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Abstract The aim of this paper is to investigate the first Hochschild cohomology of ad-
missible algebras which can be regarded as a generalization of basic algebras. For this
purpose, the authors study differential operators on an admissible algebra. Firstly, dif-
ferential operators from a path algebra to its quotient algebra as an admissible algebra
are discussed. Based on this discussion, the first cohomology with admissible algebras as
coefficient modules is characterized, including their dimension formula. Besides, for planar
quivers, the k-linear bases of the first cohomology of acyclic complete monomial algebras
and acyclic truncated quiver algebras are constructed over the field k of characteristic 0.

Keywords Quiver, Admissible algebra, Differential operators, Cohomology
2000 MR Subject Classification 16E40, 16G20, 16W25, 17B70

1 Introduction

The Hochschild cohomology of algebras is invariant under Morita equivalence. Hence it is
enough to consider basic connected algebras when the algebras are Artinian. Let Γ = (V, E)
be a finite connected quiver, where V (resp. E) is the set of vertices (resp. arrows) in Γ. Let
k be an arbitrary field and kΓ be the corresponding path algebra. Denote by R the two-sided
ideal of kΓ generated by E. Recall that an ideal I is called admissible if there exists m ≥ 2
such that Rm ⊆ I ⊆ R2 (see [2]). According to the Gabriel theorem, a finite dimensional basic
k-algebra over an algebraically closed field k is in the form of kΓ/I for a finite quiver Γ and an
admissible idea I.

An Artinian algebra is called a monomial algebra (see [3]) if it is isomorphic to a quotient
kΓ/I of a path algebra kΓ for a finite quiver Γ and an idea I of kΓ generated by some paths in
Γ. In particular, denote by knΓ the ideal of kΓ generated by all paths of length n. Then the
monomial algebra kΓ/knΓ is called the n-truncated quiver algebra.

The study of Hochschild cohomology of quiver related algebras started with the paper
of Happel in 1989 (see [11]), who gave the dimensions of Hochschild cohomology of arbitrary
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orders of path algebras for acyclic quivers. Afterwards, there have been extensive studies on the
Hochschild cohomology of quiver-related algebras such as truncated quiver algebras, monomial
algebras, schurian algebras and 2-nilpotent algebras (see [1, 4, 6–7, 12–15, 17–19]). In [11], a
minimal projective resolution of a finite-dimensional algebra A over its enveloping algebra is
described in terms of the combinatorics when the field k is an algebraically closed field. In these
papers listed above, the authors used this kind of projective resolution or its improving version
to compute the Hochschild cohomology.

In [10], the authors applied an explicit and combinatorial method to study HH1(kΓ). In
this paper, we improve the method in [10] to the case of algebras with relations in order to
study the HH1(kΓ/I), where kΓ/I is an admissible algebra. This way does not depend on
projective resolution and the requirement of k being an algebraically closed field. Using this
method, we can obtain some structural results which would not arise by the classical method
in the above listed papers.

If I ⊆ R2 holds for a two-sided ideal I, we call kΓ/I an admissible algebra (see Definition
2.1). So finite-dimensional basic algebras are always admissible algebras. We will give Propo-
sition 2.1, which shows that admissible algebras, including basic algebras, possess the similar
characterization of monomial algebras and truncated quiver algebras, although they are not
graded. From this point of view, the admissible algebra is motivated to unify and generalize
the basic algebra and the monomial algebra.

In the following, we always assume that kΓ/I is an admissible algebra. This paper includes
three sections except for the introduction. In Section 2, we introduce the basic definitions which
are used in this paper. In particular, we define the notion of an acyclic admissible algebra, which
can be thought as a generalization of the notion of an acyclic quiver. A sufficient and necessary
condition is obtained for a linear operator from kΓ to kΓ/I to be a differential operator. Next,
we give a standard basis of Diff(kΓ, kΓ/I).

In Section 3, we investigate H1(kΓ, kΓ/I). In (3.3), a dimension-formula of H1(kΓ, kΓ/I)
is given for a finite-dimensional admissible algebra. Moreover, in Theorem 3.1, we construct a
basis of H1(kΓ, kΓ/I) when Γ is planar and kΓ/I is an acyclic admissible algebra.

In Section 4, we characterize HH1(kΓ/I). In (4.2), we give the dimension-formula of
HH1(kΓ/I) for any finite-dimensional admissible algebras kΓ/I. Moreover, we apply this
method to complete monomial algebras and truncated quiver algebras. In Theorems 4.1–4.2,
we construct k-linear bases of their first cohomology groups under certain conditions. The
Hochschild cohomology of monomial algebras and truncated quiver algebras has been studied
in [7, 12, 16, 18–19]. Our results in Section 4 can be seen as the generalization of those cor-
responding conclusions in the listed references above. In the same section, two examples of
admissible algebras are given which are not monomial algebras. Their first Hochschild coho-
mology is characterized using our theory.

