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Abstract In this paper, the authors aim at proving two existence results of fractional
differential boundary value problems of the form

(Pa,b)

{
Dαu(x) + f(x, u(x)) = 0, x ∈ (0, 1),

u(0) = u(1) = 0, Dα−3u(0) = a, u′(1) = −b,

where 3 < α ≤ 4, Dα is the standard Riemann-Liouville fractional derivative and a, b are
nonnegative constants. First the authors suppose that f(x, t) = −p(x)tσ, with σ ∈ (−1, 1)
and p being a nonnegative continuous function that may be singular at x = 0 or x = 1
and satisfies some conditions related to the Karamata regular variation theory. Combining
sharp estimates on some potential functions and the Schäuder fixed point theorem, the
authors prove the existence of a unique positive continuous solution to problem (P0,0).
Global estimates on such a solution are also obtained. To state the second existence
result, the authors assume that a, b are nonnegative constants such that a + b > 0 and
f(x, t) = tϕ(x, t), with ϕ(x, t) being a nonnegative continuous function in (0, 1)×[0,∞) that
is required to satisfy some suitable integrability condition. Using estimates on the Green’s
function and a perturbation argument, the authors prove the existence and uniqueness of a
positive continuous solution u to problem (Pa,b), which behaves like the unique solution of
the homogeneous problem corresponding to (Pa,b). Some examples are given to illustrate
the existence results.
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1 Introduction

Fractional differential equations have extensive applications in various fields of science and

engineering. Many phenomena in viscoelasticity, electrochemistry, control theory, porous media,

Manuscript received September 14, 2014. Revised November 30, 2014.
1Mathematics Department, College of Science, King Saud University, P.O.Box 2455, Riyadh 11451, Saudi
Arabia. E-mail: abachar@ksu.edu.sa

2Department of Mathematics, College of Sciences and Arts, Rabigh Campus, King Abdulaziz University,
P.O.Box 344, Rabigh 21911, Saudi Arabia. E-mail: habib.maagli@fst.rnu.tn abobaker@kau.edu.sa
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electromagnetism, and other fields, can be modeled by fractional differential equations. We refer

the reader to [6–8, 10–14, 20–21, 24–25, 27–28, 30–31] and the references therein for discussions

of various applications. The existence, uniqueness and global asymptotic behavior of a positive

continuous solution is an essential problem for fractional two-point boundary value problems.

Such problems have been extensively investigated by many researchers, and various forms of

the equation and boundary conditions have been discussed (see, for example, [1–2, 4, 9, 11,

15–16, 18–19, 23, 26, 32–34] and the references therein). In particular, in [2], Alsaedi studied

the existence of a unique positive continuous solution to the following fourth order two-point

value problem: {
u(4)(x) = p(x)uσ(x), x ∈ (0, 1),
u(0) = u(1) = u′(0) = u′(1) = 0,

(1.1)

where σ ∈ (−1, 1) and p is a nonnegative continuous function satisfying some conditions related

to the Karamata regular variation theory. Motivated by the above work, it is natural to ask

when we can extend his result to the fractional setting. More precisely, in the first part of this

paper, we are concerned with the following sublinear fractional differential two-point boundary

value problem: {
Dαu(x) = p(x)uσ(x), x ∈ (0, 1),
u(0) = u(1) = Dα−3u(0) = u′(1) = 0,

(1.2)

where 3 < α ≤ 4, σ ∈ (−1, 1) and p is a nonnegative continuous function on (0, 1) that may be

singular at x = 0 or x = 1 and satisfies some appropriate assumptions related to the Karamata

class K (see Definition 1.1 below). Using the Schäuder fixed point theorem, we prove the

existence of a unique positive continuous solution to problem (1.2). Further, by applying the

Karamata regular variation theory, we establish sharp estimates on such a solution. To state

our first existence result, we need some notations. We first introduce the Karamata class K.

Definition 1.1 The class K is the set of Karamata functions L defined on (0, η] by

L(t) := c exp
(∫ η

t

z(s)
s

ds
)

for some η > 1, where c > 0 and z ∈ C([0, η]) such that z(0) = 0.

Remark 1.1 It is clear that a function L is in K if and only if L is a positive function in

C1((0, η]) for some η > 1, such that lim
t→0+

tL′(t)
L(t) = 0.

As a typical example of functions belonging to the class K, we quote

L(t) =
m∏

j=1

(
logj

(δ
t

))ξj

,

where ξj are real numbers, logj x = log ◦ log ◦ · · · log x (j times) and δ is a sufficiently large

positive real number such that L is defined and positive on (0, η] for some η > 1. For two
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nonnegative functions f and g defined on a set S, the notation f(x) ≈ g(x), x ∈ S, means that

there exists c > 0 such that 1
c f(x) ≤ g(x) ≤ cf(x) for all x ∈ S. We denote x+ = max(x, 0) for

x ∈ R and denote by B+((0, 1)) the set of all nonnegative measurable functions on (0, 1). We

denote by C((0, 1)) (resp. C([0, 1])) the set of all continuous functions in (0, 1) (resp. [0, 1]). In

the problem (1.2), we assume that p is a nonnegative function on (0, 1) satisfying the following

condition:

(H) p ∈ C((0, 1)) such that

p(x) ≈ x−λL1(x)(1 − x)−μL2(1 − x), x ∈ (0, 1), (1.3)

where λ ≤ 3 + (α− 3)σ, μ ≤ α− 1 + σ and L1, L2 ∈ K satisfying∫ η

0

t2+(α−3)σ−λL1(t)dt <∞ and
∫ η

0

tα−2+σ−μL2(t)dt <∞. (1.4)

We define the function θ on [0, 1] by

θ(x) := xmin(α−2, α−λ
1−σ )(L̃1(x))

1
1−σ (1 − x)min(2, α−μ

1−σ )(L̃2(1 − x))
1

1−σ , (1.5)

where

L̃1(x) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1, if λ < 2 + (α− 2)σ,∫ η

x

L1(s)
s

ds, if λ = 2 + (α− 2)σ,

L1(x), if 2 + (α− 2)σ < λ < 3 + (α− 3)σ,∫ x

0

L1(s)
s

ds, if λ = 3 + (α− 3)σ

and

L̃2(x) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1, if μ < α− 2(1 − σ),∫ η

x

L2(s)
s

ds, if μ = α− 2(1 − σ),

L2(x), if α− 2(1 − σ) < μ < α− 1 + σ,∫ x

0

L2(s)
s

ds, if μ = α− 1 + σ.

Our first existence result is the following.

Theorem 1.1 Let σ ∈ (−1, 1) and assume that p satisfies (H). Then problem (1.2) has a

unique positive solution u ∈ C([0, 1]) satisfying for x ∈ [0, 1],

u(x) ≈ θ(x). (1.6)

This theorem extends the one obtained in [2] to the fractional setting.

In the second part of this paper, we are concerned with the following superlinear fractional

boundary value problem:{
Dαu(x) + u(x)ϕ(x, u(x)) = 0, x ∈ (0, 1),
u(0) = u(1) = 0, Dα−3u(0) = a, u′(1) = −b, (1.7)
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where 3 < α ≤ 4, a, b are nonnegative constants such that a+b > 0 and ϕ(x, t) is a nonnegative

continuous function in (0, 1) × [0,∞) that is required to satisfy some appropriate condition

related to the following class Kα.

Definition 1.2 Let 3 < α ≤ 4. A Borel measurable function q in (0, 1) belongs to the class

Kα if q satisfies the following condition:∫ 1

0

rα−1(1 − r)α−1|q(r)|dr <∞. (1.8)

To state our second existence result, we introduce the following notations. We let

h1(x) =
1

Γ(α− 2)
xα−3(1 − x)2, h2(x) = xα−2(1 − x), x ∈ [0, 1], (1.9)

and ω(x) := ah1(x) + bh2(x) be the unique solution of the homogeneous problem{
Dαu(x) = 0, x ∈ (0, 1),
u(0) = u(1) = 0, Dα−3u(0) = a, u′(1) = −b. (1.10)

We denote by G(x, t) the Green’s function of the operator u→ Dαu with boundary conditions

u(0) = u(1) = Dα−3u(0) = u′(1) = 0, which can be explicitly given by (see Lemma 2.2)

G(x, t) =
1

Γ(α)
(xα−2(1 − t)α−2[t− x+ (α− 2)t(1 − x)] + ((x − t)+)α−1).

