section 2. At the
same time, we check the influence of the dependence of the observations on the estimator. In
order to obtain an α-mixing observed sequence {Xi, Zi, Ti, δi}, we generate the observed data
as follows.

(1) Drawing of the first observation (X1, Z1, T1, δ1) in the final sample.
Step 1 Draw e1 ∼ N(0, 1), and take X1 = 0.5e1;
Step 2 Compute Y1 and W1, respectively, from the model Y1 = sin(πX1) + φ1(1 +

0.3 cos(πX1))ε1, and W1 = sin(πX1) + 0.5φ2(1 + 0.3 cos(πX1)) + φ3(1 + 0.3 cos(πX1))ε̃1, where
both ε1 and ε̃1 are N(0, 1) random variables, ε1, ε̃1 and X1 are mutually independent, and
φi (i = 1, 2, 3) are chosen (see below) to control the percentage of censoring. Take Z1 =
min(Y1,W1), δ1 = I(Y1 ≤W1);

Step 3 Draw independently T1 ∼ N(μ, 1), where μ is adapted in order to get different
values of θ. If Z1 < T1, reject the datum (X1, Z1, T1, δ1) and go back to Step 2; do this until
Z1 ≥ T1.

(2) Drawing of the second observation (X2, Z2, T2, δ2) in the final sample.
Step 4 Draw X2 according to the AR(1) model X2 = ρX1 + 0.5e2, where e2 ∼ N(0, 1) is

independent of X1, and |ρ| < 1 is some constant, which is chosen to control the dependence of
the observations;

Step 5 Compute Y2 and W2, respectively, from the model Y2 = sin(πX2) + φ1(1 +
0.3 cos(πX2))ε2, and W2 = sin(πX2) + 0.5φ2(1 + 0.3 cos(πX2)) + φ3(1 + 0.3 cos(πX2))ε̃2, where
both ε2 and ε̃2 are N(0, 1) random variables, and ε2, ε̃2 and X2 are mutually independent. Take
Z2 = min(Y2,W2), and δ2 = I(Y2 ≤W2);

Step 6 Draw independently T2 ∼ N(μ, 1). If Z2 < T2, reject the datum (X2, Z2, T2, δ2)
and go back to Step 5; do this until Z2 ≥ T2.

By replicating the process (2) above, we generate the observed data (Xi, Zi, Ti, δi), i =
1, · · · , n. The generating process shows that Xi = ρXi−1 + 0.5ei, Yi = sin(πXi) + φ1(1 +
0.3 cos(πXi))εi, Wi = sin(πXi) + 0.5φ2(1 + 0.3 cos(πXi)) + φ3(1 + 0.3 cos(πXi))ε̃i, Zi =
min(Yi,Wi), and δi = I(Yi ≤ Wi), where ei ∼ N(0, 1), εi ∼ N(0, 1), ε̃i ∼ N(0, 1), and
Ti ∼ N(μ, 1); everything is distributed conditionally on Zi ≥ Ti. Note that the α-mixing
property of the observable Xi is immediately transferred to the (Xi, Zi, Ti, δi). Also note that
Y |X=x ∼ N(sin(πx), φ2

1(1 + 0.3 cos(πx))2), which shows that the conditional quantile function
ξ0.5(x) = sin(πx). For the proposed estimators, we employ the kernelK(x) = 15

16 (1−x2)2I(|x| ≤
1).

In addition, the parameters φi (i = 1, 2, 3) allow for the control of the percentage of censoring
(PC) which is given by

PC = P (Yi > Wi | Xi = x) = 1 − Φ
( 0.5φ2√

φ2
1 + φ2

3

)
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φ1=φ3=0.3
= 1 − Φ

(5
√

2
6
φ2

)
=

⎧⎨
⎩

10%, when φ2 = 1.087,
15%, when φ2 = 0.8796,
30%, when φ2 = 0.445.

In the simulation below, we take φ1 = φ3 = 0.3.

3.1 Consistency

In this subsection, we draw random samples with sample sizes n =200, 350 and 500, respec-
tively, and ρ =0.1, 0.3 and 0.5, respectively, from the above model. In Table 1, we report the
MSE of the estimator ξ̂pn(x) with p = 0.5 at x = 0.5, for several truncation rates, percentage
of censoring, and choice of bandwidth based on M = 1000 replications.

Table 1 Mean squared errors (MSEs) of ξ̂pn(x) with p = 0.5 at x = 0.5 along M = 1000 Monte Carlo

trials, for several truncation rates and percentage of censoring (PC).

