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The Gradient Estimate of a Neumann Eigenfunction on a
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Abstract Let eλ(x) be a Neumann eigenfunction with respect to the positive Laplacian
Δ on a compact Riemannian manifold M with boundary such that Δ eλ = λ2eλ in the
interior of M and the normal derivative of eλ vanishes on the boundary of M . Let χλ be
the unit band spectral projection operator associated with the Neumann Laplacian and f
be a square integrable function on M . The authors show the following gradient estimate
for χλ f as λ ≥ 1: ‖∇χλ f‖∞ ≤ C(λ‖χλ f‖∞ + λ−1‖Δχλ f‖∞), where C is a positive
constant depending only on M . As a corollary, the authors obtain the gradient estimate
of eλ: For every λ ≥ 1, it holds that ‖∇eλ‖∞ ≤ C λ ‖eλ‖∞.
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1 Introduction

Let (M, g) be an n-dimensional compact smooth Riemannian manifold with smooth bound-
ary ∂M and Δ be the positive Laplacian on M . In the local coordinate chart x = (x1, · · · , xn),
Δ can be expressed by

Δ = − 1√
g

∑
i,j

∂xi(g
ij√g ∂xj),

where (gij) =
(
gij(x)

)
is the inverse of the metric matrix (gij) =

(
gij(x)

)
= g(∂xi , ∂xj), and

√
g =

√
g(x) :=

√
det

(
gij(x)

)
. In this paper, we always mean doing the summation from

1 to n when we omit the variation domain of indices. Let L2(M) be the space of square
integrable functions on M with respect to the Riemannian density dV =

√
g(x) dx. Let

e1(x), e2(x), · · · be a complete orthonormal basis in L2(M) for Neumann eigenfunctions of Δ
such that 0 = λ2

1 < λ2
2 ≤ λ2

3 ≤ · · · for the corresponding eigenvalues, where ej(x) (j = 1, 2, · · · )
are real-valued smooth functions on M and λj are nonnegative numbers. Also, let ej denote
the projection of L2(M) onto the 1-dimensional space Cej . Thus, an L2 function f can be

written as f =
∞∑

j=0

ej(f), where the partial sum converges in the L2 norm. Let λ be a positive
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real number ≥ 1. We define the unit band spectral projection operator (UBSPO) χλ as

χλf :=
∑

λj∈(λ,λ+1]

ej(f).

We call that this χλ is associated with the Neumann Laplacian on M . The corresponding
UBSPO χλ, where we use the same notion, can also be defined for both the Dirichlet Laplacian
on M and the Laplacian on a closed Riemannian manifold.

Grieser [7] proved the following L∞ estimate on χλ for both the Dirichlet Laplacian and the
Neumann Laplacian,

‖χλ f‖∞ ≤ Cλ
n−1

2 ‖f‖2, (1.1)

where ‖f‖r (1 ≤ r ≤ ∞) means the Lr norm of the function f on M . In the whole paper,
C denotes a positive constant which depends only on (M, g) and may take different values at
different places unless otherwise stated. The idea of Grieser is to use the standard wave kernel
method outside a boundary layer of width Cλ−1 and a maximum principle argument inside
that layer. On the other hand, Smith [12] proved a sharp L2 → Lp estimate for χλ on a closed
manifold with the Lipschitz metric. As a consequence, (1.1) holds for both the Dirichlet and
the Neumann Laplacians provided that dim M = 2 or 3.

By using the maximum principle argument and the estimate (1.1), Xu [13–14] proved the
following gradient estimate on χλ for both the Dirichlet and the Neumann Laplacians:

‖∇χλf‖∞ ≤ Cλ
n+1

2 ‖f‖2. (1.2)

Here ∇ is the Levi-Civita connection on M . In particular, ∇f =
∑
j

gij ∂f
∂xj

is the gradient

vector field of a C1 function f in a local coordinate chart (x1, · · · , xn), the square of whose
length equals

∑
i,j

gij
(

∂f
∂xi

)(
∂f
∂xj

)
. One of his motivations is to prove the Hörmander multiplier

theorem on compact manifolds with boundary. Seeger and Sogge [9] firstly proved the theorem
on closed manifolds by using the parametrix of the wave kernel. Duong-Ouhabaz-Sikora [5]
proved a general spectral multiplier theorem on closed manifolds by the L2 norm estimate of
the kernel of spectral multipliers and the Gaussian bounds for the corresponding heat kernel. As
an application, they gave an alternative proof of the Hörmander multiplier theorem on closed
manifolds by using the L∞ estimate (1.1) of χλ and the heat kernel.