For each q ∈ Kα, we denote

αq := sup
x,t∈(0,1)

∫ 1

0

G(x, r)G(r, t)
G(x, t)

|q(r)|dr (1.11)

and we will prove that if q ∈ Kα, then αq <∞.

We require a combination of the following assumptions on the term ϕ :

(H1) ϕ is a nonnegative continuous function in (0, 1) × [0,∞).

(H2) There exists a nonnegative function q ∈ Kα∩C((0, 1)) with αq ≤ 1
2 such that for each

x ∈ (0, 1), the map t → t (q(x) − ϕ(x, tω(x))) is nondecreasing on [0, 1].

(H3) For each x ∈ (0, 1), the function t→ tϕ(x, t) is nondecreasing on [0,∞).

We will first prove that if q is a nonnegative function in Kα∩C((0, 1)) with αq ≤ 1
2 and ψ is

a positive measurable function, then the following problem{
Dαu(x) + q(x)u(x) = ψ(x),
u(0) = u(1) = Dα−3u(0) = u′(1) = 0

(1.12)

has a positive solution. It turns out to prove that problem (1.12) admits a positive Green’s

function G(x, t). Based on the construction of this Green’s function and by using a perturbation

argument, we prove the following theorem.
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Theorem 1.2 Assume (H1)–(H2), and then problem (1.7) has a positive solution u in

C([0, 1]) satisfying

c0ω(x) ≤ u(x) ≤ ω(x), x ∈ [0, 1], (1.13)

where c0 is a constant in (0, 1). Moreover, if hypothesis (H3) is also satisfied, then the solution

u to problem (1.7) satisfying (1.13) is unique.

Corollary 1.1 Let f be a nonnegative function in C1([0,∞)) such that the map t → θ(t) =

tf(t) is nondecreasing on [0,∞). Let p be a nonnegative continuous function on (0, 1) such that

the function x → p̃(x) := p(x) · max
0≤ξ≤ω(x)

θ′(ξ) belongs to the class Kα. Then for λ ∈ [
0, 1

2αp̃

]
,

the following problem {
Dαu(x) + λp(x)u(x)f(u(x)) = 0, x ∈ (0, 1),
u(0) = u(1) = 0, Dα−3u(0) = a, u′(1) = −b (1.14)

has a unique positive solution u in C([0, 1]) satisfying

(1 − λαp̃)ω(x) ≤ u(x) ≤ ω(x), x ∈ [0, 1].

These results extend the ones obtained in [3] with α = 4 to the fractional setting. Also observe

that in Theorem 1.2, we obtain a positive solution u in C([0, 1]) to problem (1.7), whose

behavior is not affected by the perturbed term. That is, it behaves like the solution ω of the

homogeneous problem (1.10). As a typical example of nonlinearity satisfying (H1)–(H3), we

quote ϕ(x, t) = λp(x)tσ , for σ ≥ 0, p being a positive continuous function on (0, 1) such that∫ 1

0

r(α−1)+(α−3)σ(1 − r)α+σ−1p(r)dr <∞

and q(x) = λp̃(x) := λ(σ + 1)p(x)(ω(x))σ ∈ Kα with λ ∈ [
0, 1

2αp̃

)
.

The rest of this paper is organized as follows. In Section 2, we prove some sharp estimates

on the Green’s function G(x, t), including the following inequality: For each x, r, t ∈ (0, 1),

G(x, r)G(r, t)
G(x, t)

≤ k2

(α− 2)Γ(α)
rα−1(1 − r)α−1,

where k := max((α − 2)2, α − 1). In particular, we deduce from this inequality that for each

q ∈ Kα, αq < ∞. In Section 3, we present some known results on functions belonging to the

class K and we establish sharp estimates on some potential functions. Exploiting theses results,

we prove Theorem 1.1 by means of the Schäuder fixed point theorem. In Section 4, for a given

function q ∈ Kα with αq ≤ 1
2 , we construct the Green’s function G(x, t) of the boundary value

problem (1.12). Next, we establish some estimates on this function. In particular, we prove

that for (x, t) ∈ [0, 1] × [0, 1], we have

(1 − αq)G(x, t) ≤ G(x, t) ≤ G(x, t).
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Also we prove the following resolvent equation:

V f = Vqf + Vq(qV f) = Vqf + V (qVqf) for f ∈ B+((0, 1)),

where the kernels V and Vq are defined on B+((0, 1)) by

V f(x) :=
∫ 1

0

G(x, t)f(t)dt, Vqf(x) :=
∫ 1

0

G(x, t)f(t)dt, x ∈ [0, 1].

By using the above results and a perturbation argument, we prove Theorem 1.2. Finally, we

give some examples to illustrate our existence results.

2 Fractional Calculus and Estimates on the Green’s Function

2.1 Fractional calculus

For the convenience of the reader, we recall in this section some basic definitions of fractional

calculus (see [12, 25, 27]).

Definition 2.1 The Riemann-Liouville fractional integral of order β > 0 for a measurable

function f : (0,∞) → R is defined as

Iβf(x) =
1

Γ(β)

∫ x

0

(x− t)β−1f(t)dt, x > 0,

provided that the right-hand side is pointwise defined on (0,∞). Here Γ is the Euler Gamma

function.

Definition 2.2 The Riemann-Liouville fractional derivative of order β > 0 for a measurable

function f : (0,∞) → R is defined as

Dβf(x) =
1

Γ(n− β)

( d
dx

)n
∫ x

0

(x− t)n−β−1f(t)dt =
( d

dx

)n

In−βf(x)

provided that the right-hand side is pointwise defined on (0,∞). Here n = [β]+1 and [β] denotes

the integer part of the number β.

Lemma 2.1 Let β > 0 and u ∈ C((0, 1))∩L1((0, 1)). Then we have the following assertions:

(i) For 0 < γ < β, DγIβu = Iβ−γu and DβIβu = u.

(ii) Dβu(x) = 0 if and only if u(x) = c1x
β−1+c2xβ−2+ · · ·+cmxβ−m, ci ∈ R, i = 1, · · · ,m,

where m is the smallest integer greater than or equal to β.

(iii) Assume that Dβu ∈ C((0, 1)) ∩ L1((0, 1)), and then

IβDβu(x) = u(x) + c1x
β−1 + c2x

β−2 + · · · + cmx
β−m,

ci ∈ R, i = 1, · · · ,m, where m is the smallest integer greater than or equal to β.
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2.2 Estimates on the Green’s Function

In this section, we derive the corresponding Green’s function for the homogeneous boundary

value problem (1.2) and we prove some estimates on this function.

Lemma 2.2 Let 3 < α ≤ 4 and f ∈ C([0, 1]), and then the boundary-value problem{
Dαu(x) = f(x) in (0, 1),
u(0) = u(1) = Dα−3u(0) = u′(1) = 0

(2.1)

has a unique solution

u(x) =
∫ 1

0

G(x, t)f(t)dt, (2.2)

where for x, t ∈ [0, 1],

G(x, t) =
1

Γ(α)
(xα−2(1 − t)α−2[t− x+ (α− 2)t(1 − x)] + ((x− t)+)α−1) (2.3)

is the Green’s function of boundary-value problem (2.1).