2 The k-Linear Basis of Diff(kΓ, kΓ/I)

We always assume Γ = (V, E) to be a finite connected quiver, where V (resp. E) is the set
of vertices (resp. arrows) in Γ. For a path p, denote its starting vertex by t(p), called the tail
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of p, and the ending point by h(p), called the head of p. For two paths p and q, if t(p) = t(q)
and h(p) = h(q), we say p and q are parallel, denoted by p ‖ q. Denote by P = PΓ the set of
paths in a quiver Γ including its vertices; denote by PA the set of its acyclic paths. Trivially,
Γ is acyclic if and only if PΓ\V = PA. Throughout this paper, we always assume quivers to be
finite and connected.

Definition 2.1 Suppose Γ = (V, E) is a quiver and I is a two-sided ideal of kΓ. We call
the quotient algebra kΓ/I an admissible algebra if I � R2, where R denotes the two-sided ideal
of kΓ generated by E.

Proposition 2.1 Suppose kΓ/I is an admissible algebra, and then there exists a subset P ′

of P such that V ∪ E ⊆ P ′ and Q = {x | x ∈ P ′} forms a basis of kΓ/I for x = x + I.

Proof Let X be a k-linear basis of I. Denote by P≥2 the set of all paths of length ≥ 2.
Define

T := {Y ⊆ kΓ : Y is linearly independent in kΓ satisfying X ⊆ Y ⊆ X ∪ P≥2}.

T becomes a partial set due to the order of inclusion between subsets of kΓ. It is easy to see that
T �= ∅ and T satisfies the upper-bound condition of chains. So by the famous Zorn’s lemma, T

has a maximal element, denoted by Z.

We claim that Z is linearly equivalent to P≥2. Otherwise, there exists p ∈ P≥2 such that
p can not be linearly expressed by Z, and then Z ∪ {p} is linearly independent in kΓ, which
contradicts the maximal property of Z.

Since Z is linearly equivalent to P≥2, it follows that V ∪ E ∪ Z is linearly equivalent to
P = V ∪ E ∪ P≥2. By the definition of T , Z ⊆ X ∪ P≥2. I is generated by X . Hence
V ∪ E ∪ (Z\X) forms a basis of the complement space of I in kΓ. It means that Q = {x : x ∈
V ∪E ∪ (Z\X)} forms a basis of kΓ/I. It is clear that V ∪E ∪ (Z\X) ⊆ P and it is the P ′ we
want.

When I ⊆ R2 is finite dimensional, we have an explicit way to determine the P ′. Concretely,
suppose that {x1, x2, · · · , xm} is a basis of I. Then there exists a finite subset {p1, p2, · · · , pn}
of P such that xi can be expressed by the linear combinations of pj . Suppose xi =

n∑
j=1

aijpj for

i = 1, 2, · · · , m, and then we obtain an m×n matrix A = (aij). We can transform the matrix A

into a row-ladder matrix B = (bij) through only row transformations. Suppose that bi,c(i) is the
first nonzero number of the i-th row of B. Since B is a row-ladder matrix, we have ci �= ck for
i �= k. Then {x1, x2, · · · , xm}∪{pl | l �= c1, c2, · · · , cm} is linearly equivalent to {p1, p2, · · · , pn}.
Hence (P\{p1, p2, · · · , pn})∪ {pl | l �= c1, c2, · · · , cm} is a basis of the complement space of I in
kΓ. Then the residue classes in kΓ/I of all elements in this basis form a basis of kΓ/I.

On the other hand, in some special cases, e.g., when kΓ/I is a monomial algebra, even if I

is not finite dimensional, the choice of P ′ is also given in the same way. If kΓ/I is a monomial
algebra and I is generated by a set of paths of length ≥ 2, the set of paths that does not belong
to I is just the P ′ required.
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Definition 2.2 Let A be a k-algebra and M an A-bimodule. A differential operator (or
say, derivation) from A into M is a k-linear map D : A → M such that

D(xy) = D(x)y + xD(y). (2.1)

In particular, when M = A, this coincides with the differential operator of algebras.

Lemma 2.1 Suppose that D is a differential operator from kΓ into kΓ/I. Then D is
determined by its action on the set V of vertices of Γ and the set E of arrows of Γ.

Lemma 2.2 Let Γ be a quiver. Denote by kV (resp. kE) the linear space spanned by the
set V of the vertices of Γ (resp. the set E of the arrows of Γ). Assume that we have a pair of
linear maps D0 : kV → kΓ/I and D1 : kE → kΓ/I satisfying that

D0(x)x + xD0(x) = D0(x), x ∈ V, (2.2)

D0(x)y + xD0(y) = 0, x, y ∈ V, x �= y, (2.3)

D0(x)q + xD1(q) = D1(q), x ∈ V, q ∈ E, t(q) = x, (2.4)

D1(q)y + qD0(y) = D1(q), y ∈ V, q ∈ E, h(q) = y. (2.5)

Then, the pair of linear maps (D0, D1) can be uniquely extended to a differential operator
D : kΓ → kΓ/I satisfying that

D(p) :=
l∑

i=1

p1 · · · pi−1D1(pi) · · · pl (2.6)

for any path p = p1p2 · · · pl, pi ∈ E, 1 ≤ i ≤ l, l ≥ 2.

Proof One only need to prove that D is indeed a differential operator. For this, we need
to check (2.1) in the next four cases:

(a) x, y ∈ V ; (b) x ∈ V, y ∈ P\V ; (c) x ∈ P\V, y ∈ V ; (d) x, y ∈ P\V .
However, the checking process is routine, so we omit it here.

