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Abstract This paper deals with the gradient estimates of the Hamilton type for the
positive solutions to the following nonlinear diffusion equation:

ut = �u + ∇φ · ∇u + a(x)u ln u + b(x)u

on a complete noncompact Riemannian manifold with a Bakry-Emery Ricci curvature
bounded below by −K (K ≥ 0), where φ is a C2 function, a(x) and b(x) are C1 functions
with certain conditions.
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1 Introduction

The notion of Bakry-Emery Ricci tensor associated with a diffusion operator was introduced
by Bakry [1], which we recall as follows.

Definition 1.1 Given an n-dimensional Riemannian manifold (M, g) and a C2 function φ
on M , one has a diffusion operator L := �+∇φ·∇, where the � and ∇ are the Laplace operator
and the gradient operator on M respectively. Then the Bakry-Emery Ricci tensor associated
with the diffusion operator L is defined as the following symmetric 2-tensor:

R̃ic := Ric −∇2φ− ∇φ⊗∇φ
m− n

,

where the constant m ≥ n; if m = n, we assume φ = 0. Denote by Ric∞ the limit lim
m→∞ R̃ic =

Ric −∇2φ.
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In this note, we want to study the gradient estimates of the Hamilton type for the positive
solution to the following nonlinear diffusion equation:

ut = Lu+ a(x)u lnu+ b(x)u (1.1)

on a complete noncompact Riemannian manifold with the above Bakry-Emery Ricci curvature
bounded below by −K (K ≥ 0), where a(x) and b(x) are C1 functions with certain conditions
(for details, see Theorem 1.3).

The elliptic case of the equation (1.1) with φ = 0, namely

�u+ au lnu+ bu = 0, (1.2)

was first considered by Ma [6] in the case that a and b are constants and a < 0 when he studied
the gradient Ricci Soliton. He also pointed out that it is interesting to consider the gradient
estimates for the positive solutions to the corresponding parabolic equation

ut = �u+ au lnu+ bu. (1.3)

Later, Yang [12] studied the above parabolic equation and obtained the gradient estimate of
Li-Yau type (see [3]) for the solutions to (1.3). Here we should also mention that Li [5] studied
earlier the following equation:

ut = �u+ buα (1.4)

for some α > 0, and got the gradient estimates and the Harnack inequality which generalize
the corresponding estimates of Li-Yau [3].

When a = b = 0, the equation was studied by Li [5]. He obtained a gradient estimate of the
Li-Yau type.

There is another kind of gradient estimates developed by Hamilton [2]. He considered the
heat equation on compact manifolds and obtained the following estimate, which we call the
gradient estimate of Hamilton type.

Theorem 1.1 Let M be a compact manifold without boundary and with Ricci curvature
bounded below by −K, K ≥ 0. Suppose that u is any positive solution to the heat equation
ut = �u with u ≤ C for all (x, t) ∈M × (0,+∞). Then

|∇u|2
u2

≤
(1
t

+ 2K
)(

ln
C

u

)
.

In [10], Souplet and Zhang extend the above gradient estimate to noncompact manifolds.

Theorem 1.2 (Souplet-Zhang) Let M be an n-dimensional complete noncompact manifold
with the Ricci curvature bounded below by −K, K ≥ 0. Suppose that u is any positive solution
to the heat equation ut = �u in Q2R,2T ≡ B(x0, 2R)× [t0−2T, t0], and u ≤ C in Q2R,2T . Then
one has in QR,T ,

|∇u|
u

≤ C1

( 1
R

+
1√
T

+
√
K

)(
1 + ln

C

u

)
,

where C1 is some positive constant depending only on the dimension n of M .
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In this note, we will study the equation (1.1), and hope to get the gradient estimates
of Hamilton type for the solutions under the condition of Bakry-Emery Ricci curvature. Our
method is motivated by [9], where the second author obtained the gradient estimate of Hamilton
type for the solution to the equation (1.1) when a(x) ≡ 0. We should point out that the equation
(1.1) is a nonlinear PDE when a(x) �= 0. Our main result can be stated as follows.

