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1 Introduction

Throughout this paper, groups under consideration are finite and simple groups that are
non-Abelian. For any group G, we use πe(G) to denote the set of orders of its elements and
denote by π(G) the set of prime divisors of |G|. We associate to π(G) a graph of G, denoted by
Γ(G) (see [1]). The vertex set of this graph is π(G), and two distinct vertices p, q are adjacent
by an edge if and only if pq ∈ πe(G). In this case, we write p ∼ q. We also denote by π(n) the
set of all primes dividing n, where n is a positive integer.

In this article, we use the following symbols. For a finite group G, the socle of G is defined
as the subgroup generated by minimal normal subgroups of G, denoted as Soc(G). Sylp(G)
denotes the set of all Sylow p-subgroups of G, where p ∈ π(G), and Pr denotes a Sylow r-
subgroup of G for r ∈ π(G). Furthermore, the symmetric and alternating groups of degree n

are denoted by Sn and An, respectively. Let q be a prime, and we use Exp(m, q) to denote the
exponent of the largest power of a prime q in the factorization of a positive integer m (> 1). All
further unexplained symbols and notations are standard and can be found in [2], for instance.

Definition 1.1 (see [3]) Let G be a finite group and |G| = pα1
1 pα2

2 · · · pαk

k , where pis are
primes and αis are integers. For p ∈ π(G), let deg(p) := |{q ∈ π(G) | p ∼ q}|, which we call the
degree of p. We also define D(G) := (deg(p1), deg(p2), . . . , deg(pk)), where p1 < p2 < · · · < pk.
We call D(G) the degree pattern of G.
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Definition 1.2 (see [3]) A group M is called k-fold OD-characterizable if there exist exactly
k non-isomorphic groups G such that (1) |G| = |M | and (2) D(G) = D(M). Moreover, a 1-fold
OD-characterizable group is simply called an OD-characterizable group.

It is an interesting and difficult topic to determine the structure of finite groups by their
orders and degree patterns. This topic is related to the following open problem.

Open problem (see [3]) Let G and M be finite groups satisfying the conditions (1)
|G| = |M | and (2) D(G) = D(M). Then

(i) How far do these conditions affect the structure of G?
(ii) Does the number of non-isomorphic groups satisfy (1) and (2) finite?

At present, we mention that the problem is still unsolved completely and till now we may not
be able to provide a suitable answer for the above questions. This topic was studied in several
articles. For example, in a series of articles (see [3–20]), it was shown that many finite almost-
simple groups are m-fold OD-characterizable, where m is a positive integer and m ≥ 1. For
convenience, we summarize some results of these articles in the following Propositions 1.1–1.4.

Proposition 1.1 (see [3–12]) Let p be a prime. A finite group G is OD-characterizable if
G is isomorphic to one of the following groups:

(1) The alternating groups Ap, Ap+1 and Ap+2;
(2) the alternating groups Ap+3, where 7 �= p ∈ π(100!);
(3) all finite almost simple K3-groups except Aut(A6) and Aut(U4(2));
(4) the symmetric groups Sp and Sp+1;
(5) all finite simple K4-groups except A10;
(6) all finite simple C2,2-groups;
(7) the simple groups of Lie type L2(q), L3(q), U3(q), 2B2(q) and 2G2(q) for certain prime

power q;
(8) all sporadic simple groups and their automorphism groups except Aut(J2) and Aut(M cL);
(9) the almost simple groups: Aut(F4(2)), Aut(O+

10(2)) and Aut(O−
10(2));

(10) almost simple group L2(49) · 2i (i = 1, 2, 3);
(11) projective general linear group PGL(2, q) for certain odd prime power q;
(12) all finite simple groups whose orders are less than 108 except for A10 and U4(2).

Proposition 1.2 (see [13–16]) A finite group G is 2-fold OD-characterizable if G is one of
the following groups: A10, U4(2), S6(3), O7(3), B2(q), Cp(3), almost simple groups 2 · F4(2),
Aut(J2) and Aut(M cL).