ρ θ PC n hn = 0.3 hn = 0.35 hn = 0.4

0.1 30% 10% 200 0.7569×10−2 1.0060×10−2 1.3393×10−2

350 0.6330×10−2 0.8714×10−2 1.2988×10−2

500 0.5296×10−2 0.8240×10−2 1.2279×10−2

15% 200 0.7652×10−2 1.0360×10−2 1.3612×10−2

350 0.6173×10−2 0.8544×10−2 1.2915×10−2

500 0.5267×10−2 0.8128×10−2 1.1961×10−2

30% 200 0.8009×10−2 1.0503×10−2 1.3777×10−2

350 0.6018×10−2 0.8430×10−2 1.1996×10−2

500 0.5227×10−2 0.7935×10−2 1.1153×10−2

60% 10% 200 0.7349×10−2 0.9612×10−2 1.2418×10−2

350 0.5631×10−2 0.8356×10−2 1.1839×10−2

500 0.5183×10−2 0.8090×10−2 1.1085×10−2

15% 200 0.7542×10−2 0.9762×10−2 1.2800×10−2

350 0.5549×10−2 0.8325×10−2 1.1601×10−2

500 0.5096×10−2 0.7807×10−2 1.1025×10−2

30% 200 0.7628×10−2 1.0204×10−2 1.2688×10−2

350 0.5473×10−2 0.8273×10−2 1.1345×10−2

500 0.5028×10−2 0.7543×10−2 1.0329×10−2

90% 10% 200 0.7149×10−2 0.9355×10−2 1.1969×10−2

350 0.5471×10−2 0.7639×10−2 1.1414×10−2

500 0.4975×10−2 0.7385×10−2 1.0816×10−2

15% 200 0.7291×10−2 0.9478×10−2 1.2218×10−2

350 0.5509×10−2 0.7886×10−2 1.1160×10−2

500 0.5076×10−2 0.7317×10−2 1.0550×10−2

30% 200 0.7301×10−2 0.9537×10−2 1.2277×10−2

350 0.5722×10−2 0.7453×10−2 1.0503×10−2

500 0.4738×10−2 0.7159×10−2 0.9987×10−2

0.3 90% 30% 200 0.7368×10−2 0.9551×10−2 1.2312×10−2

350 0.5830×10−2 0.7719×10−2 1.0861×10−2

500 0.5047×10−2 0.7336×10−2 1.0107×10−2

0.5 90% 30% 200 0.7498×10−2 0.9797×10−2 1.2419×10−2

350 0.5983×10−2 0.8019×10−2 1.1099×10−2

500 0.5248×10−2 0.7496×10−2 1.0410×10−2

From Table 1, it is seen that (i) the MSE decreases as the sample size n increases; (ii) the
accuracy of the estimator is greatly affected by the choice of the bandwidth hn, i.e., higher values
for hn give bad estimators; (iii) for the same sample size, the performance of the estimator is
affected slightly by the percentage of truncated data 1− θ and the percentage of censoring PC;
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(iv) the values of the MSE become bigger as the dependence of the observations increases, i.e.,
the value of ρ increases.

In Figures 1–3, we plot the Boxplots of the MSE for the estimator ξ̂pn(x) with p = 0.5 and
hn = 0.3 at x = 0.5, along M = 1000 Monte Carlo trials, for θ = 90%, PC=30%, n =200, 350
and 500; θ = 90%, n = 350, PC=10%, 15% and 30%; PC=30%, n = 350, θ =30%, 60% and
90%, respectively.

Figure 1 shows that the quality of fit increases as the sample size n increases.
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Figure 1 Boxplots of ξ̂pn(x) with p = 0.5 and hn = 0.3 at x = 0.5 along M = 1000 Monte Carlo trials,
for θ = 90%, PC=30%, n =200, 350 and 500, respectively.
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Figure 2 Boxplots of ξ̂pn(x) with p = 0.5 and hn = 0.3 at x = 0.5 along M = 1000 Monte Carlo trials,
for θ = 90%, n = 350, PC=10%, 15% and 30%, respectively.

From Figures 2–3, it can be seen that for the same sample size, the quality of the estimator
does not seem to be affected by the percentage of truncated data 1 − θ and the percentage of
censoring.

In Figure 4, we plot the averages of the curves ξp(x) = sin(πx) and its estimator ξ̂pn(x)
with p = 0.5 and hn = n− 1

5 based on 100 replications for θ = 90%, PC=10%, n =150, 300 and
500, respectively. Figure 4 shows again that the quality of fit of the estimator increases as the
sample size n increases.

3.2 Asymptotic normality

In this subsection, we examine how good is the asymptotic normality of the estimator
ξ̂pn(x) with p = 0.5 at x = 0.5 by comparing the histograms and Normal-Probability-plots
with the normal distribution. We draw M independent n-samples. In Figures 5–6, we plot
the histograms and Normal-Probability-plots for θ = 90%, PC=10% and hn = n− 1

5 based on
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Figure 3 Boxplots of ξ̂pn(x) with p = 0.5 and hn = 0.3 at x = 0.5 along M = 1000 Monte Carlo trials,
for PC=30%, n = 350, θ =30%, 60% and 90%, respectively.
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Figure 4 Function ξp(x) and its estimator ξ̂pn(x) with p = 0.5 and hn = n− 1
5 along M = 100 Monte Carlo

trials, for θ = 90%, PC=10%, n =150, 300 and 500, respectively.

M = 1000 replications with sample sizes n =300 and 600, respectively. From Figures 5–6, it
is seen that the sampling distribution of the estimator fits the normal distribution reasonably
well; this fit being better when increasing the sample size.

Figure 5 Histogram and Normal-Probability-plot of ξ̂pn(x) with p = 0.5 and hn = n− 1
5 at x = 0.5

along M = 1000 Monte Carlo trials, for θ = 90%, PC=10%, n =300.

To study the influence of the dependence of the observations, we consider different degrees
of dependence; specifically we choose in Figure 7, ρ =0.1, 0.3, 0.5, respectively, and plot the
Normal-Probability-plots of ξ̂pn(x) with p = 0.5 and hn = n− 1

5 at x = 0.5 based on M = 1000
replications with θ = 90%, PC=30%, and n = 400. Figure 7 shows that as the dependence of
the observations increases, the quality of fit decreases.
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- -

Figure 6 Histogram and Normal-Probability-plot of ξ̂pn(x) with p = 0.5 and hn = n− 1
5 at x = 0.5

along M = 1000 Monte Carlo trials, for θ = 90%, PC=10%, n =600.
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Figure 7 Normal-Probability-plots of ξ̂pn(x) with p = 0.5 and hn = n− 1
5 at x = 0.5 along M = 1000 Monte

Carlo trials, for θ = 90%, PC=30%, n =400, ρ =0.1, 0.3 and 0.5, respectively.

4 Proofs of the Main Results

Lemma 4.1 Let x ∈ D and α(n) = O(n−λ) for some λ > 6. Suppose that conditions
(A1′)–(A4′) and (B1)–(B2) hold, and that τ1 < aH(·|x) and nhd+2r0

n

ln(n) = O(1).
(a) If (B3)(i) holds, then

sup
s,t∈[τ1,τ2]:|s−t|≤c

(
ln(n)
nhd

n

) 1
2

∣∣[F̂n(s|x) − F (s|x)] − [F̂n(t|x) − F (t|x)]
∣∣ = O

(( ln(n)
nhd

n

) 3
4
)

a.s.

(b) If (B3)(ii) holds, then

sup
s,t∈[τ1,τ2]:|s−t|≤c

(
ln(n)
nhd

n

) 1
2

∣∣[F̂n(s|x) − F (s|x)] − [F̂n(t|x) − F (t|x)]
∣∣ = Op

(( ln(n)
nhd

n

) 3
4
)
.

