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Abstract In this article, the authors establish the local null controllability property
for semilinear parabolic systems in a domain whose boundary moves in time by a single
control force acting on a prescribed subdomain. The proof is based on Kakutani’s fixed
point theorem combined with observability estimates for the associated linearized system.
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1 Introduction and Main Results

In this article we investigate the question of local null controllability of a semilinear coupled
parabolic system in the case of time dependent domains with a single control force. To make
notations clear, let Ω be a bounded connected open set of R

n with the boundary C2. For T > 0,
we represent by QT the cylinder Ω × (0, T ) of R

n+1 with a lateral boundary ΣT defined by
Γ× (0, T ). Let us consider a family of functions {τt}0≤t≤T , where for each t, τt is a deformation
of Ω into an open bounded set Ωt of R

n defined by

Ωt = {x ∈ R
n; x = xτ (y) for y ∈ Ω}.

For t = 0, we identify Ω0 with Ω and τ0 with the identity mapping. For convenience of
notation, for vector y ∈ Ω, we will write y = (y1, y2, · · · , yn) and the points in the deformed
domain Ωt, 0 < t < T , will be denoted by x = (x1, x2, · · · , xn). The smooth boundary of Ωt is
represented by Γt. The non-cylindrical domain Q̂T and its lateral boundary Σ̂T are defined by

Q̂T =
⋃

0≤t≤T
{Ωt × {t}} and Σ̂T =

⋃
0≤t≤T

{Γt × {t}},

respectively.
We assume the following regularity on the functions τt for 0 ≤ t ≤ T :
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(A1) τt is a C2 diffeomorphism from Ω to Ωt.
(A2) τt lies in C1([0, T ];C0(Ω,Rn)) ∩ C0([0, T ];C2(Ω,Rn)).
Thus we have a natural diffeomorphism τt : QT → Q̂T defined by

(y, t) ∈ QT → (x, t) ∈ Q̂T , where x = τt(y).

To simplify the presentation, the reference domain Ω is assumed to be bounded and of
class C2. Nevertheless, we remark that most of the results we present here still hold when
Ω is Lipschitz continuous and unbounded. The regularity assumptions on the diffeomorphism
τt may also be weakened. However, the minimal assumptions on the reference domain Ω and
the transformation τt will depend very much on the notion of solution and the type of control
problem under consideration.

Concerning the class of domains Q̂T which we are considering, it is important to point
out that the assumptions above are not very restrictive. For instance, the condition (A2)
that τt depends in a C1 way on time (that, in practice, can often be replaced by a Lipschitz
dependence) indicates that the domain does not evolve in time too roughly but allows all kinds
of deformations on its shape. But, the conditions that Ωt can be mapped into the reference
domain Ω at every t by means of a C2 diffeomorphism impose that the topology of Ωt does
not change as time evolves. This is the main restriction that we impose on the geometry of the
space-time domain Q̂T under consideration. In particular, we do not address here the problems
in which holes appear or disappear in Ωt as time increases. This type of situation requires a
separate analysis since solutions may develop singularities at those points where the topology
of Ωt changes.

Our main goal is to establish the null controllability for the following general reaction-
diffusion system which arises in mathematical biology:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ψ̂′ − Δψ̂ + f1(ψ̂, ŵ) = 0 in Q̂T ,
ŵ′ − Δŵ + f2(ψ̂, ŵ) = χŵ ĝ in Q̂T ,
ψ̂ = ŵ = 0 on Σ̂T ,
ψ̂(x, 0) = ψ̂0(x), ŵ(x, 0) = ŵ0(x) in Ω,

(1.1)

where the control force ĝ acts on a unique equation of the system through an arbitrarily small
open set ω̂, where ω̂ is the image by τt of a non-empty open subset ω of Ω.

In (1.1) we have ψ̂ = ψ̂(x, t), ŵ = ŵ(x, t), ψ̂′ = ∂ψ̂
∂t , ŵ′ = ∂ŵ

∂t , χω̂ is the characteristic
function of ω̂, and ψ̂0(x) and ŵ0(x) are the initial states.

Throughout this paper we assume that the nonlinear functions fi : R×R → R (i = 1, 2) are
globally Lipschitz and fi(0, 0) = 0. By this, we mean that there exist M1,M2 > 0 such that∣∣∣∣ |fi(ψ,w) − fi(ψ,w)| ≤Mi(|ψ − ψ| + |w − w|), i = 1, 2,

fi(0, 0) = 0.
(1.2)

Assume also that there exists a positive constant C0 > 0 such that

∂f1
∂w

(ψ,w) ≥ C0, ∀(ψ,w) ∈ R × R. (1.3)
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Under natural hypotheses on the ψ̂0, ŵ0, we see that for each ĝ, there exists exactly one
solution ψ̂, ŵ to (1.1), with

ψ̂, ŵ ∈ C0
(
[0, T ];L2(Ω)

)
.