Theorem 1.3 Let (M, g) be an n-dimensional complete non-compact Riemannian mani-
fold with Bakry-Emery curvature R̃ic ≥ −K for some constant K ≥ 0, p ∈ M , B(p,R) the
geodesic ball with radius R and the center at p. Suppose that u(x, t) is a positive smooth so-
lution to the diffusion equation (1.1) in Q2R,2T0 ≡ B(p, 2R) × [0, 2T0] ⊂ M × [0,∞). Let
α = sup

(x,t)∈Q2R,2T0

lnu + 1, γ = max{1, |α − 1|} and assume that |∇a|2
|a| ≤ C0,

|∇b|2
|b| ≤ C0,

|a| ≤ C0, |b| ≤ C0 for some constant C0 > 0. Then one has the following estimate in QR,T0 :

|∇u|
u

≤ C1

(√
K +

√
α+

√
γ +

γ +
√
m

R
+

4
√

(m− 1)K√
R

+
1√
t

)
(α− ln u),

where C1 is a general constant independent of the dimension n of M and depending only on
C0.

Setting R → +∞, we can get a global gradient estimate for the equation (1.1), which is
independent of the dimension n of M .

Corollary 1.1 Under the conditions of Theorem 1.3, then one has in M × [0, T0],

|∇u|
u

≤ C1

(√
K +

√
α+

√
γ +

1√
t

)
(α− lnu).

2 Gradient Estimates of Hamilton Type

In this section, we use a certain cut-off function and the maximum principle to show Theorem
1.3.

We first state a general Laplacian comparison theorem (see [5, 8]), which will be used in the
following proof. Given an n-dimensional Riemannian manifold (M, g) and a C2 function φ on
M , one has a diffusion operator L := �+∇φ · ∇, where the � and ∇ are the Laplace operator
and the gradient operator on M respectively. One has the so-called Bakry-Emery Ricci tensor
associated with the diffusion operator L. The comparison theorem associated with L can be
stated as follows.

Lemma 2.1 Let M be an n-dimensional complete Riemannian manifold with the Bakry-
Emery curvature R̃ic associated with L greater than −K (K > 0). One then has

Lρ(x) ≤ (m− 1)
√
K coth(

√
Kρ), ∀x ∈M, Cp (2.1)

where the Cp denotes the cut locus of p.

We also need a C2 cut-off function η = η(t) on [0,+∞) (also see [3]), which is defined as
follows:

η(t) =

⎧⎨
⎩

1, t ∈ [0, 1],
> 0, t ∈ (1, 2),
0, t ∈ [2,+∞),

(2.2)
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and satisfies that ∀t > 0, 0 ≥ η′(t)
η1/2(t)

≥ −C, η′′(t) ≥ −C, where C is a positive constant.
Here and henceforth, unless otherwise stated, by C, C0, C1, etc, we always mean some general
constants independent of the dimension n of M .

Let ρ(x) be the distance function at p, and define

ψ(x) = η
(ρ(x)
R

)
.

Then we have

|∇ψ|2
ψ

=
|η′|2
R2η

(ρ(x)
R

)
≤ C2

R2
. (2.3)

By (2.1), one then has

Lψ(x) =
η′′|∇ρ|2
R2

+
η′Lρ
R

≥ −mC
R2

−
√

(m− 1)KC
R

. (2.4)

For convenience, we introduce two bilinear operators Γ and Γ2 (see [1]) as follows. For
u, v ∈ C2(M), set

Γ(u, v) =
1
2
{L(uv) − uLv − vLu}

and

Γ2(u, v) =
1
2
{LΓ(u, v)− Γ(Lu, v) − Γ(u, Lv)}.

A simple computation shows that ∀u ∈ C2(M),

Γ(u, u) = |∇u|2

and

Γ2(u, u) =
1
2
{�Γ(u, u)− 2Γ(�u, u)}, (2.5)

where � := L− ∂t.
In the following, we denote Γ(u, u) and Γ2(u, u) by Γ(u) and Γ2(u) respectively. Thus, by

the assumption of the Bakry-Emory curvature R̃ic ≥ −K and the Bochner’s formula, one has,
for any u ∈ C2(M),

Γ2(u) ≥ −KΓ(u). (2.6)

Proof of Theorem 1.3 We now begin to show our main theorem. Set f = lnu and

ω = |∇ ln(α− f)|2.

Rewriting the equation (1.1) as

ut

u
=

�u
u

+
∇φ · ∇u

u
+ a(x) lnu+ b(x),
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one then has

� ln(α− f) = − Lf

α− f
+

ft

α− f
− ω

= − Lu

u(α− f)
+

ut

u(α− f)
+ (α− f − 1)ω

=
af

α− f
+

b

α− f
+ (α− f − 1)ω. (2.7)

Thus, using (2.5)–(2.7), one has

�ω = �Γ(ln(α− f))

= 2Γ2(ln(α − f)) + 2Γ(�(ln(α− f)), ln(α− f))

≥ −2Kω + 2Γ
( af

α− f
, ln(α − f)

)
+ 2Γ

( b

α− f
, ln(α− f)

)

+ 2Γ((α− f − 1)ω, ln(α− f)). (2.8)

We now estimate the last three terms in (2.8).