By rescaling χλf at the scale of λ−1 both outside and inside the boundary layer of width
Cλ−1, for χλ associated with the Dirichlet Laplacian, the last two authors [11] obtained by
elliptic a priori C1,α estimates the following estimate slightly better than (1.2),

‖∇χλ f‖∞ ≤ C(λ‖χλ f‖∞ + λ−1‖Δχλ f‖∞), f ∈ L2(M). (1.3)

See [11, Remark 1.2] for the argument that the above estimate with the help of (1.1) could imply
the Dirichlet case of estimate (1.2) by Xu. On the other hand, an immediate consequence
of our estimate (1.3) is as follows: There exists a constant C such that for each Dirichlet
eigenfunction eλ, i.e., Δ eλ = λ2 eλ in the interior of M and eλ = 0 on the boundary of M , we
have ‖∇eλ‖∞ ≤ C λ ‖eλ‖∞. Furthermore, following the idea of Brüning [2] and Zelditch [15,
Theorem 4.1], the last two authors ([11, Lemma 2.2]) proved a basic geometry property of nodal
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sets for Dirichlet eigenfunctions, i.e., as λ is sufficiently large, every geodesic ball with radius
C
λ and lying in the interior Int(M) of M must contain at least one zero point of a Dirichlet
eigenfunction with eigenvalue λ2. We call this the equidistribution property of a non-trivial
Dirichlet eigenfunction, using which we obtained a two-sided gradient estimate for a non-trivial
Dirichlet eigenfunction eλ,

C−1 λ ‖eλ‖∞ ≤ ‖∇eλ‖∞ ≤ C λ ‖eλ‖∞ for all λ ≥ 1. (1.4)

Soon after the last two authors wrote up the manuscript of [11], Professor C. D. Sogge asked the
last author whether the two sided gradient estimate (1.4) holds for Neumann eigenfunctions.
In the paper, we answer his question partially.

Theorem 1.1. Let f be a square integrable function on the compact Riemannian manifold
(M, g) with boundary ∂M . Let χλ be the UBSPO associated with the Neumann Laplacian.
Then, for all λ ≥ 1 and for all f ∈ L2(M), it holds that

‖∇χλ f‖∞ ≤ C(λ‖χλ f‖∞ + λ−1‖Δχλ f‖∞). (1.5)

In particular, letting f = eλ(x) be an eigenfunction with respect to the positive Neumann Lapla-
cian on N , i.e., Δ eλ = λ2 eλ in the interior of N and the normal derivative of eλ vanishes on
the boundary of N , we obtain

‖∇eλ‖∞ ≤ C λ ‖eλ‖∞.

Remark 1.1 We shall prove Theorem 1.1 directly via the maximum principle argument in
Section 3. It is quite different from that of the Dirichlet case (1.3) in [11, Section 3], where the
last two authors used the C1,α a priori estimate. Moreover, our maximum principle argument
in this paper would not go through for the Dirichlet case. Heuristically speaking, we should
owe the success of the maximum principle in the Neumann case to the following.

Fact 1 If a C2 function g on the half real line [0,∞) satisfies g′(0) = 0, then the even
extension of g is also C2 on the real line (−∞,∞).

Our failure of using the maximum principle argument in the Dirichlet case is partially due
to the following.

Fact 2 If a C2 function h on the half real line [0,∞) satisfies h(0) = 0, then the odd
extension of h to the real line (−∞,∞) is not C2 on (−∞,∞) in general.

Precisely speaking, by Fact 1, we can reduce the gradient estimate (1.5) near the boundary
to the interior case, which will be proved by the standard maximum argument combined with
the frequency dependent rescaling technique. However, Fact 2 prevents us from doing the
similar thing for the Dirichlet case.

Remark 1.2 Theorem 1.1 strengthens the Neumann case of estimate (1.2) proved by Xu
[14] in the sense that it shows how the gradient estimate on a Neumann eigenfunction depends
on its supremum. In particular, the similar argument as [11, Remark 1.2] shows that estimate
(1.5) together with (1.1) imply the Neumann case of estimate (1.2) by Xu [14]. However, (1.2) is
strong enough for Xu to prove his Hörmander multiplier theorem associated with the Neumann
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Laplacian on M . The authors’ motivation is to prove the Neumann version of the result of Shi
and Xu [11].