In the sequel, we always suppose kΓ/I to be an admissible algebra for the given ideal I and
the notations in Definition 2.1 are used. From Definition 2.1 and Proposition 2.1, there exists a
basis of kΓ/I which consists of residue classes of some paths including that of V and E. Denote
the fixed basis of kΓ/I by Q. Suppose that D : kΓ → kΓ/I is a linear operator, then for any
p ∈ P , D(p) is a unique combination of the basis Q of kΓ/I. Write this linear combination by

D(p) =
∑
q∈Q

cp
qq, (2.7)

where all cp
q ∈ k. We will use this notation throughout this paper. As a convention, for the

empty set ∅, we say
∑
q∈∅

cp
qq = 0.

Lemma 2.3 Suppose that q1, q2 ∈ P , q1, q2 /∈ I and q1 = q2 in kΓ/I, then t(q1) =
t(q2), h(q1) = h(q2), i.e., q1 ‖ q2.
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Proof If t(q1) �= t(q2), then q1 = t(q1)q1 = t(q1)q2 = 0, a contradiction, so t(q1) = t(q2).
Similarly, h(q1) = h(q2).

According to the lemma above, for p ∈ Q, we can define t(p) := t(q) (resp. h(p) := h(q))
for any path q ∈ P satisfying q = p in kΓ/I. For a path s ∈ P and p ∈ Q, if t(s) = t(p) and
h(s) = h(p), we say s and p are parallel, denoted by s ‖ p.

Denote

QA := {p ∈ Q | t(p) �= h(p)} and QC := {p ∈ Q | t(p) = h(p)}.

Moreover, kQA (resp. kQC) denotes the subspace of kΓ/I generated by QA (resp. QC).
Clearly, as k-linear spaces, kΓ/I = kQA ⊕ kQC .

Definition 2.3 Using the above notations, an admissible algebra kΓ/I is called acyclic if

QC\{v | v ∈ V } = ∅.

It is easy to see from this definition that
(i) the fact whether the given kΓ/I is acyclic is independent on the choice of Q;
(ii) if the quiver Γ is acyclic, then kΓ/I is acyclic; the converse is not true in general;
(iii) if kΓ/I is acyclic, then it is finite dimensional; the converse is not true, e.g., kΓ/knΓ if

Γ is a loop for n ≥ 2.

Proposition 2.2 Let D : kΓ → kΓ/I be a k-linear operator.
(i) If D is a differential operator, then
(a) for v ∈ V ,

D(v) =
∑
q∈Q

t(q)=v
h(q) �=v

cv
qq +

∑
q∈Q

h(q)=v
t(q) �=v

cv
qq; (2.8)

(b) for p ∈ E,

D(p) =
∑
q∈Q

h(q)=t(p)
t(q) �=t(p)

ct(p)
q qp +

∑
q∈Q
q‖p

cp
qq +

∑
q∈Q,

t(q)=h(p)
h(q) �=h(p)

c
h(p)
q pq, (2.9)

where the coefficients are subject to the following condition: For any path q ∈ Q such that
t(q) �= h(q),

c
h(q)
q + c

t(q)
q = 0. (2.10)

(ii) Conversely, assume that the linear map D from kV ⊕ kE to kΓ/I satisfies (2.8)–(2.10),
then D can be uniquely extended linearly to a differential operator as (2.6).

Proof (i) For a given v ∈ V , since vv = v, we have

D(v) = D(vv) = D(v)v + vD(v).
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So by the direct computation, we can get

D(v) =
∑
q∈Q

h(q)=v

cv
qq +

∑
q∈Q

t(q)=v

cv
qq.

Moreover,

D(v) = D(v)v + vD(v) = (D(v)v + vD(v))v + vD(v) = D(v)v + vD(v)v + vD(v).

So we have vD(v)v = 0. That means
∑

q∈Q
t(q)=h(q)=v

cv
qq = 0. So we get (2.8).

Also, for a given p ∈ E, we have

D(p) = D(t(p)ph(p))

= D(t(p))ph(p) + t(p)D(p)h(p) + t(p)pD(h(p))

= D(t(p))p +
∑
q∈Q
q‖p

cp
qq + pD(h(p)).

Since t(p), h(p) ∈ V , by (2.8), we can easily get (2.9).
Let x, y ∈ V , and x �= y. By (2.8),

D(xy) = D(x)y + xD(y)

=
∑
q∈Q

t(q)=x
h(q)=y

cx
qq +

∑
q∈Q

t(q)=x
h(q)=y

cy
qq

=
∑
q∈Q

t(q)=x
h(q)=y

(cx
q + cy

q)q.

But D(xy) = 0 since xy = 0. So
∑

q∈Q
t(q)=x
h(q)=y

(cx
q + cy

q)q = 0.

For a path q ∈ Q such that t(q) �= h(q), substituting x and y respectively with t(q) and
h(q), we get (2.10).

(ii) We only need to verify that the conditions of Lemma 2.2 are satisfied. Because the
process is straightforward, we leave it to the readers.