Proposition 1.3 (see [17–20]) A finite group G is 3-fold OD-characterizable if G is one
of the following groups:

(1) The almost simple groups of U3(5) · 3 and U6(2) · 3;
(2) the symmetric groups Sn, where n ≤ 100 and n �= 10, p, p + 1.

Proposition 1.4 (see [13]) Let G be a finite group with |G| = |S10| and D(G) = D(S10),
then G is 8-fold OD-characterizable.

2 Main Results

According to Proposition 1.1(1), the alternating groups Ap, Ap+1 and Ap+2 are OD-
characterizable, and Ap+3 with 7 �= p ∈ π(100!) is OD-characterizable. Proposition 1.2 says that
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the alternating group A10 is 2-fold OD-characterizable. Now, omitting all the above alternating
groups except A10, there remain the following alternating groups:

A10, A106, A112, A116, · · · , A126, A134, A135, A136, A142, · · · . (2.1)

By [1], it is easy to check that all the groups in (2.1) have the connected prime graph. By
Proposition 1.1, we see that it is difficult to investigate how many-fold OD-characterization of
alternating groups are. In this paper, we continue to investigate this topic and get the following
theorem.

Theorem 2.1 All alternating groups Ap+5, where p + 4 is a composite number and p + 6
is a prime and 5 �= p ∈ π(1000!), are OD-characterizable.

Proposition 1.2 says that A10 is 2-fold OD-characterizable. It is worth mentioning that A10

is the first alternating group which has not been considered as OD-characterizable. Up to now,
we have not found an alternating group An (n �= 10) which is not OD-characterizable. Hence,
we put forward the following question.

Question 2.1 Are the alternating groups An (n �= 10) OD-characterizable?

In fact, Theorem 2.1 and Proposition 1.1(1)–(3) imply the following corollary.

Corollary 2.1 Let An be an alternating group of degree n. Assume that one of the following
conditions is fulfilled:

(1) n = p, p + 1 or p + 2, where p is a prime;
(2) n = p + 3, where 7 �= p ∈ π(100!);
(3) n = p+5, where p+4 is a composite number and p+6 is a prime and 5 �= p ∈ π(1000!).

Then An is OD-characterizable.

In this article, we will also show the following theorem.

Theorem 2.2 All symmetric groups Sp+5, where p + 4 is a composite number and p + 6 is
a prime and 5 �= p ∈ π(1000!), are 3-fold OD-characterizable.

3 Preliminaries

In this section, we give some results which will be applied for our further investigations.
We shall utilize the following Lemma 3.1 concerning the set of elements of the alternating and
symmetric groups (see [21]).

Lemma 3.1 (see [21]) The group Sn (or An) has an element of order m = pα1
1 ·pα2

2 · · · pαs
s ,

where p1, p2, · · · , ps are distinct primes and α1, α2, · · ·αs are natural numbers, if and only if
pα1
1 +pα2

2 + · · ·+pαs
s ≤ n (or pα1

1 +pα2
2 + · · ·+pαs

s ≤ n for m odd, and pα1
1 +pα2

2 + · · ·+pαs
s ≤ n−2

for m even).

As an immediate corollary of Lemma 3.1, we have the following lemma.

Lemma 3.2 Let An (or Sn) be an alternating group (or a symmetric group) of degree n.
Then the following assertions hold:

(1) Let p, q ∈ π(An) be odd primes. Then p ∼ q if and only if p + q ≤ n.
(2) Let p ∈ π(An) be an odd prime. Then 2 ∼ p if and only if p + 4 ≤ n.
(3) Let p, q ∈ π(Sn). Then p ∼ q if and only if p + q ≤ n.
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Lemma 3.3 (see [22]) Let G be a finite solvable group, all of whose elements are of prime
power order. Then |π(G)| ≤ 2.

Lemma 3.4 Let Ap+5 be an alternating group of degree p+5, where p is a prime, and p+2
and p + 4 are composite numbers. Suppose that |π(Ap+5)| = d. Then the following assertions
hold:

(1) deg(2) = d − 1. Particularly, 2 ∼ r for each r ∈ π(Ap+5).
(2) deg(3) = deg(5) = d − 1, i.e., 3 ∼ r and 5 ∼ r for each r ∈ π(Ap+5).
(3) deg(p) = 3. In other words, p ∼ r, where r ∈ π(Ap+5), if and only if r = 2, r = 3 or

r = 5.