Proof of Lemma 4.1 We prove only (a); the proof of (b) is similar. From Lemma 5.2,
we have∣∣[F̂n(s|x) − F (s|x)] − [F̂n(t|x) − F (t|x)]

∣∣
≤

∣∣∣(1 − F (s|x))
n∑

i=1

Bni(x)ξ(Zi, Ti, δi, s,x) − (1 − F (t|x))
n∑

i=1

Bni(x)ξ(Zi, Ti, δi, t,x)
∣∣∣
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+O
(( ln(n)

nhd
n

) 3
4
)

≤
∣∣∣(1 − F (s|x))

n∑
i=1

Bni(x)[ξ(Zi, Ti, δi, s,x) − ξ(Zi, Ti, δi, t,x)]
∣∣∣

+
∣∣∣(F (s|x) − F (t|x))

n∑
i=1

Bni(x)ξ(Zi, Ti, δi, t,x)
∣∣∣ +O

(( ln(n)
nhd

n

) 3
4
)

:= J1n(s, t|x) + J2n(s, t|x) +O
(( ln(n)

nhd
n

) 3
4
)

a.s. (4.1)

Note that
n∑

i=1

Bni(x)ξ(Zi, Ti, δi, s,x) =
∫ s

aH(·|x)

dĤ∗
n1(u|x)
C(u|x)

−
∫ s

aH(·|x)

Ĉn(u|x)dH∗
1 (u|x)

C2(u|x)

=
∫ s

aH(·|x)

d(Ĥ∗
n1(u|x) −H∗

1 (u|x))
C(u|x)

−
∫ s

aH(·|x)

Ĉn(u|x) − C(u|x)
C2(u|x)

dH∗
1 (u|x). (4.2)

Therefore

J1n(s, t|x) ≤
∣∣∣[Ĥ∗

n1(y|x) −H∗
1 (y|x)

C(y|x)

]y=s

y=t

∣∣∣ +
∣∣∣ ∫ s

t

Ĥ∗
n1(u|x) −H∗

1 (u|x)
C2(u|x)

dC(u|x)
∣∣∣

+
∣∣∣ ∫ s

t

Ĉn(u|x) − C(u|x)
C2(u|x)

dH∗
1 (u|x)

∣∣∣
:= J11n(s, t|x) + J12n(s, t|x) + J13n(s, t|x). (4.3)

Note that C(y|x) = θ−1(x)L(y|x)(1−G(y|x))(1−F (y|x)) and H∗
1 (y|x) = θ−1(x)

∫ y

0 L(t|x)(1−
G(t|x))f(t|x)dt. Then C(0,1)(y|x) and h∗1(y|x) are bounded for y ∈ [τ1, τ2] from (A3’). Hence,
using Lemmas 5.1–5.2, it follows that

sup
s,t∈[τ1,τ2]:|s−t|≤c

(
ln(n)
nhd

n

) 1
2

J11n(s, t|x)

≤ sup
s,t∈[τ1,τ2]:|s−t|≤c

(
ln(n)
nhd

n

) 1
2

{∣∣∣ [Ĥ∗
n1(s|x) −H∗

1 (s|x) − [Ĥ∗
n1(t|x) −H∗

1 (t|x)]
C(s|x)

∣∣∣

+
∣∣∣ [Ĥ∗

n1(t|x) −H∗
1 (t|x)][C(t|x) − C(s|x)]

C(s|x)C(t|x)

∣∣∣}

≤ O
(( ln(n)

nhd
n

) 3
4
)

+ C sup
s,t∈[τ1,τ2]:|s−t|≤c

(
ln(n)
nhd

n

) 1
2

|Ĥ∗
n1(t|x) −H∗

1 (t|x)||s− t|

= O
(( ln(n)

nhd
n

) 3
4
)

+O
( ln(n)
nhd

n

)
= O

(( ln(n)
nhd

n

) 3
4
)

a.s.

Similarly,

sup
s,t∈[τ1,τ2]:|s−t|≤c

(
ln(n)
nhd

n

) 1
2

J12n(s, t|x)

≤ C sup
|s−t|≤c

(
ln(n)
nhd

n

) 1
2

sup
τ1≤y≤τ2

|Ĥ∗
n1(y|x) −H∗

1 (y|x)||s− t| = O
( ln(n)
nhd

n

)
a.s.
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and

sup
s,t∈[τ1,τ2]:|s−t|≤c

(
ln(n)
nhd

n

) 1
2

J13n(s, t|x)

≤ C sup
|s−t|≤c

(
ln(n)
nhd

n

) 1
2

sup
τ1≤y≤τ2

|Ĉn(y|x) − C(y|x)||s − t| = O
( ln(n)
nhd

n

)
a.s.

Therefore, from (4.3) it follows that

sup
s,t∈[τ1,τ2]:|s−t|≤c

(
ln(n)
nhd

n

) 1
2

J1n(s, t|x) = O
(( ln(n)

nhd
n

) 3
4
)

a.s. (4.4)

Using Lemma 5.1, from (4.2) one can verify that
n∑

i=1

Bni(x)ξ(Zi, Ti, δi, t,x) = O
(( ln(n)

nhd
n

) 1
2
)

a.s.

Therefore,

sup
s,t∈[τ1,τ2]:|s−t|≤c

(
ln(n)
nhd

n

) 1
2

J2n(s, t|x)

≤ sup
s,t∈[τ1,τ2]:|s−t|≤c

(
ln(n)
nhd

n

) 1
2

f(r|x)|s − t|
∣∣∣ n∑

i=1

Bni(x)ξ(Zi, Ti, δi, s,x)
∣∣∣

= O
( ln(n)
nhd

n

)
a.s., (4.5)

where r is between s and t. Thus, the conclusion follows from (4.1) and (4.4)–(4.5).

