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Abstract This paper is concerned with the zero Mach number limit of the three-dimension-
al compressible viscous magnetohydrodynamic equations. More precisely, based on the
local existence of the three-dimensional compressible viscous magnetohydrodynamic equa-
tions, first the convergence-stability principle is established. Then it is shown that, when
the Mach number is sufficiently small, the periodic initial value problems of the equations
have a unique smooth solution in the time interval, where the incompressible viscous mag-
netohydrodynamic equations have a smooth solution. When the latter has a global smooth
solution, the maximal existence time for the former tends to infinity as the Mach number
goes to zero. Moreover, the authors prove the convergence of smooth solutions of the equa-
tions towards those of the incompressible viscous magnetohydrodynamic equations with a
sharp convergence rate.
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1 Introduction

This paper is concerned with the isentropic compressible viscous magnetohydrodynamic
(MHD for short) equations with a small Mach number (see [18–19]). These equations model
the dynamics of compressible quasineutrally ionized fluids under the influence of electromag-
netic fields and cover very wide applications of physical objects from liquid metals to cosmic
plasmas. In a suitable nondimensional form (see, e.g., [10]), the compressible viscous magneto-
hydrodynamic equations for an isentropic fluid read as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tρ + div(ρu) = 0,

∂t(ρu) + div(ρu ⊗ u) +
∇p

ε2
= H · ∇H − 1

2
∇|H |2 + μΔu + (μ + λ)∇divu,

∂tH + u · ∇H + divuH − H · ∇u = νΔH,
divH = 0

(1.1)
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for (x, t) ∈ Ω × [0, +∞). Throughout this paper, Ω is assumed to be the 3-dimensional torus.
Here the unknown functions are the density ρ, the velocity u ∈ R

3 and the magnetic field
H ∈ R

3. The pressure p = p(ρ) is a given strictly increasing smooth function of ρ > 0. The
constants μ and λ are the shear and bulk viscosity coefficients of the flow, satisfying μ > 0 and
2μ + 3λ ≥ 0, respectively, the constant ν > 0 is the magnetic diffusivity acting as a magnetic
diffusion coefficient of the magnetic field, and ε is proportional to the Mach number. Note that,
when H = 0, (1.1) reduces to the compressible Navier-Stokes equation.

It is well-known that the incompressible limit of compressible fluid dynamical equations is
an important mathematical problem. Much effort was made for the limit of the compressible
Navier-Stokes equations and related models (see [1–3, 6–7, 14], etc.). Recently, Hu and Wang
[8] discussed the convergence of weak solutions of the full compressible MHD flows (1.1) to the
weak solutions of the incompressible viscous MHD equations in the whole space and the periodic
domains, as the Mach number tends to zero. Jiang, Ju and Li [9] employed the modulated energy
method to verify the limit of weak solutions of the compressible MHD equation (1.1) in the
torus to the strong solutions of the incompressible viscous or partial viscous MHD equation (the
shear viscosity coefficient is zero, but the magnetic diffusion coefficient is a positive constant).
The authors of [9] also derived the ideal incompressible MHD equation from the compressible
MHD equation (1.1) in the whole space R

d (d = 2 or d = 3) with general initial data in [10].
That is, when the viscosities (including the shear viscosity coefficient and the magnetic diffusion
coefficient) go to zero, they proved that the weak solutions of the compressible MHD equation
(1.1) converge to the smooth solutions of the ideal incompressible MHD equation. We remak
that these results are all about the weak solutions.

In this paper, we analyze the incompressible limit for smooth solutions of the compressible
magnetohydrodynamic equations (1.1). The result can be roughly stated as follows. Suppose
that the initial data for (1.1) are smooth and have the form

ρε(x, 0) = 1 + O(ε2), uε(x, 0) = u0 + O(ε), Hε(x, 0) = H0 + O(ε)

with uε(x, 0) and Hε(x, 0) solenoidal. Let [0, T0] be a (finite) time interval where the incom-
pressible magnetohydrodynamic equations⎧⎪⎨

⎪⎩
∂tu

0 + u0 · ∇u0 + ∇p0 = H0 · ∇H0 − 1
2
∇|H0|2 + μΔu0,

∂tH
0 + u0 · ∇H0 − H0 · ∇u0 = νΔH0,

divu0 = 0, divH0 = 0

(1.2)

with initial data

u0(x, 0) = u0, H0(x, 0) = H0

have a smooth solution. Then, for ε sufficiently small, the compressible magnetohydrodynamic
equations have a unique smooth solution defined for (x, t) ∈ Ω × [0, T0] and satisfying

ρε = 1 + O(ε2), uε = u0 + O(ε), Hε = H0 + O(ε).