Proof By means of Lemma 2.1, we can reduce equation Dαu(x) = f(x) to an equivalent

integral equation

u(x) = Iαf(x) + c1x
α−1 + c2x

α−2 + c3x
α−3 + c4x

α−4, (2.4)

where (c1, c2, c3, c4) ∈ R4. The boundary condition u(0) = 0 implies that c4 = 0. Applying the

operator Dα−3 to both sides of (2.4) and using Lemma 2.1(i), we obtain that

Dα−3u(x) = c1
Γ(α)

6
x2 + c2

Γ(α− 1)
2

x+ c3Γ(α− 2) + I3f(x). (2.5)

The boundary condition Dα−3u(0) = 0 gives c3 = 0. Hence

u(x) = c1x
α−1 + c2x

α−2 + Iαf(x). (2.6)

Now, using (2.6) and the boundary conditions u(1) = u′(1) = 0, we obtain

c1 = (α− 2)Iαf(1) − Iα−1f(1), c2 = Iα−1f(1) − (α− 1)Iαf(1).

Therefore the unique solution of problem (2.1) is

u(x) =
1

Γ(α)

( ∫ x

0

(x − t)α−1f(t)dt

+
∫ 1

0

(α − 1)xα−2(1 − x)(1 − t)α−2f(t)dt

+
∫ 1

0

[(α − 2)x− (α − 1)]xα−2(1 − t)α−1f(t)dt
)

=
∫ 1

0

G(x, t)f(t)dt.
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Proposition 2.1 Let 3 < α ≤ 4 and k = max((α−2)2, α−1). The Green’s function G(x, t)

satisfies the following properties on [0, 1]× [0, 1]:

(i) (α− 2)H(x, t) ≤ Γ(α)G(x, t) ≤ kH(x, t), where

H(x, t) := xα−3(1 − x)t(1 − t)α−3 min(x, t)(1 − max(x, t)).

(ii) (α− 2)xα−2(1 − x)2t2(1 − t)α−2 ≤ Γ(α)G(x, t) ≤ kxα−3(1 − x)t2(1 − t)α−2.

(iii) G(x, t) = G(1 − t, 1 − x).

Proof (i) We divide the proof into two cases.

Case 1 0 ≤ t ≤ x ≤ 1. First, we remark that

xα−2(1 − t)α−2(t− x) + (x− t)α−1

= −(x− t)((x − xt)α−2 − (x− t)α−2)

= −(x− t)(α− 2)
∫ x−xt

x−t

sα−3ds.

This implies that

Γ(α)G(x, t) = −(x− t)(α − 2)
∫ x−xt

x−t

sα−3ds+ (α − 2)(t− tx)(x − xt)α−2. (2.7)

So, we get

Γ(α)G(x, t)

≥ −(x− t)(α− 2)(x− xt)α−3(t− tx)

+ (α− 2)(t− tx)(x − xt)α−2

= (α− 2)(x− xt)α−3(t− tx)2.

That is

Γ(α)G(x, t) ≥ (α− 2)xα−3(1 − t)α−3t2(1 − x)2. (2.8)

On the other hand, using (2.7), we obtain

Γ(α)G(x, t)

≤ −(x− t)(α− 2)(x− t)α−3(t− tx)

+ (α− 2)(t− tx)(x− xt)α−2

= (α− 2)(t− tx)((x − xt)α−2 − (x − t)α−2)

= (α− 2)2(t− tx)
∫ x−xt

x−t

sα−3ds

≤ (α− 2)2(t− tx)2(x− xt)α−3.

That is

Γ(α)G(x, t) ≤ (α− 2)2xα−3(1 − t)α−3t2(1 − x)2. (2.9)



Sublinear and Superlinear Fractional Boundary Value Problems 9

Combining (2.8) and (2.9), we get, for 0 ≤ t ≤ x ≤ 1,

(α− 2)H(x, t) ≤ Γ(α)G(x, t) ≤ (α− 2)2H(x, t). (2.10)

Case 2 0 ≤ x ≤ t ≤ 1. We have

Γ(α)G(x, t) = xα−2(1 − t)α−2[(t− x) + (α− 2)t(1 − x)]. (2.11)

Since t− x ≥ 0, we get

Γ(α)G(x, t) ≥ (α − 2)H(x, t). (2.12)

Moreover, using (2.11) and the fact that t− x ≤ t(1 − x), we obtain that

Γ(α)G(x, t) ≤ (α − 1)H(x, t). (2.13)

From (2.12) and (2.13), we have, for 0 ≤ x ≤ t ≤ 1,

(α− 2)H(x, t) ≤ Γ(α)G(x, t) ≤ (α− 1)H(x, t). (2.14)

The assertion (i) holds immediately from (2.10) and (2.14).

(ii) The assertion follows from (i) and the fact that for x, t ∈ [0, 1], we have

xt ≤ min(x, t) ≤ t, (1 − x)(1 − t) ≤ 1 − max(x, t) ≤ 1 − t.

(iii) The assertion follows from (2.3) and a simple computation.

Remark 2.1 Note that estimates on the Green’s function G(x, t) obtained in the previous

proposition improve those obtained in [32, Lemma 2.4].

As an immediately consequence of the assertion (ii) of Proposition 2.1, we obtain the fol-

lowing.

Corollary 2.1 Let f ∈ B+((0, 1)), and then the function x→ V f(x) is continuous on [0, 1]

if and only if the integral
∫ 1

0 t
2(1 − t)α−2f(t)dt converges.

Proposition 2.2 Let 3 < α < 4 and f be a function such that the map t→ t2(1− t)α−2f(t)

is continuous and integrable on (0, 1). Then V f is the unique solution in C([0, 1]) of the boundary

value problem {
Dαu(x) = f(x), x ∈ (0, 1),
u(0) = Dα−3u(0) = u(1) = u′(1) = 0. (2.15)

Proof From Corollary 2.1, the function V f is in C([0, 1]). This implies that I4−α(V |f |) is

bounded on [0, 1]. So by using Fubini’s theorem, we obtain

I4−α(V f)(x)

=
1

Γ(4 − α)

∫ x

0

(x− t)3−αV f(t)dt
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=
1

Γ(4 − α)

∫ 1

0

( ∫ x

0

(x− t)3−αG(t, s)dt
)
f(s)ds

=
∫ 1

0

K(x, s)f(s)ds,

where K(x, s) := 1
Γ(4−α)

∫ x

0 (x− t)3−αG(t, s)dt.

Next, we aim at giving an explicit expression of the kernel K(x, s). To this end, observe

that by making the substitution t = s+ (x− s)θ, we obtain, for γ, ν > −1,∫ x

s

(x− t)γ(t− s)νdt =
Γ(γ + 1)Γ(ν + 1)

Γ(γ + ν + 2)
(x− s)γ+ν+1. (2.16)

Using this fact and (2.3), we deduce that

K(x, s)

=
(1 − s)α−2

Γ(4 − α)Γ(α)

[
(α− 1)s

∫ x

0

(x− t)3−αtα−2dt

− (1 + (α − 2)s)
∫ x

0

(x− t)3−αtα−1dt
]

+
1

Γ(4 − α)Γ(α)

∫ x

0

(x − t)3−α((t− s)+)α−1dt

= (1 − s)α−2
[ s
2
x2 − 1 + (α− 2)s

6
x3

]
+

1
Γ(4 − α)Γ(α)

∫ x

0

(x − t)3−α((t− s)+)α−1dt.

Now, assume that s ≤ x, and then by (2.16) we have∫ x

0

(x− t)3−α((t− s)+)α−1dt

=
∫ x

s

(x− t)3−α(t− s)α−1dt

=
Γ(α)Γ(4 − α)

6
(x− s)3. (2.17)

On the other hand, if 0 ≤ t ≤ x ≤ s, we have∫ x

0

(x− t)3−α((t− s)+)α−1dt = 0. (2.18)

So, combining (2.17) and (2.18), we obtain

K(x, s) = (1 − s)α−2
[s
2
x2 − 1 + (α− 2)s

6
x3

]
+

1
6
((x − s)+)3.