Proof of Theorem 2.1 We prove only (a); the proof of (b) is similar. Observe that

|F (ξ̂pn(x)|x) − F (ξp(x)|x)| ≤ |F̂n(ξ̂pn(x)|x) − F (ξ̂pn(x)|x)|
+|F̂n(ξ̂pn(x)|x) − F (ξp(x)|x)|. (4.6)

Since F (·|x) is continuous, F (ξp(x)|x) = p. Then from the definition of ξ̂pn(x), we have

|F̂n(ξ̂pn(x)|x) − F (ξp(x)|x)|
= F̂n(ξ̂pn(x)|x) − p ≤ F̂n(ξ̂pn(x)|x) − F̂n(ξ̂pn(x)−|x)

≤ |F̂n(ξ̂pn(x)|x) − F (ξ̂pn(x)|x)| + |F (ξ̂−pn(x)|x) − F̂n(ξ̂−pn(x)|x)|, (4.7)

where F̂n(ξ̂pn(x)−|x) stands for the left-hand limit of F̂n(y|x) at y = ξ̂pn(x)−.
Since 0 < p0 ≤ p1 < 1 with τ1 < ξp0(x) ≤ ξp1 (x) < τ2 for all x ∈ I, τ1 < ξp(x) < τ2 for

p ∈ [p0, p1]. Hence, τ1 ≤ ξ̂pn(x) ≤ τ2 eventually from Lemma 5.1. Therefore, from (4.6)–(4.7)
it follows that

|F (ξ̂pn(x)|x) − F (ξp(x)|x)| ≤ 3 sup
x∈I

sup
τ1≤y≤τ2

|F̂n(y|x) − F (y|x)|. (4.8)

Then, the first part of the theorem follows from Lemma 5.1 and (D1). Note that

F (ξ̂pn(x)|x) − F (ξp(x)|x) = (ξ̂pn(x) − ξp(x))f(ξ∗pn(x)|x),
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where ξ∗pn(x) is between ξp(x) and ξ̂pn(x). Then, by (4.8), we have

sup
x∈I

sup
p0≤p≤p1

|ξ̂pn(x) − ξp(x)|f(ξ∗pn(x)|x) ≤ 3 sup
x∈I

sup
τ1≤y≤τ2

|F̂n(y|x) − F (y|x)|.

Thus, the second part of the theorem follows from Lemma 5.1 and (D2).

Proof of Theorem 2.2 We prove only the conclusion in the case

sup
p0≤p≤p1

|Rni(ξp(x)|x)| = O
( ln(n)

(nhd
n)

3
4

)
a.s.

for i = 1, 2.
Since nhd+2r0

n

ln(n) = O(1), (b) in Theorem 2.1 ensures that

sup
p0≤p≤p1

|ξ̂pn(x) − ξp(x)| = O
(( ln(n)

nhd
n

) 1
2
)

a.s.

Therefore, using a Taylor expansion, it follows that

F̂n(ξ̂pn(x)|x) − F̂n(ξp(x)|x)

= [F (ξ̂pn(x)|x) − F (ξp(x)|x)] + {[F̂n(ξ̂pn(x)|x) − F (ξ̂pn(x)|x)] − [F̂n(ξp(x)|x) − F (ξp(x)|x)]}

= f(ξp(x)|x)(ξ̂pn(x) − ξp(x)) +
f (0,1)(ξ∗pn(x)|x)

2
(ξ̂pn(x) − ξp(x))2 +R∗

n(ξp(x)|x),

where ξ∗pn(x) is between ξ̂pn(x) and ξp(x), and sup
p0≤p≤p1

|R∗
n(ξp(x)|x)| = O

( ln(n)

(nhd
n)

3
4

)
a.s. by

Lemma 4.1. Hence from f(ξp(x)|x) > 0 and F̂n(ξ̂pn(x)|x) = p, we have

ξ̂pn(x) − ξp(x) =
p− F̂n(ξp(x)|x)
f(ξp(x)|x)

− 2−1f (0,1)(ξ∗pn(x)|x)(ξ̂pn(x) − ξp(x))2 +R∗
n(ξp(x)|x)

f(ξp(x)|x)

=
p− F̂n(ξp(x)|x)
f(ξp(x)|x)

+Rn1(ξp(x)|x). (4.9)

Note that (E1) implies that f (0,1)(ξ∗pn(x)|x) is bounded. Then, according to sup
p0≤p≤p1

|ξ̂pn(x) −

ξp(x)|2 = O
( ln(n)

nhd
n

)
a.s. from (b) in Theorem 2.1, it follows that sup

p0≤p≤p1

|Rn1(ξp(x)|x)| =

O
( ln(n)

(nhd
n)

3
4

)
a.s.

In addition, using Lemma 5.2 and F (ξp(x)|x) = p, we can write (4.9) as

ξ̂pn(x) − ξp(x) =
p− [F̂n(ξp(x)|x) − F (ξp(x)|x)] − F (ξp(x)|x)

f(ξp(x)|x)
+Rn1(ξp(x)|x)

= −
(1 − F (ξp(x)|x))

n∑
i=1

Bni(x)ξ(Zi, Ti, δi, ξp(x),x) +Qn(ξp(x)|x)

f(ξp(x)|x)
+Rn1(ξp(x)|x)

= − 1 − p

f(ξp(x)|x)

n∑
i=1

Bni(x)ξ(Zi, Ti, δi, ξp(x),x) +Rn2(ξp(x)|x)
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and sup
p0≤p≤p1

|Rn2(ξp(x)|x)| = O
( ln(n)

(nhd
n)

3
4

)
a.s. from (D2’).

Proof of Theorem 2.3 Note that ln3(n)
nhd

n
→ 0 implies that (nhd

n)
1
2
( ln(n)

nhd
n

) 3
4 =

[ ln3(n)
nhd

n

] 1
4

→ 0. Then from Theorem 2.2 and F (ξp(x)|x) = p, we have

(nhd
n)

1
2 (ξ̂pn(x) − ξp(x)) = − (nhd

n)
1
2 [F̂n(ξp(x)|x) − F (ξp(x)|x)]

f(ξp(x)|x)
+ op(1).

Therefore, from Lemma 5.3 it follows that (nhd
n)

1
2 (ξ̂pn(x) − ξp(x)) D→ N(0,Δ2(p|x)).

Proof of Theorem 2.4 From Theorem 2.2 we write

(nhd
n)

1
2 (ξ̂pn(x) − ξp(x))

Δ(p|x)
= −m∗(x)

m̂∗
n(x)

· 1 − p

f(ξp(x)|x)Δ(p|x)m∗(x)(nhd
n)

1
2

×
n∑

i=1

{[
K

(x − Xi

hn

)
ξ(Zi, Ti, δi, ξp(x),x)

− E
(
K

(x− Xi

hn

)
ξ(Zi, Ti, δi, ξp(x),x)

)]

+ E
(
K

(x− Xi

hn

)
ξ(Zi, Ti, δi, ξp(x),x)

)}

+
(nhd

n)
1
2Rn2(ξp(x)|x)
Δ(p|x)

:= −m∗(x)
m̂∗

n(x)
[I1n(x) + I2n(x)] + I3n(x).