Unlike those in [8–10], our result contains a sharp convergence rate and the existence time
interval for (1.1) is optimal. Our analysis is guided by the spirit of the convergence-stability
principle developed in [20–21] for singular limit problems of symmetrizable hyperbolic systems.
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In this approach, we will not derive any ε-uniform a priori estimate. Instead, we only need to
obtain the error estimate in Theorem 2.3. Finally, we also thank the anonymous referees for
telling us about the paper [11–12]. Indeed, we completed our manuscript in 2012. Comparing
with [11–12], we consider the convergence of solutions to be on the time interval where a smooth
solution of the limit equations exists, and we also obtain the sharp convergence rate. These
were pointed out by the anonymous referees. Moreover, our method here is different from that
of [11–12].

The paper is organized as follows. Our main ideas and results are outlined in Section 2. All
required (error) estimates are obtained in Section 3.

Notation 1.1 |U | denotes some norm of a vector or matrix U . For a nonnegative integer
k, Hk = Hk(Ω) denotes the usual L2-type Sobolev space of order k. We write ‖ · ‖k for the
standard norm of Hk, and ‖ · ‖ for ‖ · ‖0. When U is a function of another variable t as well as
x ∈ Ω, we write ‖U(·, t)‖ to recall that the norm is taken with respect to x, while t is viewed as a
parameter. In addition, we denote by C([0, T ],X) (resp. L2([0, T ],X)) the space of continuous
(resp. square integrable) functions on [0, T ] with values in a Banach space X.

2 Main Ideas and Results

Our analysis is guided by the spirit of the convergence-stability principle developed in [20–21]
for singular limit problems of symmetrizable hyperbolic systems.

To explain the main ideas, we firstly reformulate the compressible MHD equations (1.1) in
terms of the pressure p, the velocity u and the magnetic field H . Since p = p(ρ) is strictly
increasing, it has an inverse ρ = ρ(p). Set

q(p) = [ρ(p)p′(ρ(p))]−1.

Then the compressible MHD equation for smooth solutions is equivalent to⎧⎪⎪⎪⎨
⎪⎪⎪⎩

q(p)(pt + u · ∇p) + divu = 0,

ρ(p)(ut + u · ∇u) + ε−2∇p = H · ∇H − 1
2
∇|H |2 + μΔu + (μ + λ)∇divu,

∂tH + u · ∇H + Hdivu − H · ∇u = νΔH,
divH = 0.

Moreover, we introduce

p̃ =
p − p0

ε
, ũ = u, H̃ = H

with p0 > 0 being constant. Then the above equation can be rewritten as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

q(p0 + εp̃)(p̃t + ũ · ∇p̃) + ε−1divũ = 0,

ρ(p0 + εp̃)(ũt + ũ · ∇ũ) + ε−1∇p̃ = H̃ · ∇H̃ − 1
2
∇|H̃ |2 + μΔũ + (μ + λ)∇divũ,

∂tH̃ + ũ · ∇H̃ + H̃divũ − H̃ · ∇ũ = νΔH̃,

divH̃ = 0.

(2.1)

For (2.1), we have the following local existence of the classical solution of the initial value
problem.
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Lemma 2.1 Let p = p(ρ) be a smooth function. Assume (p, u, H) = (p, u, H)(x) ∈ H3.
Then there exists a positive constant T0 > 0, such that (2.1) with initial data (p, u, H) has a
unique classical solution (p̃, ũ, H̃) = (p̃, ũ, H̃)(x, t), satisfying εp̃(x, t) + p0 > 0 for all (x, t) ∈
R

3 × [0, T ] and

p̃ ∈ C([0, T ], H3), ũ, H̃ ∈ C([0, T ], H3) ∩ L2([0, T ], H4).

The proof of Lemma 2.1 is similar to that in [16–17] for the compressible Navier-Stokes
equation and the details can be found in [13].