Hence for x ∈ [0, 1], we have

6I4−α(V f)(x)

= 6
∫ 1

0

K(x, s)f(s)ds
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= x3

∫ x

0

[1 − (1 + (α− 2)s)(1 − s)α−2]f(s)ds

−
∫ x

0

s3f(s)ds+ 3x
∫ x

0

s2f(s)ds

− 3x2

∫ x

0

(1 − (1 − s)α−2)sf(s)ds

+ 3x2

∫ 1

x

s(1 − s)α−2f(s)ds

− x3

∫ 1

x

(1 + (α− 2)s)(1 − s)α−2f(s)ds

:= J1(x) + J2(x) + J3(x) + J4(x) + J5(x) + J6(x).

We claim that

Dα(V f)(x) :=
d4

dx4
(I4−α(V f))(x) = f(x) for x ∈ (0, 1).

Indeed, firstly note that from the hypothesis, the function s → s2f(s) is continuous and inte-

grable near 0 and the function s → (1 − s)α−2f(s) is continuous and integrable near 1. This

implies in particular that J5(x) and J6(x) are differentiable on (0, 1). On the other hand, since

[1 − (1 + (α− 2)s)(1 − s)α−2] = O(s2)

and (1− (1 − s)α−2)s = O(s2) near 0, it follows that J1(x), J2(x), J3(x) and J4(x) are differen-

tiable on (0, 1).

So, by simple computation, we obtain

d
dx

(6I4−α(V f))(x)

= 3x2

∫ x

0

[1 − (1 + (α− 2)s)(1 − s)α−2]f(s)ds

+ 3
∫ x

0

s2f(s)ds− 6x
∫ x

0

(1 − (1 − s)α−2)sf(s)ds

+ 6x
∫ 1

x

s(1 − s)α−2f(s)ds

− 3x2

∫ 1

x

(1 + (α− 2)s)(1 − s)α−2f(s)ds.

By similar arguments as above, we obtain

d4

dx4
(I4−α(V f))(x) = f(x) for x ∈ (0, 1).

Next, we need to verify that the function V f satisfies the boundary conditions. By Propo-

sition 2.1(ii), there exists a nonnegative constant c such that

|V f(x)| ≤ cxα−3(1 − x). (2.19)
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So, it follows that V f(0) = V f(1) = 0. On the other hand, by Proposition 2.1(i), for each

t ∈ [0, 1], we have

lim
x→1

G(x, t)
1 − x

= 0, 0 ≤ G(x, t)
1 − x

≤ k

Γ(α)
t2(1 − t)α−2.

This implies by the dominated convergence theorem that (V f)′(1) = 0. It remains to prove

Dα−3V f(0) := lim
x→0

I4−α(V f)(x) − I4−α(V f)(0)
x

= lim
x→0

I4−α(V f)(x)
x

= 0.

To this end, we only need to verify that

lim
x→0

Ji(x)
x

= 0 for i = 1, 2, 3, 4, 5, 6.

The assertion is clear for J1(x), J3(x) and J4(x).

Now, since |J2(x)|
x ≤ ∫ x

0 s
2|f(s)|ds, we deduce that lim

x→0

J2(x)
x = 0.

By applying [17, Lemma 2.2], we conclude that lim
x→0

Ji(x)
x = 0 for i = 5, 6. Hence Dα−3V f(0)

= 0. Finally, we prove the uniqueness. Let u, v ∈ C([0, 1]) be two solutions of (2.19) and put

w = u−v. Then w ∈ C([0, 1]) and Dαw = 0. Hence, it follows from Lemma 2.1(iii) that w(x) =

c1x
α−1 + c2x

α−2 + c3x
α−3 + c4x

α−4. Using the fact that w(0) = Dα−3w(0) = w(1) = w′(1) = 0,

we deduce that w = 0 and therefore u = v.

Remark 2.2 Note that the conclusion of Proposition 2.2 is also valid for α = 4 (see [2]).

Proposition 2.3 We have, for each x, r, t ∈ (0, 1),

G(x, r)G(r, t)
G(x, t)

≤ k2

(α− 2)Γ(α)
rα−1(1 − r)α−1, (2.20)

where k = max((α − 2)2, α− 1).

Proof Using Proposition 2.1(i), we have, for each x, r, t ∈ (0, 1),

G(x, r)G(r, t)
G(x, t)

≤ k2

(α− 2)Γ(α)
rα−2(1 − r)α−2

× min(x, r)(1 − max(x, r))min(r, t)(1 − max(r, t))
min(x, t)(1 − max(x, t))

.

We claim that

min(x, r)(1 − max(x, r))min(r, t)(1 − max(r, t))
min(x, t)(1 − max(x, t))

≤ r(1 − r). (2.21)

Indeed, by symmetry, we may assume that x ≤ t. Then we deduce that

min(x, r)(1 − max(x, r))min(r, t)(1 − max(r, t))
x(1 − t)

≤ min(r, t)(1 − max(r, t))

≤ r(1 − r).

Now, by using (2.21), we obtain the required result.
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Next we recall that ω(x) := ah1(x) + bh2(x), where

h1(x) =
1

Γ(α− 2)
xα−3(1 − x)2

and h2(x) = xα−2(1 − x) for x ∈ [0, 1].

Proposition 2.4 Let q be a function in Kα, and then we have that

(i)

αq ≤ k2

(α− 2)Γ(α)

∫ 1

0

rα−1(1 − r)α−1 |q(r)| dr <∞, (2.22)

where k = max((α − 2)2, α− 1) and αq is given by (1.11);

(ii) for x ∈ [0, 1], ∫ 1

0

G(x, t)h1(t)|q(t)|dt ≤ αqh1(x); (2.23)

(iii) for x ∈ [0, 1], ∫ 1

0

G(x, t)h2(t)|q(t)|dt ≤ αqh2(x). (2.24)

In particular for x ∈ [0, 1], ∫ 1

0

G(x, t)ω(t)|q(t)|dt ≤ αqω(x). (2.25)

Proof Let q be a function in Kα.

(i) The inequality (2.22) follows from (1.11) and (2.20).

(ii) Since for each x, t ∈ (0, 1), we have lim
r→0

G(t,r)
G(x,r) = h1(t)

h1(x) , then we deduce by Fatou’s lemma

and (1.11) that∫ 1

0

G(x, t)
h1(t)
h1(x)

|q(t)|dt ≤ lim inf
r→0

∫ 1

0

G(x, t)
G(t, r)
G(x, r)

|q(t)|dt ≤ αq,

which implies that for x ∈ [0, 1],∫ 1

0

G(x, t)h1(t)|q(t)|dt ≤ αqh1(x).

(iii) Similarly, we prove inequality (2.24) by observing that

lim
r→1

G(t, r)
G(x, r)

=
h2(t)
h2(x)

.

Inequality (2.25) follows from (2.23)–(2.24) and the fact that ω(x) = ah1(x) + bh2(x).

3 First Existence Result

In this section, we aim at proving Theorem 1.1.
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3.1 Karamata class and sharp estimates on some potential functions

In this subsection, we recall some fundamental properties of functions belonging to the class

K and we establish estimates on some potential functions.

Lemma 3.1 (see [22, 29]) Let γ ∈ R and L be a function in K defined on (0, η]. Then we

have that

(i) if γ > −1, then
∫ η

0 s
γL(s)ds converges and

∫ t

0 s
γL(s)ds ∼

t→0+

t1+γL(t)
1+γ ;

(ii) if γ < −1, then
∫ η

0
sγL(s)ds diverges and

∫ η

t
sγL(s)ds ∼

t→0+
− t1+γL(t)

1+γ .

Lemma 3.2 (see [5, 29]) (i) Let L ∈ K and ε > 0. So then we have

lim
t→0+

tεL(t) = 0.

(ii) Let L1 and L2 ∈ K defined on (0, η] and p ∈ R. Then functions

L1 + L2, L1L2 and Lp
1 belong to the class K.

(iii) Let L ∈ K defined on (0, η]. So then we have

lim
t→0+

L(t)∫
t

η
L(s)

s ds
= 0.

In particular,

t→
∫ η

t

L(s)
s

ds ∈ K.

If further
∫ η

0
L(s)

s ds converges, then we have lim
t→0+

L(t)∫ t
0

L(s)
s ds

= 0.