(4) Exp(|Ap+5|, 2) =
+∞∑
i=1

[p+5
2i ] − 1. In particular, Exp(|Ap+5|, 2) < p + 5.

(5) Exp(|Ap+5|, r) =
+∞∑
i=1

[p+5
ri ] for each r ∈ π(Ap+5)\{2}. Furthermore, Exp(|Ap+5|, r) <

p−1
3 , where 7 ≤ r ∈ π(Ap+5). Particularly, if r > [p+5

2 ], then Exp(|Ap+5|, r) = 1.

Proof By Lemma 3.2, one has that 2p ∈ πe(Ap+5). Clearly, since r + 4 ≤ p + 5 for any
r ∈ π(Ap+5)\{p}, it follows that 2 ∼ r, so deg(2) = d−1. Similarly, we have deg(3) = deg(5) =
d−1. For r ∈ π(Ap+5)\{2, p}, by Lemma 3.2, it is easy to check that p ∼ r if and only if r ≤ 5.
Hence r = 2, 3 or 5. Thus deg(p) = 3. Till now we have proved that (1)–(3) hold.

By the definition of Gauss’s integer function, we have that

Exp(|Ap+5|, 2) =
+∞∑
i=1

[p + 5
2i

]
− 1 =

([p + 5
2

]
+

[p + 5
22

]
+

[p + 5
23

]
+ · · ·

)
− 1

≤
(p + 5

2
+

p + 5
22

+
p + 5
23

+ · · ·
)
− 1

= (p + 5)
(1

2
+

1
22

+
1
23

+ · · ·
)
− 1 = p + 4.

Hence Exp(|Ap+5|, 2) < p + 5. So (4) follows.

Again, using Gauss’s integer function, we have that Exp(|Ap+5|, r) =
+∞∑
i=1

[p+5
ri ]−1 = ([p+5

r ]+

[p+5
r2 ]+ [p+5

r3 ]+ · · · )− 1 ≤ (p+5
r + p+5

r2 + p+5
r3 + · · · )− 1 = (p+5)(1

r + 1
r2 + 1

r3 + · · · )− 1 = p+5
r−1 ≤

p+5
6 < 2p−2

6 = p−1
3 . Therefore Exp(|Ap+5|, r) < p−1

3 , where 7 ≤ r ∈ π(Ap+5). Obviously, if
r > [p+5

2 ], then Exp(|Ap+5|, r) = 1. Hence (5) follows. This completes the proof of Lemma 3.4.

Lemma 3.5 (see [23]) Let a be an arbitrary integer and m a positive integer. If (a, m) = 1,
then the equation ax ≡ 1 (mod m) has solutions. Moreover, if the order of a modulo m is h(a),
then h(a) | ϕ(m), where ϕ(m) is an Euler’s function of m.

Lemma 3.6 Let Ap+5 be an alternating group of degree p + 5, where p + 4 is a composite
number, p + 6 is a prime and 100 < p ∈ π(1000!). Set P ∈ Sylp(Ap+5) and Q ∈ Sylq(Ap+5),
where 7 ≤ q < p. Then the following assertions hold:

(i) qs(q) � |NG(P )|, where s(q) = Exp(|Ap+5|, q).
(ii) If p ∈ {131, 167, 173, 233, 251, 257, 263, 373, 383, 433, 503, 541, 557, 563, 587, 607, 647, 677,

727, 733, 941, 977}, then p � |NG(Q)|.
(iii) If p ∈ {157, 271, 331, 353, 367, 443, 571, 593, 601, 653, 751, 947, 971}, then there exists at

least a prime number, say r, such that the order of r modulo p is less than p−1, where 7 ≤ r < p

and r ∈ π(Ap+5).
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Proof Obviously, the equation qx ≡ 1 (mod p) has solutions by Lemma 3.5. Suppose that
the order of q modulo p is h(q). If h(q) = p−1, then we call q a primitive root of modulo p. By
hypothesis, it is easy to check that there are only 35 such groups satisfying the conditions that
p + 4 is a composite number, p + 6 is a prime number and 100 < p ∈ π(1000!). Using Magma,
for each q ∈ π(Ap+5) and 7 ≤ q < p, we can obtain h(q). For convenience, we have tabulated p

and h(q) in Table 1 of this article.

