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Abstract In this paper, the authors define a harmonic Orlicz combination and a dual
Orlicz mixed volume of star bodies, and then establish the dual Orlicz-Minkowski mixed-
volume inequality and the dual Orlicz-Brunn-Minkowksi inequality.
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1 Introduction

The dual mixed volumes, as a core concept in the dual Brunn-Minkowski theory, were firstly
introduced by Lutwak [1], and played an important role in convex geometry. They are closely
related to such important bodies as: Intersection bodies (see [2]), centroid bodies (see [3]),
and projection bodies (see [4]). In [5], Gardner gave some stability results of these inequalities
about dual mixed volumes. In [6], Klain presented a classification theorem for homogeneous
valuations on star-sharped sets by dual mixed volumes.

Quite recently, Gardner, Hug and Weil [7] constructed a general framework for the Orlicz-
Brunn-Minkowski theory, which was introduced by Lutwak, Yang and Zhang (see [8–11]), and
they made clear for the first time its relation to Orlicz spaces and norms. In [7], Gardner,
Hug and Weil gave a reasonable definition of Orlicz addition, then obtained the Orlicz-Brunn-
Minkowksi inequality, and in the end gave the Orlicz mixed volume of convex bodies which
contain the origin in their interiors and get the Orlicz mixed volume inequality. In [12], Xi, Jin
and Leng also obtained the Orlicz-Brunn-Minkowski inequality by Steiner symmetry and the
Orlicz Minkowksi mixed volume inequality.

R
n denotes the usual n-dimensional Euclidean space. A set A ⊆ R

n is said to be star-
shaped, if 0 ∈ A, and for each line l passing through the origin in R

n, the set A ∩ l is a closed
interval. Denote by Sn

0 the set of all star bodies in R
n, i.e., the set of all star-shaped sets with

a positive and continuous radial function.
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In this paper, we define the harmonic Orlicz sum K+̂ϕL of star bodies K and L in Sn
0

implicitly by

ϕ
(ρ(K+̂ϕL, x)

ρ(K, x)
,
ρ(K+̂ϕL, x)

ρ(L, x)

)
= 1 (1.1)

for x ∈ R
n. Here ϕ ∈ Φ2, and we have the set of convex functions ϕ : [0,∞)2 → [0,∞) that are

strictly increasing in each variable and satisfy ϕ(0, 0) = 0 and ϕ(1, 0) = ϕ(0, 1) = 1.
In Section 2, we introduce a new notion of the Orlicz harmonic combination +̂ϕ(K, L, α, β)

by means of an appropriate modification of (1.1). The particular instance of interest corresponds
to using (1.1) with ϕ(x1, x2) = ϕ1(x1) + εϕ2(x2) for ε > 0 and ϕ1, ϕ2 ∈ Φ, the set of strictly
increasing convex functions ϕ: [0,∞) → [0,∞) that satisfy ϕ(0) = 0 and ϕ(1) = 1, in which
case we write K+̂ϕ,εL instead of K+̂ϕL, and we obtain the following equation.

Theorem 1.1 Suppose ϕ ∈ Φ2. For all K, L ∈ Sn
0 , we have

− (ϕ1)′l(1)
n

lim
ε↓0

V (K+̂ϕ,εL) − V (K)
ε

=
1
n

∫
Sn−1

ϕ2

(ρK(u)
ρL(u)

)
ρK(u)ndS(u), (1.2)

where ε ↓ 0 means that ε is decreasing and tends to 0.

The integral on the right-hand side of (1.2) with ϕ2 replaced by ϕ, a new dual Orlicz mixed
volume Vϕ(K, L) is introduced, and we see that either side of the equation (1.2) is equal to
Vϕ2(K, L) and establish the following dual Orlicz-Minkowski inequality and the harmonic Orlicz
addition version of the Brunn-Minkowski inequality.

Theorem 1.2 Suppose ϕ ∈ Φ, K, L ∈ Sn
0 , and then

Ṽϕ(K, L) ≥ V (K)ϕ
(V (K)

1
n

V (L)
1
n

)

with equality if and only if K and L are dilates.