The main aim of this paper is to analyze the controllability properties of (1.1) when the
control acts on a single equation of system.

The system (1.1) is to be said null controllable at time T if the following holds: For any given
ψ̂0, ŵ0 ∈ L2(Ω), there exist controls ĝ ∈ L2(ω̂ × (0, T )) such that the corresponding solutions
to (1.1) satisfy

ψ̂(x, T ) = 0, ŵ(x, T ) = 0 in Ω, (1.4)

with an estimate of the form

|ĝ|2L2(ω̂×(0,T )) ≤ C(|ψ̂0|2L2(Ω) + |ŵ0|2L2(Ω)). (1.5)

The system (1.1) is to be said locally null controllable at time T if the previous property
holds for any ψ̂0, ŵ0 in a ball B(0; δ) ⊂ L2(Ω), with δ depending on T .

Recently, important progress has been made in the controllability analysis of semilinear
parabolic equations. We refer to the works [7–8, 10–11, 14] and the references therein in the
context of bounded domains, and the works [3, 6] in the context of more general domains. It is
natural, from both the theoretical and applied viewpoints, to try to extend the known results
to systems of kind (1.1). It is particulary important to highlight that system (1.1) has only one
control, which is in accordance with the theoretical philosophy of trying to control a system
with the least possible controls; to this direction we cite [1, 12, 16–17].

Our main result is the following.

Theorem 1.1 Assume that the non-cylindrical domain Q̂T and functions fi, i = 1, 2, sat-
isfy the geometric conditions (A1)–(A2) and the conditions (1.2)–(1.3) respectively. Then the
nonlinear system (1.1) is locally null controllable at any time T > 0.

The methodology in the present paper consists in turning the non-cylindrical state equation
(1.1) into a cylindrical one (see (1.8) below) by the diffeomorphism τt.

To carry on this methodology, we first denote by ϕt(x) the inverse map of τt, that is,
ϕt = τ−1

t . According to the assumption (A1), ϕt is a C2-map from Ωt to Ω, for all 0 ≤ t ≤ T.

We shall use the notation ϕ(x, t) = ϕt(x). Thus the state on QT is defined by

ψ(y, t) = ψ̂(τt(y), t) = ψ̂(τ(y, t), t) for all y ∈ Ω,

w(y, t) = ŵ(τt(y), t) = ŵ(τ(y, t), t) for all y ∈ Ω. (1.6)

Equivalently in Q̂T we have

ψ̂(x, t) = ψ(ϕt(x), t) for all x ∈ Ωt,

ŵ(x, t) = w(ϕt(x), t) for all x ∈ Ωt. (1.7)
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Therefore, the initial-boundary value problem (1.1) is equivalent to:⎧⎪⎪⎨
⎪⎪⎩
ψt +A(t)ψ + f1(ψ,w) = 0 in QT ,
wt +A(t)w + f2(ψ,w) = χwg in QT ,
ψ = w = 0 on ΣT ,
ψ(x, 0) = ψ0(x), w(x, 0) = w0(x) in Ω,

(1.8)

where ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A(t)ψ(y, t) = Ã(t)ψ(y, t) +	b(y, t) · ∇ψ,

Ã(t)ψ(y, t) = −
n∑

k,j=1

∂

∂yk

(
αkj(y, t)

∂ψ

∂yj

)
,

αkj(y, t) =
∂ϕk
∂xi

(τt(y), t)
∂ϕj
∂xi

(τt(y), t),

	b(y, t) = (bj(y, t))1≤j≤n,

bj(y, t) =
∂ϕj
∂t

(τt(y), t) +
n∑
k=1

∂αkj
∂yk

(y, t) − Δxϕj(τt(y), t),

g(y, t) = ĝ(τt(y), t),

ψ0(y) = ψ̂0(τ0(y)), w0(y) = ŵ0(τ0(y)).

The system (1.8) is a variable coefficient parabolic equation in the cylindrical domain QT .
From the technical point of view, a new problem arises because the state equation (1.8) contains
a uniformly coercive operator Ã(t). More precisely, for ψ,w ∈ H1

0 (Ω)×H1
0 (Ω) and by Gaussian

lemma, we obtain the bilinear form α(t, ψ, w) defined by

α(t, ψ, w) = (Ã(t)ψ,w) =
n∑

k,j=1

∫
Ω

αkj(y, t)
∂ψ

∂yj

∂w

∂yk
dy.