Table 1 (p and h(q))

p h(q) Condition p h(q) Condition p h(q) Condition
131 2 · 5 · 13 none 157 22 · 3 · 13 q �= 13 157 6 q = 13
167 2 · 83 none 173 22 · 43 none 233 23 · 29 none
251 2 · 53 none 257 28 none 263 2 · 131 none
271 2 · 33 · 5 q �= 29 271 6 q = 29 331 2 · 3 · 5 · 11 q �= 31
331 3 q = 31 353 25 · 11 q �= 7 353 32 q = 7
367 2 · 3 · 61 q �= 83 367 3 q = 83 373 22 · 3 · 31 none
383 2 · 191 none 433 24 · 33 none 443 2 · 13 · 17 q �= 13
443 17 q = 13 503 2 · 251 none 541 22 · 33 · 5 none
557 22 · 139 none 563 2 · 281 none 571 2 · 3 · 5 · 19 q �= 109
571 3 q = 109 587 2 · 293 none 593 24 · 37 q �= 59
593 8 q = 59 601 23 · 3 · 52 q �= 13, 59 601 22 · 5 q = 13
601 8 q = 59 607 2 · 3 · 101 none 647 2 · 17 · 19 none
653 22 · 163 q �= 149 653 4 q = 149 677 22 · 132 none
727 2 · 3 · 112 none 733 22 · 3 · 61 none 751 2 · 3 · 53 q �= 73
751 2 · 3 q = 73 941 22 · 5 · 47 none 947 2 · 11 · 43 q �= 7, 17
947 2 · 43 q = 7 947 2 · 11 q = 17 971 2 · 5 · 97 q �= 7
971 97 q = 7 977 24 · 61 none

Now, using the N-C theorem, the factor group NG(P )/CG(P ) � Aut(P ) ∼= Zp−1. Hence,
|NG(P )/CG(P )| | (p − 1). By Lemma 3.4(3), one has that π(NG(P )) ⊆ {2, 3, 5} ∪ π(p − 1).
By Table 1, if there exists a prime, say q, where 7 ≤ q < p and q ∈ π(Ap+5), such that
qs(q) | |NG(P )|, then q | |CG(P )|. Thus deg(p) ≥ 4, a contradiction to Lemma 3.4(3), and (i) is
proved.

Assume that p ∈ {131, 167, 173, 233, 251, 257, 263, 373, 383, 433, 503, 541, 557, 563, 587, 607,

647, 677, 727, 733, 941, 977}. If p | |NG(Q)|, by Table 1 and Exp(|Ap+5|, q) < p−1
3 < p − 1,

p | |CG(Q)|, a contradiction. Thus (ii) follows. The remaining parts of (iii) follow at once from
Table 1. This completes the proof of Lemma 3.6.

Lemma 3.7 (see [2, 24]) Let M be a finite non-Abelian simple group with order having
prime divisors at most 997. Then M is isomorphic to one of the simple groups listed in Tables
1–3 in [24]. Particularly, if |π(Out(M))| �= 1, then π(Out(M)) ⊆ {2, 3, 5, 7}.

Lemma 3.8 (see [25]) Let S = P1×P2×· · ·×Pr, where Pi (i = 1, 2, · · · , r) are isomorphic
non-Abelian simple groups. Then Aut(S) = (Aut(P1) × Aut(P2) × · · · × Aut(Pr)) � Sr, where
Sr is a symmetric group of degree r.

4 OD-Characterization of the Alternating Group Ap+5

In this section, we will prove the following Theorem 2.1. It is worth mentioning that this
result not only generalizes the results in [4] but also gives an affirmative answer to the Question
1.1 of this article for the alternating group Ap+5.