Now we fix ε ∈ (0, 1]. According to Lemma 2.1, there is a time interval [0, T ], such that
(2.1) with initial data (p, u, H)(x, ε) has a unique solution (pε, uε, Hε) satisfying εpε + p0 > 0
for all (x, t) ∈ R

3 × [0, T ] and

pε ∈ C([0, T ], H3), uε, Hε ∈ C([0, T ], H3) ∩ L2([0, T ], H4).

Define

Tε = sup
{

T > 0 : pε ∈ C([0, T ], H3), uε, Hε ∈ C([0, T ], H3) ∩ L2([0, T ], H4),

− 1
2
p0 ≤ εpε(x, t) ≤ 2p0, ∀(x, t) ∈ R

3 × [0, T ]
}
. (2.2)

(Here the “2” can be replaced by any positive number larger than 1.) Namely, [0, Tε) is the
maximal time interval of H3-existence. Note that Tε may tend to 0 as ε goes to 0.

In order to show that lim
ε→0

Tε > 0, we follow the convergence-stability principle [21] and seek

a formal approximation of (pε, uε, Hε). To this end, we consider the initial-value problem (IVP
for short) of the incompressible viscous magnetohydrodynamic equations:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∂tu

0 + u0 · ∇u0 + ∇p0 = H0 · ∇H0 − 1
2
∇|H0|2 + μΔu0,

∂tH
0 + u0 · ∇H0 − H0 · ∇u0 = νΔH0,

divu0 = 0, divH0 = 0,
u0(x, 0) = u0(x), H0(x, 0) = H0(x).

(2.3)

Since (u0, H0) ∈ H4, we know from [5, 19] that the following lemma holds.

Lemma 2.2 There exists T0 ∈ (0, +∞), such that the IVP (2.3) of the incompressible
viscous magnetohydrodynamic equations has a unique smooth solution

(u0, H0, p0) ∈ C([0, T0], H4),

satisfying

sup
0≤t≤T0

‖(u0, H0, p0)(·, t)‖4 + ‖(∂tu
0, ∂tp

0)(·, t)‖2 < ∞.

In the next section, we will prove the following theorem.

Theorem 2.1 Suppose that p = p(ρ) is smooth and satisfies p′(ρ) > 0 for ρ > 0, and
u0, H0 ∈ H4 are both divergence-free. Then there exist constants K = K(T0) and ε0 = ε0(T0),
such that for all ε ≤ ε0,

‖pε(·, t) − εp0(·, t)‖3 + ‖uε(·, t) − u0(·, t)‖3 + ‖Hε(·, t) − H0(·, t)‖3 ≤ Kε

for t ∈ [0, min{T0, Tε}).
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Having this theorem, we slightly modify the arguments in [20] to prove the following result.

Theorem 2.2 Under the conditions of Theorem 2.1, there exists a constant ε0 = ε0(T0),
such that for all ε ≤ ε0,

Tε > T0.

Proof Otherwise, there is a sequence {εk}k≥1, such that lim
k→∞

εk = 0 and Tεk
≤ T0. Thanks

to the error estimate in Theorem 2.1, there exists a k, such that 4pεk(x, t) ∈ (−p0, 5p0) for all
x and t. Next we deduce from

‖pεk(·, t)‖3 + ‖uεk(·, t)‖3 + ‖Hεk(·, t)‖3

≤ ‖pεk(·, t) − εp0(·, t)‖3 + ‖εp0(·, t)‖3 + ‖uεk(·, t) − u0(·, t)‖3

+ ‖u0(·, t)‖3 + ‖Hεk(·, t) − H0(·, t)‖3 + ‖H0(·, t)‖3

and Lemma 2.2 that ‖pεk(·, t)‖3 + ‖uεk(·, t)‖3 + ‖Hεk(·, t)‖3 is bounded uniformly with respect
to t ∈ [0, Tεk

). Now we could use Lemma 2.1, beginning at a time t less than Tεk
, to continue

this solution beyond Tεk
. This contradicts the definition of Tε in (2.2).

By combining Theorems 2.1 and 2.2, we achieve our main result as follows.

Theorem 2.3 Suppose that p = p(ρ) is smooth and satisfies p′(ρ) > 0 for ρ > 0, and that
u0, H0 ∈ H4 are both divergence-free. Denote by T0 > 0 the life-span of the unique classi-
cal solution (u0, H0)(x, t) ∈ C([0, T0], H4) to the incompressible viscous magnetohydrodynamic
equations (1.2) with initial data (u0, H0). If T0 < ∞, then, for ε sufficiently small, the com-
pressible magnetohydrodynamic equation (1.1) with initial data

ρε(x, 0) = 1, uε(x, 0) = u0, Hε(x, 0) = H0

has a unique solution (ρε, uε, Hε)(x, t) satisfying

ρε − 1 ∈ C([0, T0], H3), uε, Hε ∈ C([0, T0], H3).