Remark 1.3 We conjecture that each Neumann eigenfunction has the equidistribution
property, i.e., every geodesic ball with radius C

λ lying in the interior Int(M) of M must contain
at least one zero point of a Neumann eigenfunction with eigenvalue λ2. If it were true, then we
could prove the following lower bound estimate:

‖∇eλ‖∞ ≥ C ‖eλ‖∞,

by a little modification of the argument in [11, Section 2]. However, the idea of the proof for
the equidistribution property of a non-trivial Dirichlet eigenfunction in [11, Section 2] did not
go through for a Neumann eigenfunction, because the restriction of a Neumann eigenfunction
to one of its nodal domains only satisfies the mixed Dirichlet-Neumann boundary condition in
general:

We conclude the introduction by explaining the organization of the left part of this paper.
We use the even extension and the maximum principle to show (1.5), which implies the upper
bound of ∇eλ. We also provide an alternative proof of Theorem 1.1 by the same even extension
and the C1,α a priori estimate.

2 Estimate for the Gradient of Eigenfunction

2.1 Outside the boundary layer

Recall the principle: On a small scale comparable to the wavelength 1
λ , the eigenfunction eλ

behaves like a harmonic function. It was developed in [3–4] and was used extensively there. In
this section, for a square integrable function f on M , letting χλ be the UBSPO associated with
the Neumann Laplacian, we shall give a modification of this principle, which can be applied to
the Poisson equation

Δχλ f =
∑

λj∈(λ,λ+1]

λ2
j ej(f) in Int(N)

with the Neumann boundary condition satisfied by χλf on ∂M . Moreover, in this subsection,
we only do analysis outside the boundary layer L 1

λ
= {z ∈ N : d(z, ∂N) ≤ 1

λ} of width 1
λ .

Take a point p with d(p, ∂M) ≥ 1
λ . We may assume that 1

λ is sufficiently small such that
there exists a geodesic normal coordinate chart (x1, · · · , xn) on the geodesic ball B(p, 1

2λ) in M .
In this chart, we may identify the ball B(p, 1

2λ) with the n-dimensional Euclidean ball B( 1
2λ )

centered at the origin 0, and think of the function χλf in B(p, 1
2λ) as a function in B( 1

2λ). Our
aim in this subsection is to show the inequality

|(∇χλ f)(p)| ≤ C
(
λ‖χλ f‖

L∞
(

B( 1
2λ )

) + λ−1‖Δχλ f‖
L∞

(
B( 1

2λ )
))
. (2.1)

For simplicity of notation, we rewrite u = χλ f and v = Δχλ f in what follows. The Poisson
equation satisfied by u in B( 1

2λ) can be written as

− 1√
g

∑
i,j

∂xi(g
ij√g ∂xju) = v.
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Consider the following rescaled functions:

uλ(y) = u
(y
λ

)
and vλ(y) = v

( y
λ

)
in the ball B

(1
2

)
.

The above estimate which we are after is equivalent to its rescaled version

|(∇uλ)(0)| ≤ C
(
‖uλ‖

L∞
(

B( 1
2 )

) + λ−2‖vλ‖
L∞

(
B( 1

2 )
))
. (2.2)

On the other hand, the rescaled version of the Poisson equation has the expression∑
i,j

∂yi (gij
λ

√
gλ ∂yjuλ) = −λ−2 √

gλ vλ, (2.3)

where
gij,λ(y) = gij

( y
λ

)
, gij

λ (y) = gij
( y
λ

)
and

√
gλ(y) = (

√
g)

( y
λ

)
.

The last two authors [11, Section 3.1] proved (2.2) by the interior C1,α estimate (see [6,
Theorem 8.32, p. 210]) for a second-order elliptic equation of the divergence type, where the
Cα norm of coefficients gij

λ

√
gλ in the equation are involved. In the following paragraph, we

shall give a different and more elementary proof of (2.2), where we use the maximum principle,
however, the C0,1 norm of coefficients gij

λ

√
gλ are involved. Note that the C0,1 norms of gij

λ

√
gλ

are uniformly bounded for all λ ≥ 1.
For simplicity of notation, we set

uλ = φ, h = −λ−2 √
gλ vλ, aij = gij

λ

√
gλ and bi =

n∑
j=1

aij

∂ yj
.