Proof of Theorem 2.1 Let G be a finite group satisfying the conditions that (1) |G| =
|Ap+5| and (2) D(G) = D(Ap+5), where p + 4 is a composite number, p + 6 is a prime and
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5 �= p ∈ π(1000!). By [17], we only need to discuss the alternating groups Ap+5, where p + 4
is a composite number, p + 6 is a prime and 100 < p ∈ π(1000!). By these hypotheses, we
obtain that {2, r, 2r} ∪ {rs | r + s ≤ p + 5} ⊆ πe(G) and {rs | r + s > p + 5} ∩ πe(G) = ∅,
where 2 �= r, s ∈ π(G). By Lemma 3.4, the prime graph of G is connected since deg(2) =
|π(G)| − 1. Moreover, by the structure of the degree pattern D(G), it is easy to check by
Magma of computation group software that Γ(G) = Γ(Ap+5). In the following, we shall prove
that G ∼= Ap+5. For convenience, we divide the proof of Theorem 2.1 into three separate cases.

Case 1 Let K be the maximal normal solvable subgroup of G. Then K is a {2, 3, 5}-group.
In particular, G is a nonsolvable group.

We first show that K is a p′-group. Assume to the contrary, and let p divide the order of K.
Set P ∈ Sylp(G). By Lemma 3.6 (i), we have qs(q) � |NG(P )| for any q ∈ π(G) and 7 ≤ q < p. If
q | |NG(P )|, then either q | |CG(P )| or q ∈ π(K). For the former, by Lemma 3.4(3), this leads
to an obvious contradiction since q ∼ p. In the latter case, i.e., if q ∈ π(K), it is easy to check
by Table 1 that there necessarily exists such a prime r such that r �∼ q, where 7 ≤ r < p and
r ∈ π(K). In fact, by Lemma 3.2(1), it is sufficient to find such a prime r such that r + q > p,
so then r �∼ q. Since K is solvable, it possesses a Hall {p, q, r}-subgroup T . It follows that T

is solvable. Since there exists no edge between any two distinct vertices of p, q and r in Γ(G),
all elements in T are of prime power order. Hence |π(T )| ≤ 2 by Lemma 3.3, a contradiction.
Hence K is a p′-group.

We shall argue next that K is a q′-group for any q ∈ π(G)\{2, 3, 5, p}. Set Q ∈ Sylq(K),
where q ∈ π(K). Suppose that the order of q modulo p is h(q). By the Frattini argument, G =
KNG(Q), and hence p divides the order of NG(Q). By Lemma 3.6(ii)–(iii), it follows that p can
only be equal to one of the primes: 157, 271, 331, 353, 367, 443, 571, 593, 601, 653, 751, 947
and 971. In this case, there necessarily exists at least a prime, say q, such that h(q) < p − 1.
We prove the lemma up to the choice of p one by one.

Subcase 1.1 To prove the case follows if p = 157.

By Table 1, If there exists a prime q such that p | |NG(Q)|, where Q ∈ Sylq(G), then q = 13.
By the N-C theorem, NG(Q)/CG(Q) � Aut(Q). By Lemma 3.4(5), we have Exp(|G|, 13) = 12,

and thus |NG(Q)/CG(Q)| |
12∏

i=1

1366 · (13i − 1). By Magma, it is easy to check that 151 �

12∏
i=1

1366 · (13i − 1). If 151 | |NG(Q)|, then 151 ∈ π(CG(Q)). Thus 13 ∼ 151, a contradiction.

Hence 151 ∈ π(K). Since K is solvable, it possesses a Hall {13, 151}-subgroup H of order
1312 · 151. Clearly, H is nilpotent, so 13 ∼ 151, a contradiction.

Subcase 1.2 To prove the case follows if p = 271.