Let γ∗1n =
( ln(n)

nhd
n

) 1
3 . Then, using Lemma 5.4 we have

sup
u

∣∣∣P((nhd
n)

1
2 (ξ̂pn(x) − ξp(x))

Δ(p|x)
≤ u

)
− Φ(u)

∣∣∣
= sup

u

∣∣∣P(m∗(x)
m̂∗

n(x)
[I1n(x) + I2n(x)] − I3n(x) < −u

)
− Φ(−u)

∣∣∣
≤ sup

u
|P (I1n(x) < u) − Φ(u)| + C(γ∗1n + γ1n + |I2n(x)|)

+ P
(∣∣∣m̂∗

n(x)
m∗(x)

− 1
∣∣∣ > γ∗1n

)
+ P

(∣∣∣m̂∗
n(x)

m∗(x)
I3n(x)

∣∣∣ > γ1n

)
. (4.10)

From Lemma 5.1, it follows that

P
(∣∣∣m̂∗

n(x)
m∗(x)

− 1
∣∣∣ > γ∗1n

)
≤ E(m̂∗

n(x) −m∗(x))2

(m∗(x))2(γ∗1n)2
≤ C

ln(n)
nhd

n(γ∗1n)2
= Cγ∗1n. (4.11)

Lemma 5.1 and Theorem 2.2 ensure that

P
(∣∣∣m̂∗

n(x)
m∗(x)

I3n(x)
∣∣∣ > γ1n

)
≤ E

(m̂∗
n(x)

m∗(x)
I3n(x)

)2

γ−2
1n ≤ C

ln2(n)
(nhd

n)
1
2 γ2

1n

= Cγ1n. (4.12)

Let Λ(u) = E(ξ(Z, T, δ, ξp(x),x) | X = u, T ≤ Z). Then

Λ(u) =
∫ ξp(x)

0

dH∗
1 (t|u)

C(t|x)
−

∫ ξp(x)

0

C(t|u)dH∗
1 (t|x)

C2(t|x)
.
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Obviously, Λ(x) = 0 and the function Λ has bounded the first r0 partial derivatives in U(x)
from (A3’). Hence we have

|I2n(x)| =
1 − p

f(ξp(x)|x)Δ(p|x)m∗(x)

( n

hd
n

) 1
2
∣∣∣E(

K
(x − X

hn

)
ξ(Z, T, δ, ξp(x),x)

)∣∣∣
=

1 − p

f(ξp(x)|x)Δ(p|x)m∗(x)

( n

hd
n

) 1
2
∣∣∣ ∫

Rd

K
(x − u

hn

)
m∗(u)Λ(u)du

∣∣∣
=

1 − p

f(ξp(x)|x)Δ(p|x)m∗(x)
(nhd

n)
1
2

∣∣∣ ∫
Rd

K(u)m∗(x − hnu)Λ(x − hnu)du
∣∣∣

= O
(
(nhd+2r0

n )
1
2
)

= O(γ2n). (4.13)

Note that γ∗1n ≤ γ1n. Then from (4.10)–(4.13), it suffices to verify that

sup
u

|P (I1n(x) < u) − Φ(u)| = O(hn + (qp−1)
1
3 + (pn−1)

1
3

+ h
d(1−ρ)

3
n + γ

1
3
3n + γ4n + γ

1
4
5n). (4.14)

In fact, let w = [ n
p+q ], and ηi(x) = 1−p

f(ξp(x)|x)Δ(p|x)m∗(x)h
d
2
n

[
K(x−Xi

hn
)ξ(Zi, Ti, δi, ξp(x),x) −

E
(
K(x−Xi

hn
)ξ(Zi, Ti, δi, ξp(x),x)

)]
. Define ymn(x), y′mn(x), y′′wn(x) as follows:

ymn(x) =
km+p−1∑

i=km

ηi(x), y′mn(x) =
lm+q−1∑

j=lm

ηj(x), y′′wn(x) =
n∑

k=w(p+q)+1

ηk(x),

where km = (m− 1)(p+ q) + 1, lm = (m− 1)(p+ q) + p+ 1. Then

I1n(x) =
1√
n

n∑
i=1

ηi(x) =
1√
n

{ w∑
m=1

ymn(x) +
w∑

m=1

y′mn(x) + y′′wn(x)
}

:= n− 1
2 {S′

n(x) + S′′
n(x) + S′′′

n (x)}.

Let τ1n = qp−1 + h
d(1−ρ)
n + γ3n, τ2n = pn−1 + h

d(1−ρ)
n . By applying Lemma 5.4, it follows that

sup
u

|P (I1n(x) < u) − Φ(u)| = sup
u

|P (n− 1
2 {S′

n(x) + S′′
n(x) + S′′′

n (x)} ≤ u) − Φ(u)|

≤ sup
u

|P (n− 1
2S′

n(x) ≤ u) − Φ(u)| + P (n− 1
2 |S′′

n(x)| > τ
1
3
1n)

+ P (n− 1
2 |S′′′

n (x)| > τ
1
3
2n) + (2π)−

1
2 (τ

1
3
1n + τ

1
3
2n).

Then, to verify (4.14), we only need to prove that

n−1E(S′′
n(x))2 = O(τ1n), n−1E(S′′′

n (y|x))2 = O(τ2n) (4.15)

and

sup
u

|P (n− 1
2S′

n(x) ≤ u) − Φ(u)| = O(hn + qp−1 + pn−1 + hd(1−ρ)
n + γ4n + γ

1
4
5n). (4.16)

(i) We verify (4.15). Note that

1
n
E(S′′

n(x))2 =
1
n

w∑
m=1

lm+q−1∑
i=lm

Eη2
i (x) +

2
n

w∑
m=1

∑
lm≤i<j≤lm+q−1

Cov(ηi(x), ηj(x))
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+
2
n

∑
1≤i<j≤w

Cov(y′in(x), y′jn(x)). (4.17)

From (A1’) and (A3’), we get

Eη2
i (x) ≤ C

hd
n

E
(
K2

(x − Xi

hn

)
ξ2(Zi, Ti, δi, ξp(x),x)

)
≤ C

hd
n

∫
Rd

K2
(x − s
hn

)
m∗(s)ds

≤ C

∫
Rd

K2(s)m∗(x − hns)ds ≤ C. (4.18)

Using (A1’) and (A4’), from the proof in (4.13) for i < j, we have

|Cov(ηi(x), ηj(x))| ≤ E|ηi(x)ηj(x)| + (Eη1(x))2

≤ Ch−d
n E

(
K

(Xi − x

hn

)
K

(Xj − x

hn

))
+O(hd+2r0

n )

= Chd
n

∫
R2
K(s1)K(s2)v∗j−i(x − hns1,x− hnσ2)ds1ds2 +O(hd+2r0

n ) = O(hd
n).