Next, we apply Proposition 2.2 to display a standard basis of differential operators from kΓ
to kΓ/I, for any admissible algebra kΓ/I.

Proposition 2.3 (Differential operator Dr,s) For a quiver Γ = (V, E), let r ∈ E and s ∈ P
with r ‖ s. Define the k-linear operator Dr,s : kV ⊕ kE → kΓ/I satisfying

Dr,s(p) =

{
s, p = r for p ∈ E,

0, p �= r for p ∈ E ∪ V.
(2.11)

Then, the conditions of Lemma 2.2 are satisfied and thus, Dr,s can be uniquely extended to a
differential operator from kΓ to kΓ/I, denoted still by Dr,s for convenience.
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Proof (2.2)–(2.5) can be checked easily by the definition of Dr,s.

For a given s ∈ P , we have the corresponding inner differential operator:

Ds : kΓ → kΓ/I, Ds(q) = sq − qs, ∀q ∈ P . (2.12)

Theorem 2.1 Let Γ = (V, E) be a quiver and I be an ideal such that kΓ/I is an admissible
algebra. Then the set

B = B1 ∪ B2 (2.13)

is a basis of the k-linear space of differential operators from kΓ to kΓ/I, where

B1 := {Ds | s ∈ QA}, B2 := {Dr,s | r ∈ E, s ∈ Q, r ‖ s}. (2.14)

Proof We only need to verify that the operators in B are linearly independent and any
differential operators can be generated k-linearly by B.

Step 1 B is linearly independent Suppose that there are cp, cr,s ∈ k such that

∑
p∈Q

h(p)�=t(p)

cpDp +
∑
r∈E
s∈Q
r‖s

cr,sDr,s = 0. (2.15)

Then for any given p0 ∈ Q, h(p0) �= t(p0), by the definitions of Dp and Dr,s, we have

0 =
∑
p∈Q

t(p)�=h(p)

cpDp(h(p0)) +
∑
r∈E
s∈Q
r‖s

cr,sDr,s(h(p0))

=
∑
p∈Q

t(p)�=h(p)

cp(ph(p0) − h(p0)p) + 0

=
∑
p∈Q

t(p)�=h(p)=h(p0)

cpp −
∑
q∈Q

h(q)�=t(q)=h(p0)

cqq.

In the last formula above, p �= q always holds. Thus, their coefficients are all zero. In particular,
cp0 = 0 for any p0 ∈ Q with h(p0) �= t(p0).

Thus, from (2.15), we get that ∑
r∈E
s∈Q
r‖s

cr,sDr,s = 0.

Further, for any given r0 ∈ E, s ∈ Q with s ‖ r0, we have

∑
r∈E
s∈Q
r‖s

cr,sDr,s(r0) = 0 =⇒
∑
s∈Q
r0‖s

cr0,ss = 0.

It follows that cr0,s = 0 for any r0 ∈ E, s ∈ Q with r ‖ s.
Hence, B is k-linearly independent.
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Step 2 B is the set of k-linear generators Let D : kΓ → kΓ/I be any differential
operator. Then for v ∈ V and p ∈ E, by (2.8)–(2.10), we have

D(v) =
∑
q∈Q

h(q)�=t(q)=v

cv
qq +

∑
q∈Q

t(q)�=h(q)=v

cv
qq, (2.16)

D(p) = −
∑
q∈Q

t(q) �=h(q)=t(p)

c
t(q)
q qp +

∑
q∈Q
q‖p

cp
qq +

∑
q∈Q

h(q) �=t(q)=h(p)

c
t(q)
q pq. (2.17)

We claim that D agrees with the differential operator D defined by the linear combination

D = −
∑
s∈Q

t(s)�=h(s)

c
t(s)
s Ds +

∑
r∈E
s∈Q
s‖r

cr
sDr,s, (2.18)

where c
t(s)
s and cr

s come from (2.16)–(2.17). Any path in P is either a vertex or a product of
arrows. Thus by the product rule of differential operators, to show D = D, we only need to
verify that D(q) = D(q) for each q = v ∈ V and q = p ∈ E. The verification is straightforward,
so we omit it.

We call the set B in Theorem 2.1 the standard basis of the k-linear space Diff(kΓ, kΓ/I)
generated by all differential operators from kΓ to kΓ/I.

From this theorem, we get Diff(kΓ, kΓ/I) = D1 ⊕D2, where Di is the k-linear space gener-
ated by Bi for i = 1, 2 in (2.14).

For any p ∈ E, Dp,p ∈ B2 is called the arrow differential operator from kΓ to kΓ/I. Let
BE := {Dp,p | p ∈ E} and DE := kBE is called the space of arrow differential operators.

3 H1(kΓ, kΓ/I) for an Admissible Algebra kΓ/I

Proposition 3.1 Let q ∈ P be such that h(q) = t(q) = v0. We have

Dq =
∑
p∈E

t(p)=v0

Dp,qp −
∑
r∈E

h(r)=v0

Dr,rq. (3.1)

Proof Note that both sides of (3.1) are k-linearly generated by differential operators. So,
by the product formula of differential operators, we only need to verify that the both sides
always agree when they act on the elements of V and E. Since the computation is direct, we
omit it here.