2Γ
( af

α− f
, ln(α − f)

)
= −2f∇a∇f

(α− f)2
− 2aω − 2af

α− f
ω

≥ −2|f ||∇a|
α− f

ω1/2 − 2α|a|ω
α− f

≥ −|∇a|2
|a| · f2

α(α− f)
− 3α|a|ω

α− f

≥ − C0f
2

α(α − f)
− 3α|a|ω

α− f
, (2.9)

2Γ
( b

α− f
, ln(α − f)

)
= 2

∇b∇ ln(α− f)
α− f

− 2bω
α− f

≥ −2|∇b|ω1/2

α− f
− 2|b|ω
α− f

≥ −|∇b|2/|b|
α− f

− 3|b|ω
α− f

≥ − C0

α− f
− 3|b|ω
α− f

(2.10)

and

2Γ((α− f − 1)ω, ln(α− f))

= 2(α− f)ω2 − 2(α− 1)
∇ω∇f
α− f

+ 2f
∇ω∇f
α− f

. (2.11)

Substituting (2.9)–(2.11) into (2.8), one obtains

�ω ≥ −2Kω − 3α|a|ω
α− f

− C0f
2

α(α− f)
− 3|b|ω
α− f

− C0

(α− f)

+ 2(α− f)ω2 − 2(α− 1)∇ω∇f
α− f

+
2f∇ω∇f
α− f

. (2.12)
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Let ϕ = tψ and suppose that the function ϕω takes the maximum at the point (x1, t1) in
B(p, 2R) × [0, T ] ⊂ M × [0, T0]. It is well-known (see [3]) that one may assume that x1 is not
in the cut locus of p. Then the maximum principle implies⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∇(ϕω)(x1, t1) = 0,

�(ϕω)(x1, t1) ≤ 0,

∂

∂t
(ϕω)(x1, t1) ≥ 0.

(2.13)

Thus, one has at (x1, t1)

ϕ�ω + ω�ϕ+ 2Γ(ϕ, ω) ≤ 0. (2.14)

Combining (2.12) with (2.14), one has at (x1, t1),

− 2Kϕω − ϕ
3α|a|ω
α− f

− ϕ
C0f

2

α(α− f)
− ϕ

3|b|ω
α− f

− ϕ
C0

α− f
+ 2ϕ(α− f)ω2

− ϕ
2(α− 1)
α− f

∇ω∇f + ϕ
2f∇ω∇f
α− f

+ (�ϕ)ω + 2∇ϕ∇ω ≤ 0. (2.15)

We now estimate the seventh, eighth and ninth items in the left side of (2.15). By the
Young’s inequality, (2.4) and (2.13), we obtain at (x1, t1),

ϕ
2(α− 1)
α− f

∇ω∇f =
2t1(1 − α)
α− f

(∇f∇ψ)ω

≤ 2t1|1 − α||∇ψ|ω3/2

≤ (α− f)ϕω2

2
+ 2T

|1 − α|2
α− f

|∇ψ|2
ψ

ω, (2.16)

−ϕ2f∇ω∇f
α− f

=
2f∇f∇ϕ
α− f

ω

≤ 2|f ||∇ϕ|ω3/2

≤ ϕ(α− f)ω2

2
+

2Tf2

α− f

|∇ψ|2
ψ

ω (2.17)

and

(�ϕ)ω = (Lϕ− ∂tϕ)ω

= t1(Lψ)ω − ψω

≥ −TmC
R2

ω − T
√

(m− 1)KC
R

ω − ω. (2.18)

Substituting (2.16)–(2.18) into (2.15) at (x1, t1), one then has

0 ≥ −2Kϕω − 3α|a|ϕω
α− f

− C0f
2ϕ

α(α− f)
− 3|b|ϕω
α− f

− C0ϕ

α− f

+ (α − f)ϕω2 − 2T
|1 − α|2
α− f

|∇ψ|2
ψ

ω − 2Tf2

α− f

|∇ψ|2
ψ

ω

− TmC

R2
ω − T

√
(m− 1)KC

R
ω − ω − 2T |∇ψ|2

ψ
ω. (2.19)
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Multiplying both sides of (2.19) by ϕ
α−f and noting that 0 ≤ ψ ≤ 1, one obtains at (x1, t1),