Then the rescaled Poission equation (2.3) can be written as

Lφ :=
∑
i,j

aij
∂2 φ

∂yi∂yj
+

∑
i

bi
∂φ

∂yi
= h, y ∈ B

(1
2

)
.

We learned this maximum principle argument for proving (2.2) from Brandt [1]. Moreover, we
find that the constant-coefficient-assumption there could be removed. The idea is to construct
a new function φ1 from φ of n+1 variables and apply the maximum principle to φ1. The details
are as follows. Define

φ1(y1, · · · , yn; z1) :=
1
2
(φ(y1 + z1, y2, · · · , yn) − φ(y1 − z1, y2, · · · , yn))

in the (n+ 1)-dimensional domain

R =
{
(y1, · · · , yn; z1) : |y| < 1

4
, 0 < z1 <

1
4

}
.

Writing

L1 = L− μ
∂2

∂y2
1

+ μ
∂2

∂z2
1

(μ > 0),

we observe that, for sufficiently small μ, this new operator is elliptic in the n+ 1 variables, and
satisfies

|L1φ1| = |Lφ1| ≤ ‖h‖ in R,
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where we denote by ‖ · ‖ the L∞ norm in B(1
2 ). Choose a constant C sufficiently large and

depending on the L∞ norm of coefficients aij and bi so that

L(|y|2) ≤ 2μC

and introduce the comparison function

φ1 :=
1
2μ

‖h‖
(1

4
z1 − z2

1

)
+ 16 ‖φ‖

{
|y|2 + z2

1 + C
(1

4
z1 − z2

1

)}
.

Then we have

L1 φ1 = −‖h‖ + 16 ‖φ‖ (
L(|y|2) − 2μC

)
≤ −‖h‖ ≤ −|L1 φ1| in R

and
φ1 ≥ |φ1| on the boundary ∂R.

Thus, by the weak maximum principle (see [6, Theorem 3.1]), we obtain |φ1| ≤ φ1. This implies
that

1
2
|φ(z1, 0, · · · , 0) − φ(−z1, 0, · · · , 0)| ≤ φ1(0, · · · , 0, z1)

≤ 1
2μ

z1
4
‖h‖ + 16 ‖φ‖

(Cz1
4

+ z2
1

)
.

Dividing through by z1 and letting z1 → 0 yields the desired estimate∣∣∣ ∂φ
∂y1

(0)
∣∣∣ ≤ 1

8μ
‖h‖ + 4C ‖φ‖. (2.4)

Therefore, we complete the proof of (2.1).
We remark that (2.1) can also be proved directly by the above maximum principle argument

without doing the re-scaling. Here we prefer to do the rescaling before proceeding to the
maximum principle argument because of the following two reasons:

(1) Re-scaling makes the dependence relation of the desired estimate on the eigenvalue λ2

clear and reduce the question to the case of a fixed scale.
(2) It is convenient for the reader to compare the maximum principle argument here with

the proof via the elliptic a priori estimate in [10–11].

2.2 Inside the boundary layer

Using the notations in subsection 3.1, we are going to prove the following estimate:

|∇u(p0)| ≤ C(λ‖u‖∞ + λ−1‖v‖∞) for all p0 ∈ L 1
λ
, (2.5)

which combining with (2.1) completes the proof of Theorem 1.1.
Since the boundary ∂M is a compact sub-manifold in M of codimension 1, we can take λ

sufficiently large such that there exists the boundary normal coordinate chart on the boundary
layer L 3

λ
= {p ∈ M : d(p, ∂M) ≤ 3

λ} with respect to the boundary ∂M (see [8, p. 51]). In
particular, we have the map

B : ∂M ×
[
0,

3
λ

]
→ L 3

λ
, (p′, δ) 
→ B(p′, δ)
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such that δ 
→ B(p′, δ), δ ∈ [0, 3
λ ], is the geodesic with an arc-length parameter normal to ∂N

at p′. Moreover, for each point (p′, δ) ∈ L 3
λ
, we have 0 ≤ δ ≤ 3

λ and

d((p′, δ), ∂M) = δ.

Denote by R(r) the following n-dimensional rectangle in Rn sitting at the origin and having
size r,

R(r) = {x = (x′, xn) = ((x1, · · · , xn−1), xn) ∈ Rn : |(x′, 0)| < r, 0 ≤ xn ≤ r}.