Remark 3.1 For v ∈ V , it is clear that t(v) = h(v) = v. From Proposition 3.1, we have

Dv =
∑
p∈E

t(p)=v

Dp,p −
∑
r∈E

h(r)=v

Dr,r. (3.2)

We call Dv the vertex differential operator from kΓ to kΓ/I. Let DV denote the linear space
spanned by {Dv | v ∈ V }, called the space of vertex differential operators. It is clear that DV

is a subspace of DE .
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Lemma 3.1 Let p ∈ P, and then p is always in the k-subspace k{q ∈ Q | q ‖ p} generated
by q with q ‖ p.

Proof Suppose p =
∑

q∈Q
cqq, and then t(p)ph(p) =

∑
q∈Q

cqt(p)qh(p) =
∑

q∈Q
q‖p

cqq.

Corollary 3.1 Let q ∈ P be such that h(q) = t(q). Then Dq ∈ kB2 = D2.

Proof For r ∈ E, r ‖ s ∈ P ; by Lemma 3.1, suppose s =
∑

q∈Q
q‖s

cqq, and it is clear that

Dr,s =
∑

q∈Q
q‖s

cqDr,q, so then we use Proposition 3.1.

Remark 3.2 For q ∈ Q, t(q) = h(q), from Theorem 2.1 and Corollary 3.1, we know that
Dq ∈ kB2 = D2, but not in kB1 = D1. Denote DC := k{Dq | q ∈ Q, t(q) = h(q)}. Then
DC ⊆ D2 and DC ∩ D1 = 0.

Denote by Inn-Diff(kΓ, kΓ/I) the linear space consisting of inner differential operators from
kΓ to kΓ/I. Then, Inn-Diff(kΓ, kΓ/I) = D1 + DC . Thus, we have

H1(kΓ, kΓ/I) = Diff(kΓ, kΓ/I)/Inn-Diff(kΓ, kΓ/I)

= (D1 + D2)/(D1 + DC)
∼= D2/(D2 ∩ DC)
∼= D2/DC .

Since the basis of kΓ/I given in Proposition 2.1 contains the residue classes of V and E, we
can see that the center of kΓ/I as a kΓ-bimodule and the center of kΓ/I as an algebra are the
same, denoted by Z(kΓ/I).

Proposition 3.2 Let kΓ/I be a finite-dimensional admissible algebra, and then

dimkH1(kΓ, kΓ/I) = |B2| + dimkZ(kΓ/I)− |QC |. (3.3)

Proof By the discussion above, dimkHH1(kΓ, kΓ/I) = |B2| − dimkDC . Then

D1 ⊕ DC = Inn-Diff(kΓ, kΓ/I) ∼= (kΓ/I)/Z(kΓ/I)
∼= (kQC ⊕ kQA)/Z(kΓ/I)
∼= kQC/(Z(kΓ/I)) ⊕ kQA

∼= kQC/(Z(kΓ/I)) ⊕ D1,

where the first isomorphism is assured by (2.12), the second and fourth isomorphisms are
trivial, and the third is because of the facts that Z(kΓ/I) ⊆ kQC and Z(kΓ/I) ∩ kQA = 0. So
DC

∼= kQC/Z(kΓ/I) as k-linear spaces, and it follows that

dimkH1(kΓ, kΓ/I) = dimkD2 − dimkDC = |B2| + dimkZ(kΓ/I) − |QC |. (3.4)

If kΓ/I is acyclic, then Z(kΓ/I) ∼= k and |QC | = |V |. Thus, we have the following corollary.
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Corollary 3.2 If kΓ/I is an acyclic admissible algebra (in particular, if Γ is an acyclic
quiver), then

dimkH1(kΓ, kΓ/I) = |B2| + 1 − |V |. (3.5)

On the other hand, when Γ is a planar quiver and kΓ/I is an acyclic admissible algebra, we
can apply the approach of [10] to give a basis of HH1(kΓ, kΓ/I). A planar quiver is a quiver
with a fixed embedding into the plane R

2. The set F of faces of a planar quiver Γ is the set of
connected component of R

2\Γ.
We will need the famous Euler formula on the planar graph (see [5, 9]), which states that for

any finite connected planar graph (which can be thought as the underlying graph of a quiver
Γ), we have

|V | − |E| + |F | = 2. (3.6)

For each face of Γ, its boundary is called a primitive cycle. Let �0 denote the boundary of the
unique unbounded face f0 of Γ. Let ΓP denote the set of primitive cycles of Γ and Γ−

P
:= ΓP\�0.

Then clearly, the set ΓP of primitive cycles of Γ is in bijection with the set F of the faces of Γ.
So |F | = |ΓP|.

For a face f ∈ F , denote by �f the corresponding primitive cycle of f . Suppose that �f is
comprised of an ordered list of arrows p1, · · · , ps ∈ E, and define an operator from kΓ to kΓ/I

by

D�f
:= ±Dp1,p1 ± · · · ± Dps,ps

, (3.7)

where a ±Dpi,pi
is +Dpi,pi

if pi is in clockwise direction when viewed from the interior of the
face of �f and is −Dpi,pi

otherwise. We call D�f
a face differential operator from kΓ to kΓ/I.