Theorem 1.3 Suppose ϕ ∈ Φ2 such that ϕ(x1, x2) = ϕ1(x1) + ϕ2(x2) and ϕi ∈ Φ, i =
1, 2, xi ∈ R. If K, L ∈ Sn

0 , then

1 ≥ ϕ1

(V (K+̂ϕL)
1
n

V (K)
1
n

)
+ ϕ2

(V (K+̂ϕL)
1
n

V (L)
1
n

)

with equality if and only if K and L are dilates.

2 Preliminaries

We shall denote the (n − 1)-dimensional unit sphere in R
n by Sn−1. A star body K is

determined uniquely by its radial function ρK = ρ(K, ·) : Sn−1 → R, defined for u ∈ Sn−1 by

ρ(K, u) = max{λ ≥ 0 : λu ∈ K}.

Suppose that K, L ∈ Sn
0 , and the radial Hausdorff metric δ̃(K, L) is defined by

δ̃(K, L) = max
u∈Sn−1

|ρK(u) − ρL(u)|.
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If K ∈ Sn
0 , then the polar coordinate formula for volume V (K) is

V (K) =
1
n

∫
Sn−1

ρ(K, u)ndS(u), (2.1)

where dS(u) is the spherical Lebesgue measure of Sn−1.
Throughout the paper, Φm, m ∈ N, and denote the set of convex functions ϕ : [0,∞)m →

[0,∞) that are strictly increasing in each variable and satisfy ϕ(0) = 0 and ϕ(ej) = 1 > 0, j =
1, · · · , m. When m = 1, we shall write Φ instead of Φ1.

Let m ≥ 2 and Kj ∈ Sn
0 . The harmonic Orlicz sum of K1, · · · , Km, denoted by +̂ϕ(K1, · · · , Km)

is defined by

ρ+̂ϕ(K1,··· ,Km)(x) = sup
{
λ > 0 : ϕ

( λ

ρK1(x)
, · · · ,

λ

ρKm(x)

)
≤ 1

}
(2.2)

for all x ∈ R.
Equivalently, the harmonic Orlicz sum +̂ϕ(K1, · · · , Km) can be defined implicitly (and

uniquely) by

ϕ
(ρ+̂ϕ(K1,··· ,Km)(x)

ρK1(x)
, · · · ,

ρ+̂ϕ(K1,··· ,Km)(x)

ρKm(x)

)
= 1. (2.3)

An important special case is obtained when

ϕ(x1, · · · , xm) =
m∑

j=1

ϕj(xj)

for some fixed ϕj ∈ Φ, j = 1, · · · , m such that ϕ1(1) = · · · = ϕm(1) = 1. We then write
+̂ϕ(K1, · · · , Km) = K1+̂ϕ · · · +̂ϕKm. This means that K1+̂ϕ · · · +̂ϕKm is defined either by

ρ+̂ϕ(K1,··· ,Km) = sup
{

λ > 0 : ϕ1

( λ

ρK1(x)

)
+ · · · + ϕm

( λ

ρKm(x)

)
≤ 1

}
(2.4)

for all x ∈ R, or by the corresponding special case of (2.3).
Let m = 2 and ϕ(x1, x2) = xp

1 + xp
2, p ≥ 1, and we get the harmonic Lp sum K+̂pL (see

[13]).
Suppose that αj ≥ 0 and ϕj ∈ Φ, j = 1, · · · , m. If Kj ∈ Sn

0 , j = 1, · · · , m, we define the
Orlicz linear combination +̂ϕ(K1, · · · , Km, α1, · · · , αm) by

ρ+̂ϕ(K1,··· ,Km,α1,··· ,αm)(x) = sup
{

λ > 0 :
m∑

j=1

αjϕj

( λ

ρKj (x)

)
≤ 1

}
(2.5)

for all x ∈ R. Unlike the L−p case, it is not generally possible to isolate a harmonic Orlicz scalar
multiplication, since there is a dependence not just on one coefficient αj , but on all K1, · · · , Km

and α1, · · · , αm.
For our purposes, it suffices to focus on the case m = 2. The harmonic Orlicz combination

+̂ϕ(K, L, α, β) for K, L ∈ Sn
0 and α, β ≥ 0 (not both zero), is defined equivalently via the

implicit equation

αϕ1

(ρ(+̂ϕ(K, L, α, β), x)
ρ(K, x)

)
+ βϕ2

(ρ(+̂ϕ(K, L, α, β), x)
ρ(L, x)

)
= 1 (2.6)
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for all x ∈ R
n.