On the other hand, from Lemma 5.5 (taking p = q = 20λ), it follows that

|Cov(ηi(x), ηj(x))| ≤ C[α(j − i)]1−
1

10λ (E|ηi(x)|20λ)
1

10λ

and E|ηi(x)|20λ ≤ Ch−10λd
n EK20λ

(
x−Xi

hn

)
= h

−d(10λ−1)
n

∫
Rd K

20λ(s)m∗(x − hns)ds =

O(h−d(10λ−1)
n ), which yield |Cov(ηi(x), ηj(x))| ≤ C[α(j − i)]1−

1
10λh

−d(1− 1
10λ )

n . Let cn = h−dρ
n

for 20λ−1
λ(10λ−1) ≤ ρ < 1. Then

1
n

∑
1≤i<j≤n

|Cov(ηi(x), ηj(x))|

≤ C

n

( ∑
1≤j−i≤cn

+
∑

cn+1≤j−i≤n−1

)
min

{
hd

n, [α(j − i)]1−
1

10λh
−d(1− 1

10λ )
n

}

≤ C
{
cnh

d
n + h

−d(1− 1
10λ )

n c
−(λ− 11

10 )
n

}
= O(hd(1−ρ)

n ). (4.19)

Using Lemma 5.5 again, we have

1
n

∣∣∣ ∑
1≤i<j≤w

Cov(y′in(x), y′jn(x))
∣∣∣ ≤ (1 − p)2

f2(ξp(x)|x)Δ2(p|x)(m∗(x))2nhd
n

∑
1≤i<j≤w

li+q−1∑
s=li

lj+q−1∑
t=lj∣∣∣Cov

(
K

(x − Xs

hn

)
ξ(Zs, Ts, δs, ξp(x),x),K

(x − Xt

hn

)
ξ(Zt, Tt, δt, ξp(x),x)

)∣∣∣
≤ C

nhd
n

w−1∑
i=1

li+q−1∑
s=li

∥∥∥K(x − Xs

hn

)
ξ(Zs, Ts, δs, ξp(x),x)

∥∥∥2

2+δ

w∑
j=i+1

lj+q−1∑
t=lj

α
δ

2+δ (t− s)

≤ Cwq

nhd
n

{
hd

n

∫
Rd

K(s)2+δm∗(x − hns)ds
} 2

2+δ
∞∑

i=p

α
δ

2+δ (i)

≤ C
wq

n
h
− dδ

2+δ
n u(p) ≤ Cqp−1h

− dδ
2+δ

n u(p) = O(γ3n). (4.20)

From (4.17)–(4.20), we obtain n−1E(S′′
n(x))2 = O(qp−1 + h

d(1−ρ)
n + γ3n) = O(τ1n) and

1
n
E(S′′′

n (x))2 =
1
n

n∑
i=w(p+q)+1

Eη2
i (x) +

2
n

∑
w(p+q)+1≤i<j≤n

Cov(ηi(x), ηj(x))



986 H. Y. Liang, D. L. Li and T. X. Miao

≤ C · n− w(p+ q)
n

+
2
n

∑
1≤i<j≤n

|Cov(Zi, Zj)|

= O(pn−1 + hd(1−ρ)
n ) = O(τ2n).

(ii) We prove (4.16). Let πmn(x),m = 1, 2, · · · , w be independent random variables, where
the distribution of πmn is the same as that of ymn(x) for m = 1, 2, · · · , w. Put Un =

n− 1
2

w∑
m=1

πmn(x) and s2n = n−1
w∑

m=1
Ey2

mn(x). Then

sup
u

|P (n− 1
2S′

n(x) ≤ u) − Φ(u)|

≤ sup
u

|P (n− 1
2S′

n(x) ≤ u) − P (n− 1
2Un ≤ u)|

+ sup
u

∣∣∣P (n− 1
2Un ≤ u) − Φ

( u

sn

)∣∣∣ + sup
u

∣∣∣Φ( u

sn

)
− Φ(u)

∣∣∣. (4.21)

Note that

E(ξ2(Zi, Ti, δi, y,x) | X = s, T ≤ Z)

= E
(I(Z ≤ y, δ = 1)

C2(Z|x)

∣∣∣ X = s, T ≤ Z
)

+ E
[(∫ y

0

I(T ≤ t ≤ Z)dH∗
1 (t|x)

C2(t|x)

)2∣∣∣X = s, T ≤ Z
]

− 2E
[(I(Z ≤ y, δ = 1)

C(Z|x)

)(∫ y

0

I(T ≤ t ≤ Z)dH∗
1 (t|x)

C2(t|x)

)∣∣∣X = s, T ≤ Z
]

= E
(I(Z ≤ y, δ = 1)

C2(Z|x)

∣∣∣ X = s, T ≤ Z
)

=
∫ y

0

dH∗
1 (t|s)

C2(t|x)
.