Let DP denote the linear space spanned by {DP | � ∈ ΓP}, called the space of face differential
operators.

The next lemma is similar to Theorem 4.9 in [10].

Lemma 3.2 Let Γ be a planar quiver with the ground field k of characteristic 0, and then
(a) dimDV = |V | − 1;
(b) dimDP = |F | − 1 = |Γ−

P
|;

(c) DV and DP are linearly disjoint subspaces of DE .

Proof (a) Denote γ0 = |V |. Since e =
γ0∑

i=1

vi is the identity of kΓ/I, which clearly lies in

the center of kΓ/I, we have

De =
γ0∑

i=1

Dvi = 0. (3.8)

So dimDV ≤ γ0 − 1. We next prove that dimDV ≥ γ0 − 1. We may assume that γ0 ≥ 2.
We claim that any γ0 − 1 elements of {Dvi

| i = 1, · · · , γ0} are linearly independent. In

fact, suppose
γ0−1∑
i=1

aiDvi = 0, where ai ∈ k, which means that
γ0−1∑
i=1

aivi is in the center of kΓ/I.



On the First Hochschild Cohomology of Admissible Algebras 1037

Since Γ is connected, let the vertex vγ0 be connected to vi by an arrow p for i �= γ0. We may
assume that t(p) = vi and h(p) = vγ0 . We have

aip =
( γ0−1∑

i=1

aivi

)
p = p

( γ0−1∑
i=1

aivi

)
= 0.

So ai = 0. Note that Γ is connected, and we can repeat this process to get aj = 0 for any j.
(b) Let |F | = γ2. Through simple observation of the planar quiver, we can see that if p ∈ E

is in the boundary, then it is at most in the boundary of two primitive cycles. Note that if
p ∈ E is in the boundary of two primitive cycles P1 and P2, then the signs of Dp,p in DP1 and
DP2 are opposite. If p ∈ E is in the boundary of only one primitive cycle P, then Dp,p occurs
twice in DP with an opposite sign. Thus we have

γ2−1∑
j=0

DPi = 0, (3.9)

where P0 denotes the primite cycle corresponding to f0 as above. So dim DP ≤ |F | − 1.
We next prove that dimDP ≥ |F | − 1. We may assume that |F | ≥ 2. Suppose

γ2−1∑
j=1

bjDPj = 0, (3.10)

where bj ∈ k. If p ∈ E is in the boundary of P0 and Pj for j > 0, then 0 =
γ2−1∑
j=1

bjDPj(p) = ±bjp.

So we have bj = 0. This means that if Pj and P0 have a common p ∈ E in their boundary, then
bj = 0. Replace P0 by Pj , and repeat this process. Since the quiver is connected, we can get
bj = 0 for any j > 0.

(c) From [10] and Theorem 2.1, we know that Bo
E := {Dp,p | p ∈ E} and BE := {Dp,p | p ∈

E} are k-linearly independent sets in Diff(kΓ) and Diff(kΓ, kΓ/I) respectively. Based on this,
Dvi and D�f

can be linearly expressed by using BE , which is similar to the fact that Dvi and
Dcf

can be linearly expressed by Bo
E in [10]. Under this correspondence, referring to Theorem

4.9 in [10] in the same process, we obtain that DV and DP are linearly disjoint subspaces of
DE .

By this lemma, BP := {DP | � ∈ Γ−
P
} is a basis of DP.

Theorem 3.1 Let Γ be a planar quiver and kΓ/I be an acyclic admissible algebra with the
ground field k of characteristic 0. Then the union set

(B2\BE) ∪ BP

is a basis of H1(kΓ, kΓ/I).

Proof By the Euler formula and Lemma 3.2, we can get DE = DV ⊕DP. Because kΓ/I is
acyclic, we have DC = DV , and then

H1(kΓ, kΓ/I) ∼= D2/DC
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∼= (DE ⊕ k{B2\BE})/DV

∼= DP ⊕ k{B2\BE}
∼= kBP ⊕ k{B2\BE}.

4 HH1(kΓ/I) for an Admissible Algebra kΓ/I

Lemma 4.1 A differential operator of kΓ/I can naturally induce a differential operator
from kΓ to kΓ/I. Conversely, a differential operator D from kΓ to kΓ/I satisfying D(I) = 0
can induce a differential operator of kΓ/I.

Proof Denote by p the canonical map from kΓ to kΓ/I. Given a differential operator D

of kΓ/I, we claim that the composition Dp is a differential operator from kΓ to kΓ/I. Note
that the canonical map from kΓ to kΓ/I is an algebra homomorphism, and it can be directly
verified. The converse result can be shown directly, too.

For a differential operator D from kΓ to kΓ/I satisfying D(I) = 0, we denote by D the
induced differential operator on kΓ/I. Write

F(I) := {D | D ∈ Diff(kΓ, kΓ/I), D(I) = 0}, Fi(I) := {D | D ∈ Di, D(I) = 0} for i = 1, 2.

It is clear that Ds(I) = 0 for s ∈ P . So F1(I)=D1 and F(I) = D1 ⊕ F2(I).