In this case, we know that there exists a prime, say q, such that p | |NG(Q)|, where Q ∈
Sylq(G). Then q = 29 by Table 1. On the other hand, the factor group NG(Q)/CG(Q) is
isomorphic to a subgroup of Aut(Q) by N-C theorem and Exp(|G|, 29) = 9 by Lemma 3.4, so

|NG(Q)/CG(Q)| |
9∏

i=1

2936 · (29i − 1). It is easy to check that 269 �
9∏

i=1

2936 · (29i − 1). If

269 | |NG(Q)|, then 269 ∈ π(CG(Q)). Thus 269 ∼ 29, a contradiction. Hence 269 ∈ π(K).
Since K is solvable, it possesses a Hall {29, 269}-subgroup H of order 299 · 269. Clearly, H is
Abelian, so 29 ∼ 269, a contradiction.

Subcase 1.3 To prove the case follows if p = 331.

In the case, there exists a prime, say q, such that p | |NG(Q)|, where Q ∈ Sylq(G). Then
q = 31 by Table 1. On the other hand, we have that NG(Q)/CG(Q) � Aut(Q) by the N-C
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theorem and Exp(|G|, 31) = 10 by Lemma 3.4, so |NG(Q)/CG(Q)| |
10∏

i=1

3145 ·(31i−1). It is easy

to compute that 47 �
10∏

i=1

3145 · (31i −1). If 47 | |NG(Q)|, then 47 ∈ π(CG(Q)). Set N = NG(Q),

C = CG(Q) and K47 ∈ Syl47(CG(Q)). By Lemma 3.4, we have Exp(|G|, 47) = 7. Again, by the
Frattini argument, we have that N = CNN (K47) and hence p � |NN (K47)|. Thus p | |CG(Q)|,
so deg(p) ≥ 4, a contradiction. Therefore 47 � |NG(Q)| and 47 ∈ π(K). Set P47 ∈ Syl47(K).
Since G = KNG(P47), then p | |NG(P47)|. It is easy to check by Table 1 that there exists no
such a prime p such that p | |NG(P47)|, a contradiction.

Till now we have proved that K is a q′-group while p = 157, 271 or 331. Assume that
p ∈ {353, 367, 443, 571, 593, 601, 653, 751, 947, 971}. Now, we have to discuss ten cases. If K is
a q-group for every q ∈ π(G)\{2, 3, 5, p}, it is easy to know that this is impossible by checking
each choice of p one by one. Since the methods used below are the same as in Subcase 1.3, we
omit the detailed processes. Therefore K is a {2, 3, 5}-group. Since K �= G, it follows at once
that G is nonsolvable. This completes the proof of Case 1.

Case 2 The quotient group G/K is an almost simple group. In other words, there exists
a non-Abelian simple group S such that S � G/K � Aut(S).

Proof Let G := G/K and S := Soc(G). Then S = B1 × B2 × B3 × · · · × Bn, where
Bj (j = 1, 2, · · · , n) are non-Abelian simple groups and S � G � Aut(S). We assert that n = 1
and S = B1.

Suppose that n ≥ 2. We first show that p does not divide the order of S. If not, there
exists a prime r such that r ∈ π(S) and r /∈ π(K). Hence deg(p) ≥ 4, a contradiction.
Therefore, for each j, one has that Bj ∈ Fp. On the other hand, by Lemma 3.7, we see
that p ∈ π(G) ⊆ π(Aut(S)). Thus p divides the order of Out(S). But Out(S) = Out(S1) ×
Out(S2) × · · · × Out(Sr), where the groups Sj are direct products of all isomorphic B

′
ks such

that S = S1×S2×· · ·×Sr. Therefore for some i, p divides the order of an outer automorphism
group of a direct product Si of m isomorphic simple groups Bj for some 1 ≤ j ≤ n. Since
Bj ∈ Fp, it follows that |Out(Bj)| is not divided by p by Lemma 3.7. Now, by Lemma 3.8,
we obtain |Aut(Si)| = |Aut(Bj)|m · m!. Therefore m ≥ p and so 22p must divide the order of
G. However, Exp(|Ap+5|, 2) < p + 5 < 2p by Lemma 3.4 (4), a contradiction. Thus n = 1 and
S = B1. This completes the proof of Case 2.

Case 3 G ∼= Ap+5. In other words, Ap+5 is OD-characterizable.