It is easy to verify that when ϕ1(t) = ϕ2(t) = tp, p ≥ 1, we get that the harmonic Orlicz
linear combination +̂ϕ(K, L, α, β) equals the harmonic Lp combination α♦K+̂pβ♦L (see [13]).
In [14], He and Leng got a strong law of large numbers on the harmonic Lp combination.

Henceforth we shall write K+̂ϕ,εL instead of +̂ϕ(K, L, 1, ε), and assume throughout that
this is defined by (2.6), where α = 1, β = ε, and ϕj ∈ Φ, j = 1, 2.

The left derivative of a real-valued function f is denoted by f ′
l .

Suppose that μ is a probability measure on a space X and g : X → I ⊂ R is a μ-integrable
function, where I is a possibly infinite interval. Jensen’s inequality states that if ϕ : I → R is
a convex function, then

∫
X

ϕ(g(x))dμ(x) ≥ ϕ
( ∫

X

g(x)dμ(x)
)
.

If ϕ is a strictly convex, the equality holds if and only if g(x) is constant for μ-almost all x ∈ X .

3 Dual Orlicz Mixed Volume

We firstly give some properties of the harmonic Orlicz addition.

Lemma 3.1 Let ϕ ∈ Φ2. If K, Ki, L, Li ∈ Sn
0 , then the harmonic Orlicz addition +̂ϕ :

(Sn
0 )2 → Sn

0 has the following properties:
(1) (Continuity) Ki+̂ϕLi → K+̂ϕL, i.e., lim

i→∞
ρ(Ki+̂ϕLi, x) = ρ(K+̂ϕL, x) for all x ∈ R

n,

as Ki → K and Li → L in the radial Hausdorff metric.
(2) (Monotonicity) K1+̂ϕL1 ⊂ K2+̂ϕL2 as K1 ⊂ K2 and L1 ⊂ L2.
(3) (GL(n) Covariance) A(K+̂ϕL) = AK+̂ϕAL, A ∈ GL(n).

Proof (1) Since ϕ
(ρ(Ki+̂ϕLi,x)

ρ(Ki,x) ,
ρ(Ki+̂ϕLi,x)

ρ(Li,x)

)
= 1, by the continuity of ϕ, we have

ϕ
( lim

i→∞
ρ(Ki+̂ϕLi, x)

ρ(K, x)
,

lim
i→∞

ρ(Ki+̂ϕLi, x)

ρ(L, x)

)
= 1.

Hence, lim
i→∞

ρ(Ki+̂ϕLi, x) = ρ(K+̂ϕL, x).

(2) By the monotonicity of ϕ, (2) is easy to get.

(3) Since ϕ
(ρ(AK+̂ϕAL,x)

ρ(AK,x) ,
ρ(AK+̂ϕAL,x)

ρ(AL,x)

)
= 1, we have

ϕ
(ρ(A−1(AK+̂ϕAL), A−1x)

ρ(K, A−1x)
,
ρ(A−1(AK+̂ϕAL), A−1x)

ρ(L, A−1x)

)
= 1.

Set A−1x = y. Then

ϕ
(ρ(A−1(AK+̂ϕAL), y)

ρ(K, y)
,
ρ(A−1(AK+̂ϕAL), y)

ρ(L, y)

)
= 1.

So A−1(AK+̂ϕAL) = K+̂ϕL.
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Proof of Theorem 1.1 Set Kε = K+̂ϕ,εL. It is easy to see that ρKε(u) → ρK(u) for each
u ∈ Sn−1. Then

lim
ε↓0

ρKε(u)n − ρK(u)n

ε

= lim
ε↓0

nρK(u)n−1 ρKε(u) − ρK(u)
ε

= lim
ε↓0

nρK(u)n
( ρKε(u)

ρK(u)
− 1

ε

)
.