In particular,

t→
∫ t

0

L(s)
s

ds ∈ K.

Next, we shall prove sharp estimates on the potential function V (pθσ), where p is a function

satisfying (H) and θ is the function given by (1.5).

To this end, we need the following proposition.

Proposition 3.1 Let γ ≤ 3, ν ≤ α− 1 and L3, L4 ∈ K such that∫ η

0

t2−γL3(t)dt <∞,

∫ η

0

tα−2−νL4(t)dt <∞. (3.1)

Put

b(x) = x−γL3(x)(1 − x)−νL4(1 − x) for x ∈ (0, 1).

Then we have, for x ∈ [0, 1],

V b(x) ≈ xmin(α−2,α−γ)L̃3(x)(1 − x)min(2,α−ν)L̃4(1 − x),
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where

L̃3(x) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1, if γ < 2,∫ η

x

L3(s)
s

ds, if γ = 2,

L3(x), if 2 < γ < 3,∫ x

0

L3(s)
s

ds, if γ = 3

and

L̃4(x) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1, if ν < α− 2,∫ η

x

L4(s)
s

ds, if ν = α− 2,

L4(x), if α− 2 < ν < α− 1,∫ x

0

L4(s)
s

ds, if ν = α− 1.

Proof For x ∈ [0, 1], we have

V b(x) =
∫ 1

0

G(x, t)b(t)dt.

Using Proposition 2.1(i), we obtain that

V b(x) ≈ (1 − x)2xα−3

∫ x

0

t2−γ(1 − t)α−3−νL3(t)L4(1 − t)dt

+ (1 − x)xα−2

∫ 1

x

t1−γ(1 − t)α−2−νL3(t)L4(1 − t)dt.

In what follows, we distinguish two cases.

Case 1 0 ≤ x ≤ 1
2 . In this case, we have 1 − x ≈ 1. So, we obtain

V b(x) ≈ (1 − x)2xα−3

∫ x

0

t2−γ(1 − t)α−3−νL3(t)L4(1 − t)dt

+ (1 − x)xα−2
(∫ 1

2

x

t1−γ(1 − t)α−2−νL3(t)L4(1 − t)dt

+
∫ 1

1
2

t1−γ(1 − t)α−2−νL3(t)L4(1 − t)dt
)
.

≈ xα−3

∫ x

0

t2−γL3(t)dt

+ xα−2
(∫ 1

2

x

t1−γL3(t)dt+
∫ 1

1
2

(1 − t)α−2−νL4(1 − t)dt
)

= xα−3

∫ x

0

t2−γL3(t)dt

+ xα−2
(∫ 1

2

x

t1−γL3(t)dt+
∫ 1

2

0

tα−2−νL4(t)dt
)
.
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Since
∫ η

0 t
α−2−νL4(t)dt <∞, we deduce that

V b(x) ≈ xα−3

∫ x

0

t2−γL3(t)dt+ xα−2
(
1 +

∫ 1
2

x

t1−γL3(t)dt
)
.

Using Lemma 3.1 and hypothesis (3.1), we deduce that

∫ x

0

t2−γL3(t)dt ≈

⎧⎪⎨⎪⎩
x3−γL3(x), if γ < 3,∫ x

0

L3(s)
s

ds, if γ = 3

and

1 +
∫ 1

2

x

t1−γL3(t)dt ≈

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if γ < 2,∫ η

x

L3(s)
s

ds, if γ = 2,

x2−γL3(x), if 2 < γ ≤ 3.

Hence, it follows by Lemmas 3.1–3.2 and hypothesis (3.1) that for 0 ≤ x ≤ 1
2 ,

V b(x) ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

xα−2, if γ < 2,

xα−2

∫ η

x

L3(s)
s

ds, if γ = 2,

xα−γL3(x), if 2 < γ < 3,

xα−3

∫ x

0

L3(s)
s

ds, if γ = 3.

That is

V b(x) ≈ xmin(α−2,α−γ)L̃3(x). (3.2)

Case 2 1
2 ≤ x ≤ 1. In this case, we have x ≈ 1. Therefore, we obtain

V b(x) ≈ (1 − x)2xα−3
(∫ 1

2

0

t2−γ(1 − t)α−3−νL3(t)L4(1 − t)dt

+
∫ x

1
2

t2−γ(1 − t)α−3−νL3(t)L4(1 − t)dt
)

+ (1 − x)xα−2

∫ 1

x

t1−γ(1 − t)α−2−νL3(t)L4(1 − t)dt

≈ (1 − x)2
(∫ 1

2

0

t2−γL3(t)dt+
∫ x

1
2

(1 − t)α−3−νL4(1 − t)dt
)

+ (1 − x)
∫ 1

x

(1 − t)α−2−νL4(1 − t)dt.

= (1 − x)2
(∫ 1

2

0

t2−γL3(t)dt+
∫ 1

2

1−x

tα−3−νL4(t)dt
)

+ (1 − x)
∫ 1−x

0

tα−2−νL4(t)dt.
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Since
∫ η

0 t
2−γL3(t)dt <∞, we deduce that

V b(x) ≈ (1 − x)2
(
1 +

∫ 1
2

1−x

tα−3−νL4(t)dt
)

+ (1 − x)
∫ 1−x

0

tα−2−νL4(t)dt.

Using again Lemma 3.1 and hypothesis (3.1), we deduce that

∫ 1−x

0

tα−2−νL4(t)dt ≈
⎧⎨⎩

(1 − x)α−1−νL4(1 − x), if ν < α− 1,∫ 1−x

0

L4(s)
s

ds, if ν = α− 1

and

1 +
∫ 1

2

1−x

tα−3−νL4(t)dt ≈

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if ν < α− 2,∫ η

1−x

L4(s)
s

ds, if ν = α− 2,

(1 − x)2−γL4(1 − x), if α− 2 < ν ≤ α− 1.

Hence, it follows by Lemmas 3.1–3.2 and hypothesis (3.1) that for 1
2 ≤ x ≤ 1,

V b(x) ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(1 − x)2, if ν < α− 2,

(1 − x)2
∫ η

1−x

L4(s)
s

ds, if ν = α− 2,

(1 − x)α−νL4(1 − x), if α− 2 < ν < α− 1,

(1 − x)
∫ 1−x

0

L4(s)
s

ds, if ν = α− 1.

That is

V b(x) ≈ (1 − x)min(2,α−ν)L̃4(1 − x). (3.3)

This together with (3.2) implies that for x ∈ [0, 1], we have

V b(x) ≈ xmin(α−2,α−γ)L̃3(x)(1 − x)min(2,α−ν)L̃4(1 − x).

This ends the proof.

The following proposition plays a crucial role in the proof of Theorem 1.1.

Proposition 3.2 Let p be a function satisfying (H). Then we have, for x ∈ [0, 1],

V (pθσ)(x) ≈ θ(x).

Proof Let p be a function satisfying (H). Let γ = λ − σmin
(
α − 2, α−λ

1−σ

)
and ν =

μ− σmin
(
2, α−μ

1−σ

)
, where the constants λ and μ are given by (H). Since λ ≤ 3 + (α− 3)σ and

μ ≤ α − 1 + σ, we verify that γ ≤ 3 and ν ≤ α − 1. On the other hand, by using (1.3) and

(1.5), we get

p(x)θσ(x) ≈ x−γ(1 − x)−νL1(x)(L̃1(x))
σ

1−σL2(1 − x)(L̃2(1 − x))
σ

1−σ .
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So, using Lemmas 3.1–3.2 and Proposition 3.1 with L3 = L1(L̃1)
σ

1−σ and L4 = L2(L̃2)
σ

1−σ , we

deduce that for each x ∈ [0, 1],

V (pθσ)(x) ≈ xmin(α−2,α−γ)L̃3(x)(1 − x)min(2,α−ν)L̃4(1 − x).