Moreover, there exists a constant K > 0, independent of ε but dependent on T0, such that

sup
t∈[0,T0]

(‖(ρε − 1)(·, t)‖3 + ‖(uε − u0)(·, t)‖3 + ‖(Hε − H0)(·, t)‖3) ≤ Kε. (2.4)

In the case T0 = ∞, the maximal existence time Tε of (ρε, uε, Hε) tends to infinity as ε goes to
zero.

Remark 2.1 The initial data

ρε(x, 0) = 1, uε(x, 0) = u0, Hε(x, 0) = H0

can be relaxed as

ρε(x, 0) = 1 + O(ε2), uε(x, 0) = u0 + O(ε), Hε(x, 0) = H0 + O(ε)

without changing our arguments.
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We conclude this section with the following interesting remarks, which is a by-product of
our approach.

Remark 2.2 The proof of Theorem 2.1 requires T0 < ∞. However, when the IVP (2.3)
of the incompressible viscous magnetohydrodynamic equations has a global-in-time regular
solution, T0 can be any positive number. Hence we have an almost global-in-time existence
result for (2.1) as follows:

lim
ε→0

Tε = +∞.

Remark 2.3 In terms of the formal expansion, εp0, u0 and H0 are the zero-order profile
of the solutions pε, uε and Hε, respectively. Therefore, the convergence rate in (2.4) is sharp
and optimal.

3 Error Estimate

In this section, we prove the error estimate in Theorem 2.1. For this purpose, we need the
following classical calculus inequalities in Sobolev spaces (see [14]).

Lemma 3.1 (i) For s ≥ 2, Hs = Hs(R3) is an algebra, namely, for f, g ∈ Hs, it holds that
fg ∈ Hs and

‖fg‖s ≤ Cs‖f‖s‖g‖s.

(ii) For s ≥ 3, let f ∈ Hs and g ∈ Hs−1. Then for all multi-indices α with |α| ≤ s, it holds
that [∂α

x , f ]g ∈ L2 and

‖[∂α
x , f ]g‖ ≤ Cs‖∇f‖s−1‖g‖s−1.

Here Cs is a generic constant depending only on s.

We notice that, with u0, H0 and p0 as constructed in Lemma 2.2,

(pε, uε, Hε) := (εp0, u0, H0)

satisfies ⎧⎪⎪⎨
⎪⎪⎩

q(p0 + εpε)(pεt + uε · ∇pε) + ε−1divuε = εR1,
ρ(p0 + εpε)(uεt + uε · ∇uε) + ε−1∇pε

= Hε · ∇Hε − 1
2∇|Hε|2 + μΔuε + (μ + λ)∇divuε + R2,

∂tHε + uε · ∇Hε + Hεdivuε − Hε · ∇uε = νΔHε

(3.1)

with

R1 = q(p0 + ε2p0)(p0
t + u0 · ∇p0),

R2 = (ρ(p0 + ε2p0) − ρ(p0))(u0
t + u0 · ∇u0).

From Lemma 2.2, it follows that

max
t∈[0,T0]

‖q−1(p0 + ε2p0)R1(·, t)‖3 ≤ C,

max
t∈[0,T0]

‖ρ−1(p0 + ε2p0)R2(·, t)‖3 ≤ Cε2.
(3.2)
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Here and below C is a generic positive constant.
Set

P = pε − pε, U = uε − uε, H = Hε − Hε.

Note that uε is divergence-free. We deduce from (2.1) and (3.1) that

Pt + uε · ∇P + U · ∇pε + ε−1q−1(p0 + εpε)divU = f1, (3.3)

Ut + uε · ∇U + U · ∇uε + ε−1ρ−1(p0 + εpε)∇P

− ρ−1(p0 + εpε)(μΔU + (μ + λ)∇divU)

= ρ−1(p0 + εpε)
(
H · ∇Hε + Hε · ∇H − 1

2
∇(|Hε|2 − |Hε|2)