Proof By Lemma 3.7 and Case 1, assume that |S| = |G|
2u1 ·3u2 ·5u3 · 2α1 · 3α2 · 5α3 , where

2 ≤ α1 ≤ |G|2 = Exp(|Ap+5|, 2) = u1, 1 ≤ α2 ≤ |G|3 = Exp(|Ap+5|, 3) = u2, 1 ≤ α3 ≤
|G|5 = Exp(|Ap+5|, 5) = u3. Let p1, p2, p3, · · · , ps be distinct consecutive prime numbers and
2 = p1 < 3 = p2 < 5 = p3 < · · · < ps = p, so then |G|pj = Exp(|Ap+5|, pj) for every j ≥ 3. By
Tables 1–3 listed in [24], S can only be isomorphic to one of Ap, Ap+1, Ap+2, Ap+3, Ap+4 and
Ap+5.

If S ∼= Ap, then Ap ≤ G ≤ Sp. Hence, 3 · p ∈ πe(G)\πe(Sp), a contradiction.
For the same reason, S �∼= Ap+1 or Ap+2. Therefore, S is isomorphic to one of the simple

groups: Ap+3, Ap+4 and Ap+5.
Let q be an odd prime and 5 < q < p. Set E(q, p) = Exp(|G|, q), where p + 4 is a composite

number, p + 6 is a prime number and 100 < p ∈ π(1000!). By Lemma 3.6, we know that there
are only 35 such groups satisfying the conditions above. Using Magma, we can obtain every
value of E(q, p). In order to prove G ∼= Ap+5, we need to discuss the difference between the
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values of E(q, p) for each prime p. For convenience, for each p, we have tabulated some values
of E(q, p) in Table 2 of this article.

Table 2 E(q, p)

G E(17, 131) E(7, 157) E(43, 167) E(89, 173) E(7, 233) E(17, 251) E(131, 257)
Ap+3 7 25 3 1 37 14 1
Ap+4 7 25 3 1 37 15 1
Ap+5 8 26 4 2 38 15 2

G E(67, 263) E(23, 271) E(7, 331) E(179, 353) E(31, 367) E(7, 373) E(43, 383)
Ap+3 3 11 53 1 11 61 8
Ap+4 3 11 53 1 11 61 9
Ap+5 4 12 54 2 12 62 9

G E(73, 433) E(7, 443) E(127, 503) E(7, 541) E(281, 557) E(71, 563) E(23, 571)
Ap+3 5 73 3 89 1 7 25
Ap+4 5 73 3 89 1 7 26
Ap+5 6 74 4 90 2 8 26

G E(37, 587) E(199, 593) E(11, 601) E(17, 607) E(7, 647) E(7, 653) E(7, 677)
Ap+3 15 2 58 37 106 107 66
Ap+4 15 3 60 37 106 107 66
Ap+5 16 3 60 38 107 108 67

G E(17, 727) E(41, 733) E(151, 751) E(11, 941) E(7, 947) E(13, 971) E(491, 977)
Ap+3 44 17 4 92 156 79 1
Ap+4 45 17 5 92 156 80 1
Ap+5 45 18 5 93 157 80 2

If p ∈ {131, 173, 167, 233, 257, 263, 271, 331, 353, 367, 373, 433, 443, 503, 541, 557, 563,

571, 653, 587, 607, 677, 733, 941, 947, 977}, by Table 2, S can not be isomorphic to the simple
group Ap+3 or Ap+4. Otherwise, there exists at least a prime q with 5 < q < p such that
qExp(|G|,q) � |G|, a contradiction.

If p ∈ {157, 251, 383, 593, 601, 647, 727, 751, 971}, by Table 2 and Case 1, K is a {2, 3}-
group. In this case, S ∼= Am, where m = p+3 or p+4. By Case 2, we have that Am ≤ G/K ≤
Aut(Am) ∼= Sm. But 5 · p ∈ πe(G/K) \ πe(Sn), a contradiction.

Hence, S ∼= Ap+5. By Case 2, one has that Ap+5 � G/K � Aut(Ap+5) ∼= Sp+5. Since
|G| = |Ap+5|, G/K �∼= Sp+5. If G/K ∼= Ap+5, then by comparing the orders we deduce that
G ∼= Ap+5, which completes the proof of Case 3 and also the proof of Theorem 2.1.