This bilinear form is bounded because ϕ(x, t) = τt
−1(x) is a C2 diffeomorphism between Ωt

and Ω (see (A1)). Then its matrix M =
(∂ϕj
∂xi

)
1≤i,j≤n is inversible and for all η ∈ R

n we have
‖M−1η‖Rn ≤ 1

α0
‖η‖Rn , α0 > 0. From the last inequality, we have the estimate:

α(t, ψ, ψ) ≥ α2
0‖ψ‖2

H1
0(Ω), (1.9)

proving the coercivity of α in H1
0 (Ω) ×H1

0 (Ω). Note that according to assumptions (A1) and
(A2), the boundary value problem (1.8) is a classical problem studied by Lions in [18]. If
we take ψ0, w0 ∈ H1

0 (Ω) and g ∈ L2(0, T ;L2(Ω)), then (1.8) has a strong solution ψ,w ∈
C([0, T ];H1

0 (Ω)) ∩ L2(0, T ;H2(Ω)) ∩ H1(0, T ;L2(Ω)). Otherwise, if ψ0, w0 ∈ L2(Ω) and g ∈
L2(0, T ;L2(Ω)), then (1.8) has a weak solution ψ,w ∈ C([0, T ];L2(Ω)) ∩ L2(0, T ;H1

0 (Ω)). In
both cases we have uniqueness.

By using the diffeomorphism (y, t) → (x, t), from QT to Q̂T , we obtain a unique solution
ψ̂, ŵ to the problem (1.1) with the regularity, namely:

(1) If ψ̂0, ŵ0 ∈ H1
0 (Ω), ĝ ∈ L2(0, T ;L2(Ωt)), then ψ̂, ŵ ∈ C([0, T ];H1

0 (Ωt))∩L2(0, T ;H2(Ωt))
∩H1(0, T ;L2(Ωt)).

(2) If ψ̂0, ŵ0 ∈ L2(Ω), ĝ ∈ L2(0, T ;L2(Ωt)), then ψ̂, ŵ ∈ C([0, T ];L2(Ωt))∩L2(0, T ;H1
0 (Ωt)).
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At this point we underline that, under assumptions (A1)–(A2), the transformation y → x

does indeed map the space of functions C([0, T ];H1
0 (Ω)) ∩ L2(0, T ;H2(Ω)) ∩ H1(0, T ;L2(Ω))

into C([0, T ];H1
0 (Ωt)) ∩ L2(0, T ;H2(Ωt)) ∩H1(0, T ;L2(Ωt)).

For a detailed discussion about the existence, uniqueness and regularity of solutions to
the system (1.1), we refer to [23]. There, they have used the energy method combined with
Poincaré’s inequality (satisfied uniformly in the domains Ωt for all 0 ≤ t ≤ T ), the uniform
(with respect to t) elliptic regularity, and the classical trace results and interpolation. They
did not use the diffeomorphism (y, t) → (x, t) from QT to Q̂T , and they worked directly on the
system (1.1) to see how the structure of the non-cylindrical domain affects the estimates that
are used in the energy method.

This paper is organized as follows. Section 2 is devoted to proving the null controllability
of a linearized system, which is similar to (1.8). In Section 3, we prove Theorem 1.1 by a fixed
point method.

We close this section by mentioning some basic references on the analysis of partial differ-
ential equations in non-cylindrical domains. Among many references we mention the following:
Lions [19], Cooper and Bardos [5], Medeiros [20], Inoue [15], Nakao and Narazaki [23] for wave
equations; Bernardi, Bonfanti and Lutteroti [2], Miranda and Medeiros [22] for Schrödinger
equations; He and Hsiano [13] for Euler equations; Miranda and Limaco [21] for Navier-Stokes
equations; Chen and Frid [4] for hyperbolic systems of the conservation law.

2 Analysis of the Controllability of the Linearized System

The main result of this article will be proved in Section 3 by means of a fixed point argument.
For this, we observe that for any ψ,w ∈ L2(QT ), the following identity holds:

f1(ψ,w) − f1(0, 0)

=
∫ 1

0

d
dσ

f1(σψ, σw) dσ

=
∫ 1

0

∂

∂z
f1(σψ, σw) dσ ψ +

∫ 1

0

∂

∂η
f1(σψ, σw) dσ w

= a(ψ,w)ψ + b(ψ,w)w, (2.1)

where ∂f1
∂z and ∂f1

∂η denote the partial derivatives of f1 with respect to the variables ψ and w,
respectively, and the functions a(ψ,w) and b(ψ,w) are defined as∣∣∣∣∣∣∣∣∣

a(ψ,w) =
∫ 1

0

∂

∂z
f1(σψ, σw) dσ,

b(ψ,w) =
∫ 1

0

∂

∂η
f1(σψ, σw) dσ.