From the definition of K+̂ϕ,εL, we have ρKε (u)
ρK(u) = ϕ−1

1

(
1 − εϕ2

(ρKε (u)
ρL(u)

))
. Then

ρKε(u)
ρK(u)

− 1

ε
= −ϕ2

(ρKε(u)
ρL(u)

)ϕ−1
1

(
1 − εϕ2

(ρKε(u)
ρL(u)

))
− 1

1 − εϕ2

(ρKε(u)
ρL(u)

)
− 1

.

Let z = ϕ−1
1

(
1 − εϕ2

(ρKε (u)
ρL(u)

))
and note that z → 1− as ε ↓ 0. Consequently,

lim
ε↓0

ρKε(u)n − ρK(u)n

ε

= − lim
ε↓0

nρK(u)nϕ2

(ρKε(u)
ρL(u)

) z − 1
ϕ1(z) − ϕ1(1)

= − n

(ϕ1)′l(1)
ϕ2

(ρK(u)
ρL(u)

)
ρK(u)n.

Since ρKε(u) is monotonic with respect to ε, by Lemma 3.1 (2) and Theorem 7.11 of [15], we
have lim

ε↓0
ρKε(u) = ρK(u) uniformly on Sn−1. Hence,

lim
ε↓0

ρKε(u)n − ρK(u)n

ε
= − n

(ϕ1)′l(1)
ϕ2(

ρK(u)
ρL(u)

)ρK(u)n uniformly on Sn−1.

Therefore, by the polar coordinate formula for volume (2.1), we obtain

− (ϕ1)′l(1)
n

lim
ε↓0

V (K+̂ϕ,εL) − V (K)
ε

=
1
n

∫
Sn−1

ϕ2

(ρK(u)
ρL(u)

)
ρK(u)ndS(u).

For ϕ ∈ Φ, the dual Orlicz mixed volume Ṽϕ(K, L) is defined by

Ṽϕ(K, L) =
1
n

∫
Sn−1

ϕ
(ρK(u)

ρL(u)

)
ρK(u)ndS(u) (3.1)

for all K, L ∈ Sn
0 . If ϕ(t) = tp, p ≥ 1, we get the dual mixed volume Ṽ−p(K, L) (see [13,

Proposition 1.9]). The following theorem gives a connection between the dual Orlicz mixed
volume and the harmonic Orlicz combination.

Theorem 3.1 Suppose ϕi ∈ Φ, i = 1, 2 and ϕ(x1, x2) = ϕ1(x1)+ϕ2(x2). For all K, L ∈ Sn
0 ,

we have

Ṽϕ2(K, L) = − (ϕ1)′l(1)
n

lim
ε↓0

V (K+̂ϕ,εL) − V (K)
ε

. (3.2)
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The following theorems show that the dual Orlicz volume is SL(n) invariant, continuous.

Theorem 3.2 Suppose ϕ ∈ Φ. If K, L ∈ Sn
0 and A ∈ SL(n), then

Ṽϕ(AK, AL) = Ṽϕ(K, L).

Proof By the same method of the proof of Lemma 3.1(3), we get AK+̂ϕ′,εAL = K+̂ϕ′,εL

for ϕ′ ∈ Φ2. By Theorem 3.2, we get Ṽϕ(AK, AL) = Ṽϕ(K, L).

By the continuity of ϕ, we have the following.

Theorem 3.3 Suppose ϕ ∈ Φ. If K, L ∈ Sn
0 and Ki → K, Li → L in the radial Hausdorff

metric, then Ṽϕ(Ki, Li) → Ṽϕ(K, L).

Theorem 3.4 Suppose K, L ∈ Sn
0 . If ϕi, ϕ ∈ Φ and ϕi → ϕ, i.e., max

t∈I
|ϕi(t) − ϕ(t)| → 0

for every compact interval I ⊂ R, then Ṽϕi(K, L) → Ṽϕ(K, L).