Since

min(α− 2, α− γ) = min
(
α− 2,

α− λ

1 − σ

)
, min(2, α− ν) = min

(
2,
α− μ

1 − σ

)
,

we conclude by elementary calculus that for x ∈ [0, 1],

V (pθσ)(x) ≈ xmin(α−2,α−γ)L̃3(x)(1 − x)min(2,α−ν)L̃4(1 − x) ≈ θ(x).

This completes the proof.

3.2 Proof of Theorem 1.1

Let p be a function satisfying (H) and let θ be the function given by (1.5). By Proposition

3.2, there exists M ≥ 1 such that for each x ∈ [0, 1],

1
M
θ(x) ≤ V (pθσ) (x) ≤Mθ(x).

We shall use a fixed point argument to construct a solution to problem (1.2). For this end, put

c = M
1

1−|σ| and consider the closed convex set given by

Λ =
{
u ∈ C([0, 1]) :

1
c
θ ≤ u ≤ cθ

}
.

Obviously, the function θ belongs to C([0, 1]) and so Λ is not empty. We define the operator T

on Λ by

Tu = V (puσ).

For this choice of c, we can easily get that for u ∈ Λ, we have 1
c θ ≤ Tu ≤ cθ. Now, since the

function (x, t) �→ G(x, t) is continuous on [0, 1]× [0, 1] and the function t �→ t2(1−t)α−2p(t)θσ(t)

is integrable on (0, 1), we deduce that the operator T is compact from Λ to itself. So, by the

Schäuder fixed-point theorem, there exists a function u ∈ Λ such that

u = V (puσ).

It remains to prove that u is a positive continuous solution of problem (1.2). Indeed, since

t �→ t2(1−t)α−2p(t)uσ(t) is continuous and integrable on (0, 1), then it follows from Proposition

2.2 that the function u is a positive continuous solution of problem (1.2). Finally, let us show

that problem (1.2) has a unique positive solution in the cone

� = {u ∈ C ([0, 1]) : u ≈ θ}.
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So, we assume that u and v are arbitrary solutions of problem (1.2) in �. Since u, v ∈ �, then

there exists a constant m ≥ 1 such that

1
m

≤ u

v
≤ m in (0, 1).

This implies that the set J :=
{
m ≥ 1 : 1

m ≤ u
v ≤ m

}
is not empty. Now, let m0 := inf J . It is

easy to see that m0 ≥ 1. This gives that uσ ≤ m
|σ|
0 vσ.

On the other hand, put z := m
|σ|
0 v − u, and then we have⎧⎪⎪⎨⎪⎪⎩

Dα(z) = p(x)(m|σ|
0 vσ − uσ) ≥ 0 in (0, 1),

z(0) = lim
x→0

Dα−3z(x) = 0,

z(1) = z′(1) = 0.

This implies by Proposition 2.2 that m|σ|
0 v − u = V (p(m|σ|

0 vσ − uσ)) ≥ 0. By symmetry, we

obtain that m|σ|
0 u ≥ v. Hence, m|σ|

0 ∈ J . Using the fact that m0 := inf J and |σ| < 1, we get

m0 = 1. Then, we conclude that u = v.

To illustrate our result proved in Theorem 1.1, we give the following example.

Example 3.1 Let σ ∈ (−1, 1) and p be a nonnegative continuous function on (0, 1) such

that

p(x) ≈ x−3−(α−3)σ
(

log
( 3
x

))−2

(1 − x)−μ
(

log
(

log
( 3

1 − x

)))−β

,

where μ < α − 1 + σ and β ∈ R. Then by Theorem 1.1, problem (1.2) has a unique positive

solution u in C([0, 1]) satisfying the following estimates:

(i) If μ < α− 2(1 − σ) or μ = α− 2(1 − σ) and β > 1, then for x ∈ [0, 1],

u(x) ≈ xα−3(1 − x)2
(

log
(3
x

)) −1
1−σ

.

(ii) If μ = α− 2(1 − σ) and β = 1, then for x ∈ [0, 1],

u(x) ≈ xα−3(1 − x)2
(

log
(3
x

)) −1
1−σ

(
log

(
log

( 3
1 − x

))) 1
1−σ

.

(iii) If μ = α− 2(1 − σ) and β < 1, then for x ∈ [0, 1],

u(x) ≈ xα−3(1 − x)2
(

log
(3
x

)) −1
1−σ

(
log

( 3
1 − x

)) 1−β
1−σ

.

(iv) If α− 2(1 − σ) < μ < α− 1 + σ, then for x ∈ [0, 1],

u(x) ≈ xα−3(1 − x)
α−μ
1−σ

(
log

( 3
x

)) −1
1−σ

(
log

( 3
1 − x

)) −β
1−σ

.
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4 Second Existence Result

In this section, we aim at proving Theorem 1.2 and Corollary 1.1. To this end, we need the

following preliminary results. For a nonnegative function q in Kα such that αq < 1, we define

the function G(x, t) on [0, 1] × [0, 1] by

G(x, t) =
∞∑

n=0

(−1)nGn(x, t), (4.1)

where G0(x, t) = G(x, t) and

Gn(x, t) =
∫ 1

0

G(x, r)Gn−1(r, t)q(r)dr, n ≥ 1. (4.2)

Next, we establish some inequalities on Gn(x, t). In particular, we deduce that G(x, t) is well

defined.

Lemma 4.1 Let q be a nonnegative function in Kα such that αq < 1, and then for each

n ≥ 0 and (x, t) ∈ [0, 1] × [0, 1], we have

(i) Gn(x, t) ≤ αn
qG(x, t). In particular, G(x, t) is well defined in [0, 1]× [0, 1].

(ii)

Lnx
α−2(1 − x)2t2(1 − t)α−2 ≤ Gn(x, t) ≤ Rnx

α−3(1 − x)t2(1 − t)α−2, (4.3)

where

Ln =
(α − 2)n+1

(Γ(α))n+1

(∫ 1

0

rα(1 − r)αq(r)dr
)n

and

Rn =
kn+1

(Γ(α))n+1

(∫ 1

0

rα−1(1 − r)α−1q(r)dr
)n

with

k = max((α − 2)2, α− 1).

(iii) Gn+1(x, t) =
∫ 1

0 Gn(x, r)G(r, t)q(r)dr.

(iv)
∫ 1

0 G(x, r)G(r, t)q(r)dr =
∫ 1

0 G(x, r)G(r, t)q(r)dr.

Proof (i) The assertion is clear for n = 0. Assume that inequality in (i) holds for some

n ≥ 0, and then by using (4.2) and (1.11), we obtain

Gn+1(x, t) ≤ αn
q

∫ 1

0

G(x, r)G(r, t)q(r)dr ≤ αn+1
q G(x, t).

Now, since 0 ≤ Gn(x, t) ≤ αn
qG(x, t), it follows that G(x, t) is well defined in [0, 1] × [0, 1].

(ii) Using Proposition 2.1(ii) and (4.2), we obtain (4.3) by simple induction.

(iii) The equality is clear for n = 0. Assume that for a given integer n ≥ 1 and (x, t) ∈
[0, 1]× [0, 1], we have

Gn(x, t) =
∫ 1

0

Gn−1(x, r)G(r, t)q(r)dr. (4.4)
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Using (4.2) and the Fubini-Tonelli’s theorem, we obtain

Gn+1(x, t) =
∫ 1

0

G(x, r)
( ∫ 1

0

Gn−1(r, ξ)G(ξ, t)q(ξ)dξ
)
q(r)dr

=
∫ 1

0

(∫ 1

0

G(x, r)Gn−1(r, ξ)q(r)dr
)
G(ξ, t)q(ξ)dξ

=
∫ 1

0

Gn(x, ξ)G(ξ, t)q(ξ)dξ.

(iv) Let n ≥ 0 and x, r, t ∈ [0, 1], By Lemma 4.1(i), we have

0 ≤ Gn(x, r)G(r, t)q(r) ≤ αn
qG(x, r)G(r, t)q(r).