)
+ f2 (3.4)

and

∂tH + uε · ∇H + (divU)Hε − Hε · ∇U + U · ∇Hε −H · ∇uε = νΔH, (3.5)

where f1 and f2 are given by

f1 = −q−1(p0 + εpε)εR1

and

f2 = −ρ−1(p0 + εpε)R2 − ε−1(ρ−1(p0 + εpε) − ρ−1(p0 + εpε))∇pε

+
(
Hε · ∇Hε − 1

2
∇|Hε|2

)
(ρ−1(p0 + εpε) − ρ−1(p0 + εpε))

+ (ρ−1(p0 + εpε) − ρ−1(p0 + εpε))μΔuε,

respectively. Let α be a multi-index with |α| ≤ 3. Differentiating the two sides of the equations
in (3.3)–(3.5) with ∂α

x and setting

Pα = ∂α
x P, Uα = ∂α

x U, Hα = ∂α
xH, fiα = ∂α

x fi, i = 1, 2,

we obtain

∂tPα + uε · ∇Pα + ε−1q−1(p0 + εpε)divUα

= f1α − [∂α
x , uε]∇P − ∂α

x (U · ∇pε) − ε−1[∂α
x , q−1(p0 + εpε)]divU, (3.6)

∂tUα + uε · ∇Uα + ε−1ρ−1(p0 + εpε)∇Pα − ρ−1(p0 + εpε)(μΔUα + (μ + λ)∇divUα)

= ρ−1(p0 + εpε)
(
Hε · ∇Hα − 1

2
∂α

x∇(|Hε|2 − |Hε|2)
)

+ f2α − [∂α
x , uε]∇U − ∂α

x (U · ∇uε)

− ε−1[∂α
x , ρ−1(p0 + εpε)]∇P + [∂α

x , ρ−1(p0 + εpε)](μΔU + (μ + λ)∇divU)

+ [∂α
x , ρ−1(p0 + εpε)]

(
H · ∇Hε + Hε · ∇H − 1

2
∇(|Hε|2 − |Hε|2)

)
+ ρ−1(p0 + εpε)(∂α

x (H · ∇Hε) + [∂α
x , Hε]∇H), (3.7)

∂tHα + uε · ∇Hα + (divUα)Hε − Hε · ∇Uα + ∂α
x (U · ∇Hε)

+ [∂α
x , uε]∇H + [∂α

x , Hε]divU − [∂α
x , Hε]∇U − ∂α

x (H · ∇uε) = νΔHα. (3.8)
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First, taking the inner product of (3.8) with Hα over Ω yields

1
2

d
dt

∫
Ω

|Hα|2dx + ν

∫
Ω

|∇Hα|2dx

= −
∫

Ω

Hαuε · ∇Hαdx +
∫

Ω

Hα

(
Hε · ∇Uα − (divUα)Hε

)
dx

−
∫

Ω

Hα∂α
x (U · ∇Hε −H · ∇uε) + [∂α

x , uε]∇H− [∂α
x , Hε]∇U + [∂α

x , Hε]divU)dx

=: K1 + K2 + K3. (3.9)

Here we use integration by parts for the term νΔHα. It is easy to see that

K1 = −1
2

∫
Ω

uε · ∇|Hα|2dx =
1
2

∫
Ω

|Hα|2divuεdx ≤ |divuε|L∞‖Hα‖2, (3.10)

K2 ≤ δ(‖divUα‖2 + ‖∇Uα‖2) + C‖Hα‖2, (3.11)

where δ is a small positive number to be determined.
For |divuε|L∞ and other terms in the sequel, we follow [20–21] and formulate the following

lemma.

Lemma 3.2 Set

D = D(t) =
√
‖P (·, t)‖2

3 + ‖U(·, t)‖2
3 + ‖H(·, t)‖2

3

for t ∈ [0, min{T0, Tε}). Then for multi-indices β satisfying |β| ≤ 1, it holds that

|∂β
x uε| + |∂β

x pε| + |∂β
x Hε| ≤ C(1 + D).

Proof It is obvious from Lemma 2.2 and the Sobolev inequality that

|∂β
xuε| ≤ |∂β

x (uε − uε)| + |∂β
x u0| ≤ CD + C.

The other estimates can be showed similarly. This completes the proof.