For a point q on ∂M , denote by Expq at q the exponential map on the sub-manifold ∂M . Since
∂M is compact and λ is sufficiently large, we may assume the existence of the geodesic normal
chart for each metric ball of radius 3

λ on ∂M .
We choose and fix a point p0 in L 1

λ
, and write p0 = B(q0, δ0), where q0 ∈ ∂M and δ0 ∈ [0, 1

λ ].
We denote by R(q0, 3

λ) the rectangle in M sitting at q0 and having size 3
λ ,

R
(
q0,

3
λ

)
=

{
(Expq0

(x′), xn)) : (x′, xn) ∈ R
( 3
λ

)}
.

In this way, we identify the rectangle R
(
q0,

3
λ

)
in M sitting at q0 and containing p0 with the

rectangle R(
3
λ

)
in Rn. Thus we could look at u and v as functions in R(

3
λ

)
.

We recall that uλ and vλ are the corresponding rescaled functions of u and v, respectively,
i.e.,

uλ(y) = u
(y
λ

)
, vλ(y) = v

( y
λ

)
for all y in R(3).

To prove (2.5), we only need to show the following estimate:

|(∇u)(p0)| = |(∇u)(0, δ0)| ≤ C
(
λ ‖u‖

L∞
(
R( 3

λ )
) + λ−1‖v‖

L∞
(
R( 3

λ )
))
, (2.6)

which can be reduced to the equivalent rescaled version

|(∇uλ)(0, λ δ0)| ≤ C
(
‖uλ‖

L∞
(
R(3)

) + λ−2‖vλ‖
L∞

(
R(3)

))
, 0 ≤ λ δ0 ≤ 1, (2.7)

where uλ and vλ are the rescaling functions of u and v, respectively. Observe that uλ is the
solution of the Poisson equation∑

i,j

∂yi (gij
λ

√
gλ ∂yjuλ) = −λ−2 √

gλ vλ in the interior of rectangle R(3) (2.8)

and satisfies the Neumann boundary condition, i.e.,

∂uλ

∂yn
= 0 on the portion {x ∈ R(3) : yn = 0} of the boundary ∂R(3).

We shall give two different proofs for (2.7).

The 1st proof The idea is to reduce, by Fact 1 in the introduction and the even extension,
the question to the interior gradient estimate (2.2), which has been proved by the maximum
principle in the former subsection. By the geometric property of the geodesic normal coordinate
chart with respect to the boundary ∂M , we have

gnn(x′, xn) = 1 and gjn(x′, xn) = 0 for j �= n in R
(
q0,

3
λ

)
,
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which implies that

gnn
λ (y′, yn) = 1 and gjn

λ (y′, yn) = 0 for j �= n in R(3).

Setting
aij := gij

λ

√
gλ for 1 ≤ i, j ≤ n− 1, ann :=

√
gλ

and

bi :=
n−1∑
j=1

∂aij

∂yj
for 1 ≤ i ≤ n− 1, bn =

√
gλ

∂yn
,

we can express the Poisson equation (2.8) as

∑
1≤i,j≤n−1

aij
∂2φ

∂yi∂yj
+ ann

∂2φ

∂y2
n

+
∑

1≤k≤n

bk
∂φ

∂yk
= h in Int

(R(3)
)
, (2.9)

where φ = uλ and h = −λ−2√gλ vλ.
Set

S(r) := {y = (y′, yn) = ((y1, · · · , yn−1), yn) ∈ Rn : |(y′, 0)| < r, |yn| ≤ r},

which is the union of rectangle R(r) and its reflection with respect to the hyperplane {yn = 0}.
We denote by φ̃ the even extension onto S(3) of the function φ defined on R(3), i.e.,

φ̃(y′, yn) =

{
φ(y′, yn), if yn ≥ 0,
φ(y′,−yn), if yn < 0.

We do the even extension to h and the coefficients aij , ann, bi for 1 ≤ i, j ≤ n − 1, and denote
the corresponding extension functions on S(3) by

h̃, ãij , ãnn, b̃i.

However, we do the odd extension to bn, i.e.,

b̃n(y′, yn) =

{
bn(y′, yn), if yn ≥ 0,
−bn(y′,−yn), if yn < 0.

We shall see soon that the possible discontinuity of b̃n on the portion S(3) ∩ {yn = 0} would
not cause any trouble.