0 ≥ (ϕω)2 − T
( 2K
α− f

+
3α|a|

(α− f)2
+

3|b|
(α− f)2

+
2|1 − α|2
(α− f)2

|∇ψ|2
ψ

+
2f2

(α− f)2
|∇ψ|2
ψ

+
mC

R2(α − f)
+

√
(m− 1)KC
R(α− f)

+
1

(α− f)T

+
2|∇ψ|2

(α− f)ψ

)
ϕω − C0f

2T 2

α(α − f)2
− C0T

2

(α − f)2
. (2.20)

Set γ = max{1, |α− 1|}. We observe that if f ≤ 0, f2

(α−f)2 ≤ 1 and if f ≥ 0, f2

(α−f)2 ≤ (α− 1)2.
Using these together with (2.3) and the assumptions on a and b, (2.20) then becomes at (x1, t1)

0 ≥ (ϕω)2 − T
(
2K + 3αC0 + 3C0 +

2γC2

R2
+

2C2γ2

R2
+
mC

R2

+

√
(m− 1)KC

R
+

1
T

+
2C2

R2

)
ϕω − C0T

2γ2

α
− C0T

2,

where C0, C are general constants independent of the dimension n of M .
Since ψ = 1 on B(p,R) and (x1, t1) in B(p, 2R) × [0, T ] is the maximum point of ϕω, then

one has

ω(x, T ) ≤
(
2K + 3αC0 + 3C0 +

√
C0γ√
α

+
√
C0

)
+

(2γC2

R2
+
mC

R2

+
2C2γ2

R2
+

2C2

R2

)
+

√
(m− 1)KC

R
+

1
T

∀x ∈ B(p,R).
As T is arbitrary, ω = |∇ ln(α− f)|2 and f = lnu, one has at (x, t) ∈ B(p,R) × [0, T0],∣∣∣∇u

u

∣∣∣ ≤ (√
2K + C1

√
α+

C1
√
γ

R
+
C1

√
m

R
+
C1γ

R

+
C1

√
γ

4
√
α

+
C1

4
√

(m− 1)K√
R

+
1√
t

)
(α − lnu).

This completes the proof of Theorem 1.3.

3 Some Further Remarks

From the proof of Theorem 1.3, we see that the curvature condition of R̃ic ≥ −K is only
used in the proof of the inequality (2.6) and the Laplacian comparison theorem of the distance
function (see Lemma 2.1). On the other hand, again by the Bochner formula, one still has

Γ2(u) = |∇2u|2 + Ric∞(∇u,∇u).

So if the curvature condition of R̃ic ≥ −K is replaced by Ric∞ ≥ −K, the same inequality
as (2.6) still works. However, the Laplacian comparison theorem of the distance function (see
Lemma 2.1) does not work anymore under the curvature condition of Ric∞ ≥ −K.

Fortunately, following Wei and Wylie’s idea (see [11]), we can get that if Ric∞ ≥ −K and
|φ| ≤ k, then the similar Laplacian comparison theorem of the distance function still holds for
the diffusion operator L = Δ + ∇φ · ∇: Lρ(x) ≤ m+4k−1

ρ(x) +
√

(m+ 4k − 1)K. Thus, by using
the same argument as above, we have the following global gradient estimate for the equation
(1.1).
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Theorem 3.1 Let (M, g) be an any-dimensional complete non-compact Riemannian man-
ifold with Ric∞ ≥ −K and |φ| ≤ k for some positive constants K and k. Suppose that
u(x, t) is a positive smooth solution to the diffusion equation (1.1) on M × [0, T ]. Let α =

sup
(x,t)∈M×[0,T ]

lnu + 1 and assume that |∇a|2
|a| ≤ C0,

|∇b|2
|b| ≤ C0, |a| ≤ C0, |b| ≤ C0 for some

positive constant C0. Then one has in M × [0, T ],

|∇u|
u

≤ C1

(√
K +

√
α+

√
γ +

1√
t

)
(α− lnu),

where γ := max{1, |α− 1|} and C1 is a positive constant depending only on C0 (in particular,
independent of the dimension n of M).

If both a(x) and b(x) in the equation (1.1) are constant functions, then we have the following
global gradient estimate.

Corollary 3.1 Let (M, g) be an any-dimensional complete non-compact Riemannian man-
ifold with Ric∞ ≥ −K and |φ| ≤ k for some positive constants K and k. Suppose that u(x, t)
is a positive smooth solution on M × [0, T ]. Let α = sup

(x,t)∈M×[0,T ]

lnu + 1. Then one has in

M × [0, T ],

|∇u|
u

≤
(√

2K +
√

3|a|α+
√

3|b| + 1√
t

)
(α− lnu).
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