In 1989, Shi W. J. put forward the following conjecture.

Corollary 4.1 (see [26]) Let G be a group and M a finite simple group. Then G ∼= M if
and only if (1) |G| = |M | and (2) πe(G) = πe(M).

The above conjecture was proved by joint works of many mathematicians and the last part
of the proof was given by Mozurov V. D. etc. in [27]. That is, the following theorem holds.

Theorem 4.1 (see [27]) Let G be a group and M a finite simple group. Then G ∼= M if
and only if (1) |G| = |M | and (2) πe(G) = πe(M).

About the relation of Theorem 4.1 and OD-characterizable groups, we have the following
facts: For two finite groups G and M , if πe(G) = πe(M), then G and M must have the same
prime graph. Hence they have the same degree pattern. Therefore, we can get the following
corollary by Theorem 2.1.

Corollary 4.2 If G is a finite group such that (1) |G| = |Ap+5| and (2) πe(G) = πe(Ap+5),
where 5 �= p ∈ π(1000!), then G ∼= Ap+5.
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5 OD-Characterization of the Symmetric Group Sp+5

As we already mentioned, the symmetric groups Sp and Sp+1, where p is a prime, are
OD-characterizable. Proposition 1.5 says that the symmetric groups Sn with 10 �= n ≤ 100
and n �= p, p + 1 are 3-fold OD-characterizable. On the other hand, according to Proposition
1.6, S10 is 8-fold OD-characterizable, and S10 is the first symmetric group which is not OD-
characterizable. Till now, we have not found a symmetric group Sn (n �= p, p + 1), except
S10, which is not 3-fold OD-characterizable. Hence, it is an interesting and difficult topic to
investigate how many-fold OD-characterization of symmetric groups are. Therefore, the first
author of this article put forward the following conjecture.

Conjecture 5.1 All the symmetric groups Sn (n �= p, p + 1), except S10, are 3-fold OD-
characterizable.

In this section, we are going to give an affirmative answer to this conjecture for the symmetric
group Sp+5. In other words, we will prove Theorem 2.2.

Proof of Theorem 2.2 Let G be a finite group satisfying |G| = |Sp+5| and D(G) =
D(Sp+5), where p + 4 is a composite number, p + 6 is a prime and 5 �= p ∈ π(1000!). By
[17], we only need to discuss the primes p such that p + 4 is a composite number, p + 6
is a prime and 100 < p ∈ π(1000!). By these hypotheses and Lemma 3.2, one has that
{r} ∪ {rs | r + s ≤ p + 5} ⊆ πe(G) and {rs | r + s > p + 5} ∩ πe(G) = ∅, where r, s ∈ π(G). By
Lemma 3.4(2), deg(2) = |π(G)| − 1, so the prime graph of G is connected. By the structure of
D(G), it is easy to check by the Magma software that Γ(G) = Γ(Sp+5).

Let K denote the maximal normal solvable subgroup of G. For the similar reason as the
proof of Theorem 2.1, K is a {2, 3, 5}-group and Ap+5 � G/K � Aut(Ap+5) ∼= Sp+5. Hence
G/K ∼= Ap+5 or Sp+5. If G/K ∼= Sp+5, then by comparing the order we get that G ∼= Sp+5. If
G/K ∼= Ap+5, then |K| = 2 and K ≤ G′ ∩ Z(G). Therefore G is a central extension of Z2 by
Ap+5. If G is a non-split extension of Z2 by Ap+5, then G ∼= Z2 ·Ap+5. If G is a split extension
of Z2 by Ap+5, then G ∼= Z2 × Ap+5.

We omit the details for Sp+5 because the arguments are quite similar to those for Ap+5. We
only mention that the non-isomorphic groups Z2 · Ap+5 and Z2 × Ap+5 have the same order
and the degree pattern as Sp+5. Hence Sp+5 is 3-fold OD-characterizable, which completes the
proof of Theorem 2.2.
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