For K3, we use Lemmas 3.1 and 3.2 to deduce that

K3 ≤ C‖Hα‖(‖∂α
x (U · ∇Hε)‖ + ‖∂α

x (H · ∇uε)‖
+ ‖[∂α

x , uε]∇H‖ + ‖[∂α
x , Hε]∇U‖ + ‖[∂α

x , Hε]divU‖)
≤ C‖Hα‖(‖U‖3‖∇Hε‖3 + ‖H‖3‖∇uε‖3

+ ‖∇uε‖2‖∇H‖2 + ‖∇Hε‖2‖∇U‖2 + ‖∇Hε‖2‖divU‖2)

≤ C(1 + D)(‖H‖2
3 + ‖U‖2

3). (3.12)

Therefore, putting (3.10)–(3.12) into (3.9) gives

d
dt

‖Hα‖2 + 2ν‖∇Hα‖2 ≤ 2δ(‖divUα‖2 + ‖∇Uα‖2) + C(1 + D)(‖H‖2
3 + ‖U‖2

3). (3.13)

Next we take the inner product of (3.6) and (3.7) with q(p0 + εpε)Pα and ρ(p0 + εpε)Uα,
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respectively, and sum up the resultant equalities to obtain

1
2

d
dt

∫
Ω

(q(p0 + εpε)P 2
α + ρ(p0 + εpε)|Uα|2)dx +

∫
Ω

(μ|∇Uα|2 + (μ + λ)|divUα|2)dx

=
∫

Ω

(1
2
q(p0 + εpε)tP

2
α +

1
2
ρ(p0 + εpε)t|Uα|2

− q(p0 + εpε)Pα(uε · ∇)Pα − ρ(p0 + εpε)Uα(uε · ∇)Uα

)
dx

+
∫

Ω

(
Hε · ∇Hα − 1

2
∂α

x∇(|Hε|2 − |Hε|2)
)
Uαdx

+
∫

Ω

((∂α
x (H · ∇Hε) + [∂α

x , Hε]∇H)Uα − ([∂α
x , uε]∇P + ∂α

x (U · ∇pε))q(p0 + εpε)Pα

− (∂α
x (U · ∇uε) + [∂α

x , uε]∇U)ρ(p0 + εpε)Uα)dx

− 1
ε

∫
Ω

(q(p0 + εpε)Pα[∂α
x , q−1(p0 + εpε)]divU + ρ(p0 + εpε)Uα[∂α

x , ρ−1(p0 + εpε)]∇P )dx

+
∫

Ω

ρ(p0 + εpε)Uα[∂α
x , ρ−1(p0 + εpε)](μΔU + (μ + λ)∇divU)dx

+
∫

Ω

ρ(p0 + εpε)Uα[∂α
x , ρ−1(p0 + εpε)]

(
Hε · ∇H + H · ∇Hε − 1

2
∇(|Hε|2 − |Hε|2)

)
dx

+
∫

Ω

(q(p0 + εpε)f1αPα + ρ(p0 + εpε)f2αUα)dx

=: I1 + I2 + I3 + I4 + I5 + I6 + I7. (3.14)

Now we turn to estimate the Ii’s in (3.14). Using integration by parts, (2.1)1 and Lemma
3.2, we deduce that

I1 =
1
2

∫
Ω

([q′(p0 + εpε)εpε
t + q(p0 + εpε)divuε + uε · ∇q(p0 + εpε)]P 2

α

+ [ρ′(p0 + εpε)εpε
t + ρ(p0 + εpε)divuε + uε · ∇ρ(p0 + εpε)]|Uα|2)dx

=
1
2

∫
Ω

(q(p0 + εpε)divuε + uε · ∇q(p0 + εpε))P 2
αdx

+
1
2

∫
Ω

(ρ(p0 + εpε)divuε + uε · ∇ρ(p0 + εpε))|Uα|2dx

− ε

2

∫
Ω

(q′(p0 + εpε)P 2
α + ρ′(p0 + εpε)|Uα|2)

(
uε · ∇pε +

divuε

εq(p0 + εpε)

)
dx

≤ C‖divuε‖L∞(‖Uα‖2 + ‖Pα‖2) + Cε‖uε · ∇pε‖L∞(‖Uα‖2 + ‖Pα‖2)

≤ C(1 + D2)(‖Uα‖2 + ‖Pα‖2).