(2.2)

Similarly, we define the functions c = c(ψ,w) and d = d(ψ,w) as∣∣∣∣∣∣∣∣∣
c(ψ,w) =

∫ 1

0

∂

∂z
f2(σψ, σw) dσ,

d(ψ,w) =
∫ 1

0

∂

∂η
f2(σψ, σw) dσ.

(2.3)



34 J. Lı́maco, M. Clark, A. Marinho, et al.

Note that

f2(ψ,w) − f2(0, 0) = c(ψ,w)ψ + d(ψ,w)w. (2.4)

Moreover, we assume the bounds:∣∣∣∣∣|a(ψ,w)|L∞(QT ) ≤M1, |b(ψ,w)|L∞(QT ) ≤M1,

|c(ψ,w)|L∞(QT ) ≤M2, |d(ψ,w)|L∞(QT ) ≤M2,
(2.5)

where M1,M2 are the positive constants given in (1.2).

With this notation, the system (1.8) can be rewritten in the form⎧⎪⎪⎨
⎪⎪⎩
ψt +A(t)ψ + a(ψ,w)ψ + b(ψ,w)w = 0 in QT ,
wt +A(t)w + c(ψ,w)ψ + d(ψ,w)w = χwg in QT ,
ψ = w = 0 on ΣT ,
ψ(0) = ψ0, w(0) = w0 in Ω.

(2.6)

Given ψ,w ∈ L2(QT ) we now consider the linearized system
⎧⎪⎪⎨
⎪⎪⎩
ψt +A(t)ψ + a(ψ,w)ψ + b(ψ,w)w = 0 in QT ,

wt +A(t)w + c(ψ,w)ψ + d(ψ,w)w = χwg in QT ,
ψ = w = 0 on ΣT ,
ψ(0) = ψ0, w(0) = w0 in Ω.

(2.7)

Observe that the system (2.7) is linear on the states ψ and w, and has potentials a, b, c, d ∈
L∞(QT ) satisfying the uniform bound given in (2.5).

Again, with this notation we rewrite the system (2.7) as⎧⎪⎪⎨
⎪⎪⎩
ψt +A(t)ψ + a(y, t)ψ + b(y, t)w = 0 in QT ,
wt +A(t)w + c(y, t)ψ + d(y, t)w = χwg in QT ,
ψ = w = 0 on ΣT ,
ψ(0) = ψ0, w(0) = w0 in Ω.

(2.8)

As usual, the controllability of (2.8) is closely related to the properties of the solutions to
the associated adjoint states. In this case, the adjoint systems are⎧⎪⎪⎨

⎪⎪⎩
−ut +A∗(t)u+ a(y, t)u+ c(y, t)v = 0 in QT ,
−vt +A∗(t)v + b(y, t)u+ d(y, t)v = 0 in QT ,
u = v = 0 on ΣT ,
u(T ) = uT , v(T ) = vT in Ω,

(2.9)

where A∗(t) is the formal adjoint of the operator A(t), uT , vT ∈ L2(Ω).

Next we sketch the points used in the proof of the null controllability of the system (2.8)
using the observability estimate. First, we use a global-Carleman inequality satisfied by the
solutions to (2.9). Second, this inequality allows us to establish an observability estimate.
Third, we prove the null controllability of (2.8) by using the observability estimate.

In this approach, the following technical result, due to Fursikov and Imanuvilov [11], is
fundamental.
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Lemma 2.1 Let ω � Ω be a non-empty open set. There exists a function μ ∈ C2(Ω)
satisfying

μ(y) > 0, ∀y ∈ Ω,

μ = 0, ∀y ∈ ∂Ω,

|∇μ(y)| ≥ k > 0, ∀y ∈ Ω \ ω.

Let us introduce the functions

φ(y, t) =
eλμ(y)

β(t)
, α(y, t) =

eλμ(y) − e2λΨ

β(t)
< 0, (2.10)

where Ψ = ‖μ‖L∞ , β(t) = t(T − t) for 0 ≤ t ≤ T and λ > 0.
We will use the following Carleman inequality.