Then, in view of m∗(s) = θ−1θ(s)m(s), h∗1(y|s) = θ−1(s)L(y|s)(1−G(y|s))f(y|s), and C(y|s) =
θ−1(s)L(y|s)(1 −G(y|s))(1 − F (y|s)), from (A1’), (A3’) and (4.13), we have

Eη2
i (x) =

(1 − p)2

f2(ξp(x)|x)Δ2(p|x)(m∗(x))2hd
n

{
E

(
K2

(x − Xi

hn

)
ξ2(Zi, Ti, δi, ξp(x),x)

)

−
[
E

(
K

(x − Xi

hn

)
ξ(Zi, Ti, δi, ξp(x),x)

)]2}

=
(1 − p)2

f2(ξp(x)|x)Δ2(p|x)(m∗(x))2

∫
Rd

K2(s)m∗(x − hns)
( ∫ ξp(x)

0

h∗1(t|x − hns)dt
C2(t|x)

)
ds

+O(hd+2r0
n ) = 1 +O(hn). (4.22)

Then, from (4.18)–(4.19) and (4.22), it follows that

s2n =
1
n

w∑
m=1

km+p−1∑
i=km

Eη2
i (x) +

2
n

w∑
m=1

∑
km≤i<j≤km+p−1

Cov(ηi(x), ηj(x))

=
1
n

{ n∑
i=1

Eη2
i (x) −

w∑
m=1

lm+q−1∑
i=lm

Eη2
i (x) −

n∑
i=w(p+q)+1

Eη2
i (x)

+ 2
w∑

m=1

∑
km≤i<j≤km+p−1

Cov(ηi(x), ηj(x))
}

= 1 +O(hn + p−1q + n−1p+ hd(1−ρ)
n ),
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which implies that s2n → 1 and

sup
u

∣∣∣Φ( u

sn

)
− Φ(u)

∣∣∣ = O(|s2n − 1|) = O(hn + p−1q + n−1p+ hd(1−ρ)
n ). (4.23)

By the Berry-Esseen inequality (see [25, p. 154, Theorem 5.7]), for l > 2, there exists some
constant C > 0 such that

sup
u

∣∣∣P (n− 1
2Un ≤ u) − Φ

( u

sn

)∣∣∣ ≤ C

nl/2sl
n

w∑
m=1

E|πmn(x)|l. (4.24)

Taking l = 2(1 + β) and μ = δ − 2β, we have l + μ = 2 + δ. Note that β ≤ δλ−(2+δ)
2λ+(2+δ)

implies that λ ≥ (1+β)(2+δ)
δ−2β = l(l+μ)

2μ . Then, using Lemma 5.6 (take p = l and q = l + μ) and

E|η1(x)|2+δ ≤ Ch
− dδ

2
n , we have

w∑
m=1

E|πmn(x)|l =
w∑

m=1

E|ymn(x)|l =
w∑

m=1

E
∣∣∣ km+p−1∑

i=km

ηi(x)
∣∣∣2(1+β)

≤ Cwp1+β(E|η1(x)|2+δ)
2(1+β)

2+δ

= O
(
wp1+βh

−dδ(1+β)
2+δ

n

)
= O

(
npβh

− dδ(1+β)
2+δ

n

)
,

which, together with (4.24), yields

sup
u

∣∣∣P (n− 1
2Un ≤ u) − Φ

( u

sn

)∣∣∣ = O
(
n−(1+β)npβh

−dδ(1+β)
2+δ

n

)
= O(γ4n). (4.25)

Let ϕ(t) and ψ(t) be the characteristic functions of n− 1
2S′

n(x) and n− 1
2Un, respectively. By the

Esseen inequality (see [25, p. 146, Theorem 5.3]), for any Γ > 0,

sup
u

|P (n− 1
2S′

n(x) ≤ u) − P (n− 1
2Un ≤ u)|

≤
∫ Γ

−Γ

∣∣∣ϕ(t) − ψ(t)
t

∣∣∣dt+ Γ sup
u

∫
|v|≤C

Γ

|P (n− 1
2Un ≤ u+ v) − P (n− 1

2Un ≤ u)|dv

:= H1n +H2n. (4.26)

Using Lemma 5.7, we have

|ϕ(t) − ψ(t)| =
∣∣∣E exp

(
it

w∑
m=1

n− 1
2 ymn(x)

)
−

w∏
m=1

E exp(itn− 1
2 ymn(x))

∣∣∣
≤ C|t|α 1

2 (q)
w∑

m=1

‖n− 1
2 ymn(x)‖2 ≤ C|t|α 1

2 (q)n− 1
2

w∑
m=1

{
E

∣∣∣ km+p−1∑
i=km

ηi(x)
∣∣∣2} 1

2
.

From (4.13) and |Cov(ηi(x), ηj(x))| ≤ Cmin
{
hd

n, [α(j − i)]1−
1

10λ h
−d(1− 1

10λ )
n

}
, we have

E
∣∣∣ km+p−1∑

i=km

ηi(x)
∣∣∣2 =

km+p−1∑
i=km

Eη2
i (x) + 2

∑
km≤i<j≤km+p−1

Cov(ηi(x), ηj(x)) = O(p).

Thus H1n = O(Γ(w2n−1pα(q))
1
2 ) = O(Γ(np−1α(q))

1
2 ) = O(Γγ

1
2
5n). From (4.25), we have

sup
u

|P (n− 1
2Un ≤ u+ v) − P (n− 1

2Un ≤ u)|
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≤ sup
u

∣∣∣P (n− 1
2Un ≤ u+ v) − Φ

(u+ v

sn

)∣∣∣ + sup
u

∣∣∣P (n− 1
2Un ≤ u) − Φ

( u

sn

)∣∣∣
+ sup

u

∣∣∣Φ(u+ v

sn

)
− Φ

( u

sn

)∣∣∣ = O(γ4n) +O
( |v|
sn

)
,

which yields that H2n = O
(
γ4n + 1

Γ

)
. Choose Γ = γ

− 1
4

5n . Then from (4.26), we have

sup
u

|P (n− 1
2S′

n(x) ≤ u) − P (n− 1
2Un ≤ u)| = O(γ4n + γ

1
4
5n). (4.27)

Therefore, from (4.21), (4.23), (4.25) and (4.27), we have

sup
u

|P (n− 1
2S′

n(x) ≤ u) − Φ(u)| = O(hn + p−1q + n−1p+ hd(1−ρ)
n + γ4n + γ

1
4
5n).

5 Appendix

In this section, we list some preliminary lemmas which have been used in the proofs of the
main results in Section 4. Let {χi, i ≥ 1} be a stationary α-mixing sequence of real random
variables with mixing coefficients {α(k)}.

Lemma 5.1 (see [20]) Let α(n) = O(n−λ) for some λ > 2, and let τ be a finite positive

constant. Set Γ1n = max
{( ln(n)

nhd
n

) 1
2 , hr0

n

}
.