Thus, we obtain the following Poisson equation about φ̃ with continuous coefficients:

∑
1≤i,j≤n−1

ãij
∂2φ̃

∂yi∂yj
+ ãnn

∂2φ̃

∂y2
n

+
∑

1≤k≤n

b̃k
∂φ̃

∂yk
= h̃ in Int

(S(3)
)

except that b̃n is bounded and possibly discontinuous on the portion S(3)∩{yn = 0}. By Fact 1
in the introduction, which can be proved by simple calculus computation, we know that φ̃ is C2

in S(3). The only point which we should take care of is whether b̃n ∂φ̃
∂yn

is an even continuous

function in S(3) with respect to yn. However, by the extension φ̃ of φ and the Neumann
boundary condition, i.e., ∂φ

∂yn
= 0 on {yn = 0} ∩ S(3), ∂φ̃

∂yn
is an odd C1 function vanishing on
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the portion S(3) ∩ {yn = 0}. Since b̃n is a bounded function in S(3) and is odd with respect
to yn, b̃n ∂φ̃

∂yn
is a continuous function being even with respect to yn in S(3). Moreover, b̃n ∂φ̃

∂yn

vanishes on the portion {yn = 0} ∩ S(3). Therefore, we have reduced the proof of (2.7) to the
estimate for φ̃ at the interior point (0, δ0 λ) of S(3) similar to (2.4) in the former subsection.
The fact that the bounded coefficient bn is possibly discontinuous on the portion {yn = 0}∩S(3)
does not bring us any trouble in applying the weak maximum principle (see [6, (3.3), p. 31]
and the related comments).

The 2nd proof The idea is to use the same even extension as above and the interior C1,α

estimate in [6, Theorem 8.32, p. 210]. Denote by g̃ the even extension of the Riemannian metric
g on R(

3
λ

)
onto S(

3
λ

)
. Then g̃ is a Lipschitz metric on S(

3
λ

)
with the C0,1 norm bounded by

the C1 norm of g. Denote the even extension of u and v on S(
3
λ

)
by ũ and ṽ, respectively. We

claim that ũ is a weak solution of the following Poisson equation:

− 1√
g̃

∑
i,j

∂xi(g̃
ij

√
g̃ ∂xj ũ) = ṽ in Int

(
S

( 3
λ

))
,

that is, for each smooth function ψ compactly supported in Int
(S(

3
λ

))
, the following integral

equality holds: ∫
Int(S( 3

λ ))

∑
i,j

g̃ij ∂xi ũ ∂xjψ dx =
∫

Int(S( 3
λ ))

(−ṽ) ψ dx. (2.10)

Actually, since ∂ũ
∂xn

= 0 on S(
3
λ

) ∩ {xn = 0}, we find by the Green formula on Riemannian
manifolds and the even extension of u and v,∫

Int(S( 3
λ ))∩{xn>0}

∑
i,j

g̃ij ∂xi ũ ∂xjψ dx

=
∫

Int(S( 3
λ ))∩{xn>0}

Δ ũ ψ dx

=
∫

Int(S( 3
λ ))∩{xn>0}

Δu ψ dx

=
∫

Int(S( 3
λ ))∩{xn>0}

(−v) ψ dx

=
∫

Int(S( 3
λ ))∩{xn>0}

(−ṽ) ψ dx.

Using the change of variable xn 
→ −xn and the above equality, we obtain∫
Int(S( 3

λ ))∩{xn<0}

∑
i,j

g̃ij ∂xi ũ ∂xjψ dx =
∫

Int(S( 3
λ ))∩{xn<0}

(−ṽ) ψ dx,

where we also use gin = 0 for all i �= n. Summing these two equalities yields (2.10). Recall
that the coefficient g̃ij is Lipschitz and ṽ is continuous on S(

3
λ

)
. On the other hand, we have

the rescaled version of equation (2.10), i.e., for each smooth function ψ compactly supported
in Int

(S(3)
)
, ∫

Int(S(3))

∑
i,j

g̃ij
λ ∂yi ũλ ∂yjψ dx =

∫
Int(S(3))

(−ṽλ) ψ dx.
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Thus, applying to it the interior C1,α estimate in [6, Theorem 8.32, p. 210], we obtain that for
every 0 < α < 1,

‖ũλ‖C1,α(S(2)) ≤ C(‖ũλ‖C0(S(3)) + λ−2 ‖ṽλ‖C0(S(3))),

which implies the desired estimate (2.7).
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