Proof Since K, L ∈ Sn
0 and ϕi → ϕ, we have ϕi

(ρK(u)
ρL(u)

)
ρK(u)n → ϕ

(ρK(u)
ρL(u)

)
ρK(u)n uni-

formly on Sn−1. By (3.1), we obtain that Ṽϕi(K, L) → Ṽϕ(K, L).

4 Inequality of the Dual Orlicz Mixed Volume

In [13], Lutwak proved the dual L−p-mixed volume inequality: If p ≥ 1, and K, L ∈ Sn
0 ,

then
Ṽ−p(K, L)n ≥ V (K)n+pV (L)−p

with equality if and only if K and L are dilates.
For the dual Orlicz mixed volumes, we also establish the dual Orlicz mixed volume inequal-

ities.
The following lemma will be needed in the proof of Theorem 1.2, which is easy to be obtained

by the Hölder inequality and the polar coordinate formula for volumes.

Lemma 4.1 (see [13, Proposition 1.10]) If K, L ∈ Sn
0 , then

1
n

∫
Sn−1

ρK(u)n+1ρL(u)−1dS(u) ≥ V (K)
n+1

n V (L)−
1
n

with equality if and only if K and L are dilates.

Proof of Theorem 1.2 By Jensen’s inequality and Lemma 4.1, we have

Ṽϕ(K, L) =
1
n

∫
Sn−1

ϕ
(ρK(u)

ρL(u)

)
ρK(u)ndS(u)

≥ V (K)ϕ
( 1

n

∫
Sn−1

ρK(u)n+1ρL(u)−1dS(u)
)

≥ V (K)ϕ
(V (K)

1
n

V (L)
1
n

)
.

If the equality holds, by the equality conditions of Jensen’s inequality and Lemma 4.1, we have
that K and L are dilates. Conversely, if K and L are dilates, it is easy to see that the equality
holds.
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In Theorem 1.2, if we set ϕ(t) = tp, p ≥ 1, it leads to the Lutwak’s result of the dual
L−p-mixed volume.

By Theorem 1.2, we have the following uniqueness result which is the Orlicz version of
Proposition 1.11 of [13].

Proposition 4.1 Suppose ϕ ∈ Φ, and M ⊂ Sn
0 such that K, L ∈ M. If

Ṽϕ(K, Q)
V (K)

=
Ṽϕ(L, Q)

V (L)
for all Q ∈ M,

then K = L.

Proof Taking Q = L gives Ṽϕ(K,L)
V (K) = Ṽϕ(L,L)

V (L) = 1. Now Theorem 1.2 gives V (L) ≥ V (K),
with equality if and only if K and L are dilates. Taking Q = K, we get V (K) ≥ V (L). Hence,
V (K) = V (L), and K and L must be dilates. Thus K = L.

In the following, we give the dual Orlicz-Brunn-Minkowski inequality for the harmonic Orlicz
addition.

Proof of Theorem 1.3 By Theorem 1.2, we have

V (K+̂ϕL) =
1
n

∫
Sn−1

(
ϕ1

(ρ(K+̂ϕL, x)
ρ(K, x)

)
+ ϕ2

(ρ(K+̂ϕL, x)
ρ(L, x)

))
ρK+̂ϕL(u)ndS(u)

= Ṽϕ1(K+̂ϕL, K) + Ṽϕ2(K+̂ϕL, L)

≥ V (K+̂ϕL)
(
ϕ1

(V (K+̂ϕL)
1
n

V (K)
1
n

)
+ ϕ2

(V (K+̂ϕL)
1
n

V (L)
1
n

))
.

If the equality holds, by the equality condition of Theorem 1.2, we have that K and L are
dilates. Conversely, if K and L are dilates, it is easy to check that the equality holds.

Let ϕ(x1, x2) = xp
1 + xp

2, and we have the following result.

Corollary 4.1 (see [13, Proposition 1.12]) Suppose K, L ∈ Sn
0 . If p ≥ 1, then

V (K+̂pL)−
p
n ≥ V (K)−

p
n + V (L)−

p
n

with equality if and only if K and L are dilates.
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