(a) Suppose that (A1)–(A4) are satisfied.If (A5)(i) holds,then sup
x∈I

sup
τ1≤y≤τ2

|F̂n(y|x)−F (y|x)| =

O(Γ1n) a.s. If (A5)(ii) holds, then sup
x∈I

sup
τ1≤y≤τ2

|F̂n(y|x) − F (y|x)| = Op(Γ1n).

(b) Let x ∈ D. Suppose that (A1′)–(A4′) are satisfied. If (A5′)(i) holds, then

sup
τ1≤y≤τ2

|F̂n(y|x) − F (y|x)| = O(Γ1n) a.s., sup
0≤y≤τ

|Ĥ∗
1n(y|x) −H∗

1 (y|x)| = O(Γ1n) a.s.,

sup
0≤y≤τ

|Ĉn(y|x) − C(y|x)| = O(Γ1n) a.s., and |m̂∗
n(x) −m∗(x)| = O(Γ1n) a.s.

If (A5′)(ii) holds, then sup
τ1≤y≤τ2

|F̂n(y|x) − F (y|x)| = Op(Γ1n), sup
0≤y≤τ

|Ĥ∗
1n(y|x) − H∗

1 (y|x)| =

Op(Γ1n), and sup
0≤y≤τ

|Ĉn(y|x) − C(y|x)| = Op(Γ1n).

Lemma 5.2 (see [20]) Set ξ(Z, T, δ, y,x) = I(Z≤y,δ=1)
C(Z|x) − ∫ y

0
I(T≤t≤Z)

C2(t|x) dH∗
1 (t|x). Let x ∈ D

and α(n) = O(n−λ) for some λ > 0. Suppose that conditions (A1′)–(A4′) and (B1)–(B2) hold,

and that nhd+2r0
n

ln(n) = O(1). Set Γ2n =
( ln(n)

nhd
n

) 3
4 .

(a) Let λ > 6 and τ1 < aH(·|x). Then for y ∈ [τ1, τ2], we have

F̂n(y|x) − F (y|x) = (1 − F (y|x))
n∑

i=1

Bni(x)ξ(Zi, Ti, δi, y,x) +Qn(y|x),

where sup
y∈[τ1,τ2]

|Qn(y|x)| = O(Γ2n) a.s. when (B3)(i) holds; sup
y∈[τ1,τ2]

|Qn(y|x)| = Op(Γ2n) when

(B3)(ii) holds.
(b) Let λ > 4. If (B3)(i) holds, then

sup
s,t∈[0,∞):|s−t|≤c

(
ln(n)
nhd

n

) 1
2

|[Ĥ∗
1n(s|x) −H∗

1 (s|x)] − [Ĥ∗
1n(t|x) −H∗

1 (t|x)]| = O(Γ2n) a.s.
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If (B3)(ii) holds, then

sup
s,t∈[0,∞):|s−t|≤c

(
ln(n)
nhd

n

) 1
2

|[Ĥ∗
1n(s|x) −H∗

1 (s|x)] − [Ĥ∗
1n(t|x) −H∗

1 (t|x)]| = Op(Γ2n).

Lemma 5.3 (see [20]) Let x ∈ D and α(n) = O(n−λ) for some λ > 6. Suppose that
conditions (A1′)–(A4′), (B1)–(B2), (B3)(ii) and (E2)–(E3) hold. If τ1 < aH(·|x), then for y ∈
[τ1, τ2], we have (nhd

n)
1
2 [F̂n(y|x) − F (y|x)] d→ N

(
0, σ2(y|x)

)
, where

σ2(y|x) =
θ(1 − F (y|x))2

m(x)

∫ y

0

f(t|x)dt
L(t|x)(1 −G(t|x))(1 − F (t|x))2

∫
Rd

K2(s)ds.

Lemma 5.4 Let X, V and Y1, · · · , Ym be random variables, and then for positive numbers
a, w1, · · · , wm, we have sup

u
|P (X ≤ uV )−Φ(u)| ≤ sup

u
|P (X ≤ u)−Φ(u)|+P (|V −1| > a)+a

and

sup
u

∣∣∣P(
X +

m∑
i=1

Yi ≤ u
)
− Φ(u)

∣∣∣ ≤ sup
u

|P (X ≤ u) − Φ(u)| +
m∑

i=1

wi√
2π

+
m∑

i=1

P (|Yi| > wi).

Proof The first inequality is a consequence of Michel and Pfanzagl [22] and the second
one follows from Lemma 3.1 of Liang and Fan [17].

Lemma 5.5 (see [11, Corollary A.2, p. 278]) Suppose that X and Y are random variables
such that E|X |p <∞, E|Y |q <∞, where p, q > 1, p−1 + q−1 < 1. Then

|EXY − EXEY | ≤ 8‖X‖p‖Y ‖q

{
sup

A∈σ(X)
B∈σ(Y )

|P (A ∩B) − P (A)P (B)|
}1−p−1−q−1

.

Lemma 5.6 (see [27, Theorem 4.1]) Let 2 < p < q ≤ ∞. Assume that Eχn = 0 and

α(n) = O(n−γ) for γ > 0. Then there exists Q = Q(p, q, γ) < ∞ such that E
∣∣ n∑

i=1

χi

∣∣p ≤
Qn

p
2 max

1≤i≤n
‖χi‖p

q if γ ≥ pq
2(q−p) .

Lemma 5.7 (see [30]) Let p and q be positive integers. Set ηr =
(r−1)(p+q)+p∑

j=(r−1)(p+q)+1

χj for

1 ≤ r ≤ w. If s > 0, r > 0 with 1
s + 1

r = 1, then there exists a constant C > 0 such that∣∣E exp
(
it

w∑
r=1

ηr

) − w∏
r=1

E exp(itηr)
∣∣ ≤ C|t|α 1

s (q)
w∑

r=1
‖ηr‖r.
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[7] Doukhan, P., Mixing: Properties and Examples, Lecture Notes in Statistics, Vol. 85, Springer-Verlag,
Berlin, 1994.

[8] Ferraty, F., Rabhi, A. and Vieu, P., Conditional quantiles for dependent functional data with application
to the climatic El Niño phenomenon, Sankhyā, 67, 2005, 378–398.
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