Hence the series
∑
n≥0

∫ 1

0 Gn(x, r)G(r, t)q(r)dr converges. So, we deduce by the dominated con-

vergence theorem and Lemma 4.1(iii) that∫ 1

0

G(x, r)G(r, t)q(r)dr =
∞∑

n=0

(−1)n

∫ 1

0

Gn(x, r)G(r, t)q(r)dr

=
∞∑

n=0

(−1)n

∫ 1

0

G(x, r)Gn(r, t)q(r)dr

=
∫ 1

0

G(x, r)G(r, t)q(r)dr.

Proposition 4.1 Let q be a nonnegative function in Kα such that αq < 1. Then the function

(x, t) → G(x, t) is continuous on [0, 1]× [0, 1].

Proof Firstly, we claim that for n ≥ 0, the function (x, t) → Gn(x, t) is continuous on

[0, 1] × [0, 1]. The assertion is clear for n = 0. Assume that for a given integer n ≥ 1, the

function (x, t) → Gn−1(x, t) is continuous on [0, 1] × [0, 1]. So, for each r ∈ [0, 1], the function

(x, t) → G(x, r)Gn−1(r, t) is continuous on [0, 1] × [0, 1]. On the other hand, by Lemma 4.1(i)

and Proposition 2.1(ii), we have, for each (x, t, r) ∈ [0, 1] × [0, 1]× [0, 1],

G(x, r)Gn−1(r, t)q(r) ≤ αn−1
q G(x, r)G(r, t)q(r)

≤ k2

(Γ(α))2
rα−1(1 − r)α−1q(r),

where k = max((α−2)2, α−1). So, we deduce by (4.2) and the dominated convergence theorem

that the function (x, t) → Gn(x, t) is continuous on [0, 1] × [0, 1]. This proves our claim. Now,

by using again Lemma 4.1(i) and Proposition 2.1(ii), we have, for each x, t ∈ [0, 1],

Gn(x, t) ≤ αn
qG(x, t) ≤ k

Γ(α)
αn

q .

This implies that the series
∑
n≥0

(−1)nGn(x, t) is uniformly convergent on [0, 1] × [0, 1] and

therefore the function (x, t) → G(x, t) is continuous on [0, 1]× [0, 1].
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Lemma 4.2 Let q be a nonnegative function in Kα such that αq ≤ 1
2 . Then for (x, t) ∈

[0, 1]× [0, 1], we have

(1 − αq)G(x, t) ≤ G(x, t) ≤ G(x, t). (4.5)

Proof Since αq ≤ 1
2 , we deduce from Lemma 4.1(i) that

|G(x, t)| ≤
∞∑

n=0

(αq)
n
G(x, t) =

1
1 − αq

G(x, t). (4.6)

On the other hand, from the expression of G, we have

G(x, t) = G(x, t) −
∞∑

n=0

(−1)nGn+1(x, t). (4.7)

Since the series
∑
n≥0

∫ 1

0 G(x, r)Gn(r, t)q(r)dr is convergent, we deduce by (4.7) and (4.2) that

G(x, t) = G(x, t) −
∞∑

n=0

(−1)n

∫ 1

0

G(x, r)Gn(r, t)q(r)dr

= G(x, t) −
∫ 1

0

G(x, r)
( ∞∑

n=0

(−1)nGn(r, t)
)
q(r)dr.

That is

G(x, t) = G(x, t) − V (qG (·, t)) (x). (4.8)

Now, from (4.6) and Lemma 4.1(i) (with n = 1), we obtain

V (qG (·, t)) (x) ≤ 1
1 − αq

V (qG (·, t)) (x) =
1

1 − αq
G1(x, t) ≤ αq

1 − αq
G(x, t). (4.9)

This implies by (4.8) that

G(x, t) ≥ G(x, t) − αq

1 − αq
G(x, t) =

1 − 2αq

1 − αq
G(x, t) ≥ 0.

So, it follows that 0 ≤ G(x, t) ≤ G(x, t) and by (4.8) and Lemma 4.1(i) (with n = 1), we have

G(x, t) ≥ G(x, t) − V (qG (·, t)) (x) ≥ (1 − αq)G(x, t).

We recall that for a given nonnegative function q ∈ Kα such that αq ≤ 1
2 , the kernels V and Vq

are defined on B+((0, 1)) by

V f(x) :=
∫ 1

0

G(x, t)f(t)dt, Vqf(x) :=
∫ 1

0

G(x, t)f(t)dt, x ∈ [0, 1].

Also let us introduce the kernel V (q.) defined on B+((0, 1)) by

V (q·)f(x) :=
∫ 1

0

G(x, t)q(t)f(t)dt, x ∈ [0, 1].

Using Proposition 4.1, (4.5) and Proposition 2.1(ii), we obtain the following corollary.
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Corollary 4.1 Let q be a nonnegative function in Kα such that αq ≤ 1
2 and f ∈ B+((0, 1)),

and then the following statements are equivalent:

(i) The function x→ Vqf(x) is continuous on [0, 1].

(ii) The integral
∫ 1

0
t2(1 − t)α−2f(t)dt converges.

Next, we will prove that the kernel Vq satisfies the following resolvent equation.

Lemma 4.3 Let q be a nonnegative function in Kα such that αq ≤ 1
2 and f ∈ B+((0, 1)),

and then Vqf satisfies the following resolvent equation:

V f = Vqf + Vq(qV f) = Vqf + V (qVqf). (4.10)

In particular, if V (qf) <∞, we have

(I − Vq (q.))(I + V (q·))f = (I + V (q·))(I − Vq (q·))f = f. (4.11)

Proof Let (x, t) ∈ [0, 1]× [0, 1], and then by (4.8), we have

G(x, t) = G(x, t) + V (qG (·, t)) (x),

which implies by the Fubini-Tonelli theorem that for f ∈ B+((0, 1)),

V f(x) =
∫ 1

0

(G(x, t) + V (qG (·, t)) (x)) f(t)dt

= Vqf(x) + V (qVqf)(x).

On the other hand, by Lemma 4.1(iii) and the Fubini-Tonelli theorem, we obtain, for f ∈
B+((0, 1)) and x ∈ [0, 1],∫ 1

0

∫ 1

0

G(x, r)G(r, t)q(r)f(t)drdt =
∫ 1

0

∫ 1

0

G(x, r)G(r, t)q(r)f(t)drdt,

that is,

Vq(qV f)(x) = V (qVqf)(x).

So, we obtain

V f = Vqf + V (qVqf) = Vqf + Vq(qV f)(x).

Proposition 4.2 Let q be a nonnegative function in Kα∩C((0, 1)) such that αq ≤ 1
2 and

f ∈ B+((0, 1)) such that t→ t2(1−t)α−2f(t) is continuous and integrable on (0, 1). Then Vqf is

the unique nonnegative solution in C([0, 1]) of the perturbed fractional problem (1.12) satisfying

(1 − αq)V f ≤ Vqf ≤ V f. (4.12)



24 I. Bachar, H. Mâagli, F. Toumi and Z. Zine El Abidine

Proof Since by Corollary 4.1 the function x → Vqf(x) is in C([0, 1]), it follows that

the function x → q(x)Vqf(x) is continuous on (0, 1). Using (4.10) and (2.19), there exists a

nonnegative constant c such that

Vqf(x) ≤ V f(x) ≤ cxα−3(1 − x). (4.13)

So, we deduce that∫ 1

0

t2(1 − t)α−2q(t)Vqf(t)dt ≤ c

∫ 1

0

tα−1(1 − t)α−1q(t)dt <∞.

Hence by using Proposition 2.2, the function u = Vqf = V f − V (qVqf) satisfies the equation{
Dαu(x) = f(x) − q(x)u(x), x ∈ (0, 1),
u(0) = u(1) = Dα−3u(0) = u′(1) = 0.

By integrating inequalities (4.5), we obtain (4.12). It remains to prove the uniqueness. Assume

that v is another nonnegative solution in C([0, 1]) of problem (1.12) satisfying (4.12). Since

the function t → q(t)v(t) is continuous on (0, 1) and by (4.12)–(4.13), the function t → t2(1 −
t)α−2q(t)v(t) is integrable on (0, 1), then it follows by Proposition 2.2 that the function ṽ :=

v + V (qv) satisfies {
Dαṽ(x) = f(x), x ∈ (0, 1),
ṽ(0) = ṽ(1) = Dα−3ṽ(0) = ṽ′(1) = 0.