Lemma 4.2 F(I) ∼= Diff(kΓ/I) as k-linear spaces.

Proof The map from F(I) to Diff(kΓ/I) is as follows:

F(I) → Diff(kΓ/I), D �−→ D.

The proof of Lemma 4.1 assures that the map from F(I) to Diff(kΓ/I) is surjective. As for the
injectivity, suppose D1, D2 ∈ F(I) and D1 �= D2, so according to Lemma 2.1, there exists a
path p ∈ V ∪ E such that D1(p) �= D2(p). Since 0 �= p ∈ kΓ/I, D1(p) �= D2(p).

By this lemma, we can think Diff(kΓ/I) as a k-subspace of Diff(kΓ, kΓ/I).
From Lemma 4.2, we have

HH1(kΓ/I) ∼= F(I)/(D1 ⊕ DC) ∼= (D1 ⊕ F2(I))/(D1 ⊕ DC) ∼= F2(I)/DC (4.1)

as linear spaces. This means that HH1(kΓ/I) can be embedded into H1(kΓ, kΓ/I) ∼= D2/DC .
Moreover, we have the next proposition.

Proposition 4.1 Suppose that kΓ/I is a finite-dimensional admissible algebra, and then

dimkHH1(kΓ/I) = dimkF2(I) + dimkZ(kΓ/I) − |QC |. (4.2)

Proof Note that k{QC}/(Z(kΓ/I)) ∼= DC are linear spaces. By (4.2), we have

dimkHH1(kΓ/I) = dimkF2(I) − dimkDC = dimkF2(I) + dimkZ(kΓ/I)− |QC |.
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Corollary 4.1 If kΓ/I is an acyclic admissible algebra (in particular, if Γ is an acyclic
quiver), then

dimkHH1(kΓ/I) = dimkF2(I) + 1 − |V |. (4.3)

If kΓ/I is an acyclic admissible algebra, we have a standard procedure to compute dimkF2(I).
First note that for a differential operator D from kΓ to kΓ/I, D(I) = 0 if and only if D(ri) = 0
where {r1, · · · , ri, · · · , rn} is a minimal set of generators of I. This property follows easily from
the Leibnitz rule of differential operators. Since kΓ/I is acyclic, |B2| is finite for B2 as given
in Theorem 2.1. Suppose that

∑
Dr,s∈B2

cr,sDr,s(ri) = 0 for i = 1, · · · , n. This means that the

coefficients cr,s satisfy the system of these homogeneous linear equations. So dimF2(I) is equal
to the dimension of the solution space of the system of homogeneous linear equations.

Now we give two examples of admissible algebras that are not monomial algebras or trun-
cated quiver algebras, and characterize their first Hochschild cohomology.

Example 4.1 Let Γ = (V, E) be the quiver

·

·
··

�
���

�
���

�
���

�
���α1α2

β1β2

and I = 〈α1α2 − β1β2〉.

In this case, B2 = {Dα1,α1 , Dα2,α2 , Dβ1,β1
, Dβ2,β2

}. So we have

dimkH1(kΓ, kΓ/I) = |B2| + dimkZ(kΓ/I) − |QC | = 4 + 1 − 4 = 1.

Suppose that

(aDα1,α1 + bDα2,α2 + cDβ1,β1
+ dDβ2,β2

)(α1α2 − β1β2) = (a + b − c − d)αβ = 0,

and then we get a + b − c − d = 0. Hence dimkF2(I) = 3 and dimkHH1(kΓ/I) = 0.

Example 4.2 Let Γ be the quiver having one vertex with two loops, or equivalently, kΓ =
k〈x, y〉. Suppose the ideal I = 〈xy − yx〉. Then kΓ/I = k[x, y].

In this case, B1 = ∅ and B2 = {Dx,xmyn , Dy,xmyn | m, n ≥ 0} are the basis of Diff(k〈x, y〉,
k[x, y]), where xmyn means the multiplication in k[x, y].

Since k[x, y] is commutative, we get that

Inn-Diff(k〈x, y〉, k[x, y]) = 0, H1(k〈x, y〉, k[x, y]) = Diff(k〈x, y〉, k[x, y]).

Moreover, note that Dx,xmyn(xy − yx) = 0 and Dy,xmyn(xy − yx) = 0. Thus we obtain the
basis of HH1(k[x, y]) to be

{Dx,xmyn , Dy,xmyn | m, n ≥ 0}.

Similarly, we can obtain the first Hochschild cohomology for k[x1, x2, · · · , xn].

Assume that kΓ/I is a monomial algebra. The residue classes of paths that do not belong
to I form a basis of kΓ/I. For convenience, we also denote by Q the basis of kΓ/I when kΓ/I

is a monomial algebra.
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Definition 4.1 A monomial algebra kΓ/I is called complete if for any parallel paths p, p′

in Γ, p ∈ I implies p′ ∈ I.

Proposition 4.2 Suppose that kΓ/I is a complete monomial algebra with I ⊆ R2. Then
the following set

B = B1 ∪ B2 (4.4)

is a basis of Diff(kΓ/I), where

B1 := {Ds | s ∈ Q, h(s) �= t(s)}, B2 := {Dr,s | r ∈ E, s ∈ Q, r ‖ s}. (4.5)

Proof Since kΓ/I is complete, we have Dr,s(p) = 0 for any Dr,s ∈ B2, where p is any path
in I. Then F2(I) = D2. It follows that Diff(kΓ, kΓ/I) ∼= Diff(kΓ/I) as k-linear spaces. Thus
due to Theorem 2.1, the result follows.