For I2, it follows from Lemmas 3.1–3.2 that

I2 =
∫

Ω

Hε · ∇HαUαdx +
1
2

∫
Ω

∂α
x (|Hε|2 − |Hε|2)divUαdx

≤ δ‖∇Hα‖2 + C‖Uα‖2 + δ‖divUα‖2 + C‖∂α
x (H(Hε + Hε))‖2

≤ δ‖∇Hα‖2 + δ‖divUα‖2 + C‖Uα‖2 + C‖H‖2
3‖Hε + Hε‖2

3

≤ δ‖∇Hα‖2 + δ‖divUα‖2 + C(1 + D2)(‖H‖2
3 + ‖Uα‖2).

Like K3, I3 can be simply estimated as

I3 ≤ C(‖H‖2
3 + ‖U‖2

3 + ‖P‖2
3).
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In order to treat other terms, we compute that

‖∇ρ−1(p0 + εpε)‖2, ‖∇q−1(p0 + εpε)‖2 ≤ Cε(1 + D3).

Thus, for I4 we have

I4 ≤ 1
ε
(‖[∂α

x , q−1(p0 + εpε)]divU‖‖q(p0 + εpε)Pα‖
+ ‖[∂α

x , ρ−1(p0 + εpε)]∇P‖‖ρ(p0 + εpε)Uα‖)
≤ C

ε
(‖∇q−1(p0 + εpε)‖2‖divU‖2‖Pα‖ + ‖∇ρ−1(p0 + εpε)‖2‖∇P‖2‖Uα‖)

≤ C(1 + D3)(‖divU‖2‖Pα‖ + ‖∇P‖2‖Uα‖)
≤ C(1 + D3)(‖U‖2

3 + ‖P‖2
3).

Similarly,

I5 ≤ C‖∇ρ−1(p0 + εpε)‖2‖μΔU + (μ + λ)∇divU‖2‖Uα‖
≤ δ‖∇U‖2

3 + C(1 + D6)‖Uα‖2,

I6 ≤ C(1 + D4)‖Uα‖‖H‖3.

Finally, from the definitions of f1 and f2, we deduce that

I7 ≤ Cε2 + C(1 + D6)(‖P‖2
3 + ‖U‖2

3) + δ‖∇Uα‖2.

Putting the above estimates into (3.14), we obtain

1
2

d
dt

∫
Ω

(q(p0 + εpε)P 2
α + ρ(p0 + εpε)|Uα|2)dx + μ‖∇Uα‖2

≤ Cε2 + δ(‖∇U‖2
3 + ‖divUα‖2 + ‖∇Hα‖2) + C(1 + D6)(‖U‖2

3 + ‖P‖2
3 + ‖H‖2

3).

Combining the last inequality with (3.13), we arrive at

d
dt

(‖P‖2
3 + ‖U‖2

3 + ‖H‖2
3) + (‖∇U‖2

3 + ‖∇H‖2
3)

≤ C(1 + D6)(‖P‖2
3 + ‖U‖2

3 + ‖H‖2
3) + Cε2.

We integrate this inequality from 0 to T with [0, T ] ⊂ [0, min{Tε, T0}) to obtain

‖P‖2
3 + ‖U‖2

3 + ‖H‖2
3 +

∫ T

0

(‖∇U‖2
3 + ‖∇H‖2

3)dt

≤ CTε2 + C

∫ T

0

(1 + D6)(‖P‖2
3 + ‖U‖2

3 + ‖H‖2
3)dt.

Here we use the fact that the initial data are in equilibrium. Furthermore, we apply the
Gronwall’s lemma to the last inequality to get

‖P‖2
3 + ‖U‖2

3 + ‖H‖2
3 ≤ CT0ε

2 exp
[
C

∫ T

0

(1 + D6)dt
]
. (3.15)

Since ‖P‖2
3 + ‖U‖2

3 + ‖H‖2
3 = D2, it follows from (3.15) that

D(T )2 ≤ CT0ε
2 exp

[
C

∫ T

0

(1 + D6)dt
]
≡ Q(T ). (3.16)
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Thus, it holds that

Q′(t) = C(1 + D6)Q(t) ≤ CQ(t) + CQ4(t).

Applying the nonlinear Gronwall-type inequality in [20] to the last inequality yields

Q(t) ≤ eCT0

for t ∈ [0, min{T0, Tε}) if we choose ε so small that

Q(0) = CT0ε
2 ≤ e−CT0 .

Thus, it follows from (3.16) that D(T ) ≤ e
CT0

2 for T ∈ [0, min{T0, Tε}). Finally, Theorem 2.1
is concluded from (3.15). This completes the proof.
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