From the uniqueness in Proposition 2.2, we deduce that

ṽ := v + V (qv) = V f.

Hence

(I + V (q·))(v − u) = 0.

Now, by (4.12)–(4.13) and (2.23), we have

V (q|v − u|) ≤ 2cV (q[Γ(α − 2)h1 + h2]) ≤ 2cαq(Γ(α− 2)h1 + h2) <∞,

we deduce by (4.11) that u = v.

Proof of Theorem 1.2 Let a ≥ 0 and b ≥ 0 with a+ b > 0 and recall that

ω(x) := ah1(x) + bh2(x).

Since the function ϕ satisfies (H2), there exists a positive function q in Kα∩C((0, 1)) such that

αq ≤ 1
2 and for each x ∈ (0, 1), the map t→ t(q(x)−ϕ(x, tω(x))) is nondecreasing on [0, 1]. Let

S := {u ∈ B+((0, 1)) : (1 − αq)ω ≤ u ≤ ω}
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and define the operator L on S by

Lu = ω − Vq(qω) + Vq((q − ϕ(·, u))u).

By (4.10) and (2.25), we have

Vq(qω) ≤ V (qω) ≤ αqω ≤ ω (4.14)

and by (H2) we obtain

0 ≤ ϕ(·, u) ≤ q for all u ∈ S. (4.15)

So, we claim that S is invariant under L. Indeed, using (4.14)–(4.15), we have, for u ∈ S,

Lu ≤ ω − Vq(qω) + Vq(qu) ≤ ω

and

Lu ≥ ω − Vq(qω) ≥ (1 − αq)ω.

Next, we will prove that the operator L is nondecreasing on S. Indeed, let u, v ∈ S be such

that u ≤ v. Since for each x ∈ (0, 1), the function t→ t(q(x)−ϕ(x, tω(x))) is nondecreasing on

[0, 1], we obtain

Lv − Lu = Vq([v(q − ϕ(·, v)) − u(q − ϕ(·, u))]) ≥ 0.

Now, we consider the sequence (un) defined by u0 = (1 − αq)ω and un+1 = Lun for n ∈ N.

Since S is invariant under L, we have u1 = Lu0 ≥ u0 and by the monotonicity of L, we deduce

that

(1 − αq)ω = u0 ≤ u1 ≤ · · · ≤ un ≤ un+1 ≤ ω.

Hence by the dominated convergence theorem and (H1)–(H2), we conclude that the sequence

(un) converges to a function u ∈ S satisfying u = (I − Vq(q·))ω + Vq((q − ϕ(·, u))u). That is

(I − Vq(q·))u = (I − Vq(q·))ω − Vq(uϕ(·, u)).

On the other hand, by (4.14), we have V (qu) ≤ V (qω) ≤ ω <∞, then by applying the operator

(I + V (q·)) on both sides of the above equality and using (4.10)–(4.11), we conclude that u

satisfies

u = ω − V (uϕ(·, u)). (4.16)

It remains to prove that u is a solution of problem (1.7). Using (4.15), there exists a constant

c > 0 such that

u(t)ϕ(t, u(t)) ≤ q(t)ω(t) ≤ ctα−3(1 − t)q(t). (4.17)
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This implies by Corollary 2.1 that the function x → V (uϕ(·, u))(x) is in C([0, 1]) and so by

(4.16), u is in C([0, 1]). Now, since by (H1) and (4.17), the function t→ t2(1−t)α−2u(t)ϕ(t, u(t))

is continuous and integrable on (0, 1), we conclude by Proposition 2.2 that u is the required

solution. It remains to prove that under condition (H3), u is the unique solution to problem

(1.7) satisfying (1.13). Assume that v is another nonnegative solution in C([0, 1]) to problem

(1.7) satisfying (1.13). Since v ≤ ω, we deduce by (4.17) that

0 ≤ v(t)ϕ(t, v(t)) ≤ q(t)ω(t) ≤ ctα−3(1 − t)q(t).

So, the function t → t2(1 − t)α−2v(t)ϕ(t, v(t)) is continuous and integrable on (0, 1) and by

Proposition 2.2, we conclude that the function ṽ := v + V (vϕ(·, v)) satisfies{
Dαṽ(x) = 0, x ∈ (0, 1),
ṽ(0) = ṽ(1) = 0, Dα−3ṽ(0) = a, ṽ′(1) = −b.

From the uniqueness in problem (1.10), we deduce that ṽ := v + V (vϕ(·, v)) = ω. That is

v = ω − V (vϕ(·, v)). (4.18)

Now, let h be the function defined on [0, 1] by

h(x) =

⎧⎪⎨⎪⎩
v(x)ϕ(x, v(x)) − u(x)ϕ(x, u(x))

v(x) − u(x)
, if v(x) �= u(x),

0, if v(x) = u(x).

Then by (H3), h ∈ B+((0, 1)) and by (4.16) and (4.18), we have(I + V (h·))(v − u) = 0. On the

other hand, by (H2), we remark that h ≤ q and by (2.25) we deduce that

V (h|v − u|) ≤ 2V (qω) ≤ 2αqω <∞.

Hence by (4.11), we conclude that u = v.

Proof of Corollary 1.1 Let ϕ(x, t) = λp(x)f(t), θ(t) = tf(t) and p̃(x) := p(x) ·
max

0≤ξ≤ω(x)
θ′(ξ). It is clear that hypotheses (H1) and (H3) are satisfied. Since the function

q(x) := λp̃(x) belongs to the class Kα, we have αq ≤ 1
2 for λ ∈ [

0, 1
2αp̃

]
. Moreover, by a

simple computation, we obtain

d
dt

[t(q(x) − ϕ(x, tω(x)))] = q(x) − λp(x)θ′(tω(x)) ≥ 0

for t ∈ [0, 1] and x ∈ (0, 1). This implies that the function ϕ satisfies hypothesis (H2). So, the

result follows by Theorem 1.2.

Example 4.1 Let 3 < α ≤ 4 and a, b ≥ 0 with a + b > 0. Let σ ≥ 0, and p be a positive

continuous function on (0, 1) such that∫ 1

0

r(α−1)+(α−3)σ(1 − r)α+σ−1p(r)dr <∞.
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Let p̃(x) := (σ + 1)p(x)(ω(x))σ . Since p̃ ∈ Kα, then for λ ∈ [
0, 1

2αp̃

]
, the problem{

Dαu(x) + λp(x)uσ+1(x) = 0, x ∈ (0, 1),
u(0) = u(1) = 0, Dα−3u(0) = a, u′(1) = −b

has a unique positive solution u in C([0, 1]) satisfying

(1 − λαp̃)ω(x) ≤ u(x) ≤ ω(x), x ∈ [0, 1].

Example 4.2 Let 3 < α ≤ 4 and a ≥ 0, b ≥ 0 with a+ b > 0. Let σ ≥ 0, γ > 0 and p be

a positive continuous function on (0, 1) such that∫ 1

0

r(α−1)+(α−3)(σ+γ)(1 − r)α+σ+γ−1p(r)dr <∞.

Let θ(s) = sσ+1 log(1 + sγ) and p̃(t) := p(t) · max
0≤ξ≤ω(t)

θ′(ξ). Since p̃ ∈ Kα, then for λ ∈ [
0, 1

2αp̃

]
,

the problem {
Dαu(x) + λp(x)uσ+1(x) log(1 + uγ(x)) = 0, x ∈ (0, 1),
u(0) = u(1) = 0, Dα−3u(0) = a, u′(1) = −b

has a unique positive solution u in C([0, 1]) satisfying

(1 − λαp̃)ω(x) ≤ u(x) ≤ ω(x), x ∈ [0, 1].

Acknowledgement The authors want to thank the referees for the careful reading of the

paper.
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