Corollary 4.2 Suppose that kΓ/I is an acyclic complete monomial algebra with I ⊆ R2.
Then

dimkHH1(kΓ/I) = |B2| + 1 − |V |. (4.6)

Proof By the proof of Proposition 4.2, dimkF2(I) = dimkD2 = dimkD2 = |B2|. By
Corollary 4.1, we get the required result.

In [15], the author gave a characterization of the first Hochschild cohomology of an acyclic
complete monomial algebra through a projective resolution. However, its k-linear basis has not
been constructed so far. Here, we want to reach this aim by our method.

Theorem 4.1 Let Γ be a planar quiver, and kΓ/I be an acyclic complete monomial algebra
with I ⊆ R2 over the field k of characteristic 0. Then the union set

(B2\BE) ∪ BP

is a basis of HH1(kΓ/I), where BE = {Dp,p | p ∈ E} and BP = {D� | � ∈ Γ−
P
}.

Proof By (4.1) and F2(I) = D2, we have HH1(kΓ/I) ∼= H1(kΓ, kΓ/I) in this case. So
from Theorem 3.1, we can directly get this theorem.

For a truncated quiver algebra kΓ/knΓ with n ≥ 2, we can give a standard basis of
Diff(kΓ/knΓ). kΓ/knΓ has the basis formed by the residue classes of the paths of length
≤ n − 1, denoted also by Q.

Proposition 4.3 Let Γ = (V, E) be a quiver and the field k be of characteristic 0. A basis
of Diff(kΓ/knΓ) for any truncated quiver algebra kΓ/knΓ with n ≥ 2 is given by the set

B = B1 ∪ B2, (4.7)

where

B1 := {Ds | s ∈ Q, h(s) �= t(s)}, B2 := {Dr,s | r ∈ E, s ∈ Q, s /∈ V, r ‖ s}. (4.8)
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Proof It is clear that Ds(knΓ) = 0 for s ∈ Q, h(s) �= t(s) and Dr,s(knΓ) = 0 for
r ∈ E, s ∈ Q, s /∈ V, s ‖ r. Note that when r is a loop of Γ, Dr,h(r) ∈ Diff(kΓ, kΓ/knΓ), but
Dr,h(r)(r

n) = nrn−1 �= 0. Moreover, for all loops r1, · · · , rs of Γ and c1, · · · , cs not all 0, we
claim that

∑
ciDri,h(ri)

(knΓ) �= 0. Without loss of generality, we can assume c1 �= 0. So we
have ∑

ciDri,h(ri)
(rn

1 ) = nc1r
n−1
1 �= 0.

Then by Theorem 2.1, the union set

{Ds | s ∈ Q, h(s) �= t(s)} ∪ {Dr,s | r ∈ E, s ∈ Q, s /∈ V, r ‖ s}

forms a basis of the linear space F2(knΓ) for I = knΓ. By Lemma 4.2, we have

F2(knΓ) ∼= Diff(kΓ/knΓ).

Noting the map from F2(knΓ) to Diff(kΓ/knΓ) in Lemma 4.2, we can see that the union set
B = B1 ∪ B2 is a k-linear basis of Diff(kΓ/knΓ).

Thus Diff(kΓ/knΓ) = D1 ⊕D2, where Di is the k-linear space generated by Bi for i = 1, 2.

Corollary 4.3 Let Γ = (V, E) be a quiver and the field k be of characteristic 0. Then

dimkHH1(kΓ/knΓ) = |B2| + dimkZ(kΓ/knΓ) − |QC |.

Proof By the proof of Proposition 4.3 and the definition of F2(I), we can see that {Dr,s | r ∈
E, s ∈ Q, s /∈ V, r ‖ s} is a basis of F2(knΓ) for I = knΓ. By Proposition 4.3,

B2 := {Dr,s | r ∈ E, s ∈ Q, s /∈ V, r ‖ s}.

Then by Proposition 4.1 and the correspondence between Dr,s and Dr,s for each pair (r, s), we
get the required result.

This corollary has indeed been given as Theorem 1 in [12] and Theorem 2 in [18]. The
method we obtain here is different from that in [12, 18].

Moreover, when kΓ/knΓ is acyclic, we can get a basis of HH1(kΓ/knΓ) as in Theorem 4.1.

Theorem 4.2 Let Γ be a planar quiver, and kΓ/knΓ for n ≥ 2 be acyclic over the field k

of characteristic 0. Then the union set

(B2\BE) ∪ BP

is a basis of HH1(kΓ/knΓ), where BE = {Dp,p | p ∈ E} and BP = {D� | � ∈ Γ−
P
}.

Proof Since kΓ/I is acyclic, DC = DV . By Lemma 4.2, DC
∼= DC , DE

∼= DE , DP
∼= DP.

So the result can be obtained in the same way as the proof of Theorem 3.1.
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