Theorem 2.1 There exist positive constants λ0, s0, C0 and C1 such that, for any s ≥ s0,
any λ ≥ λ0 and any solution to (2.9) (corresponding to some uT , vT ∈ L2(Ω)), one has∫∫

QT

e2sα[(sφ)−1(|ut|2 + |Δu|2) + λ2sφ|∇u|2 + λ4(sφ)3|u|2] dydt

≤ C0

( ∫∫
QT

e2sα|v|2 dydt+
∫∫

ω×(0,T )

e2sαλ4(sφ)3|u|2 dydt
)
, (2.11)∫∫

QT

e2sα[(sφ)−1(|vt|2 + |Δv|2) + λ2sφ|∇v|2 + λ4(sφ)3|v|2] dydt

≤ C1

( ∫∫
QT

e2sα|u|2 dydt+
∫∫

ω×(0,T )

e2sαλ4(sφ)3|v|2 dydt
)
. (2.12)

Furthermore, C0, C1 and λ0 depend only on Ω and ω, and s0 can be chosen of the form

s0 = C(Ω, ω)(T + T 2). (2.13)

This result was essentially proved in [11] (in fact, similar Carleman inequalities were es-
tablished there for much more general linear parabolic equations); see also [9]. In fact, the
coefficients of the principal part A∗(t), according to the assumptions (A1) and (A2), are of
class C1 and a, b, c and d are uniformly bounded. Under these conditions, the Carleman in-
equalities presented in [11] or [9] guarantee (2.11) and (2.12).

We remark that the explicit dependence on time of the constants is not given in [11]. We
refer to [9] where the above formula for s0 was obtained.

Remark 2.1 The Carleman inequalities presented in [11] and [9] were used there to derive
the null controllability. More precisely, they were applied to the adjoint equation after the coor-
dinate transformation x→ y, which requires C1 or the Lipschitz condition on the coefficients in
the principal part. This means that the geometric assumptions (A1)–(A2) are almost necessary
to establish the existence results.

Since, as far as we know, there is no negative result for the null controllability in the
case of parabolic equations with bounded and coercive coefficients, we expect that the null
controllability operates under much weaker assumptions than (A1)–(A2).
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Let us introduce the following notation: For given λ and s as in Theorem 2.1, we set

I(u) =
∫∫

QT

e2sα[(sφ)−1(|ut|2 + |Δu|2) + λ2sφ|∇u|2 + λ4(sφ)3|u|2] dydt (2.14)

and

I(v) =
∫∫

QT

e2sα[(sφ)−1(|vt|2 + |Δv|2) + λ2sφ|∇v|2 + λ4(sφ)3|v|2] dydt. (2.15)

As consequence of Theorem 2.1, we have the following lemma.

Lemma 2.2 Consider the same notations as in Theorem 2.1. For λ, s � 0, the solutions
u, v of (2.9) satisfiy the estimate:

I(u) + I(v) ≤ C
( ∫∫

ω×(0,T )

e2sαλ4(sφ)3(|u|2 + |v|2) dydt
)
. (2.16)

This lemma already implies the null controllability of (2.8) by two control forces. This
corresponds to the case where we plug a second force fχω into the right-hand side of the first
equation of (2.8). So, now, the problem is to get rid of the term

∫∫
ω×(0,T )

e2sαλ4(sφ)3|u|2dy dt
in the right-hand side of (2.16). The main plan to do this is to use the second equation in (2.9)
to estimate this last integral in terms of

∫∫
ω×(0,T )

e2sαλ4(sφ)3|v|2dy dt. The construction of the
functional (2.21) below turns around this idea. This paper is based on the following crucial
result.

Theorem 2.2 Consider the hypotheses of Lemma 2.2 and assume, moreover, that there
exists a constant b0 > 0 and a domain ωb such that

ωb � ω (2.17)

and

|b| ≥ b0 in ωb × (0, T0) (2.18)

for some T0 > 0. Then for all r ∈ [0, 2) there exists a constant C = C(r, T, λ) such that∫∫
ω′×(0,T )

e2α(u2 + v2) dydt ≤ C

∫∫
ω×(0,T )

erαv2dydt (2.19)

for all ω′ satisfying ω′ � ωb � ω � Ω.

Proof The main idea is to estimate
∫∫
ω′×(0,T ) e2αu2dydt by

∫∫
ω×(0,T ) erαv2dydt for some

r ∈ [0, 2) using the second equation of (2.9). To do this, let ξ ∈ C∞(Rn) be a truncation
function satisfying ∣∣∣∣∣∣

ξ(y) = 1, ∀y ∈ ω′,
0 < ξ(y) ≤ 1, ∀y ∈ ω′′,
ξ(y) = 0, ∀y ∈ R

n \ ω′′,
(2.20)

where ω′ � ω′′ � ωb � ω � Ω.
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Assume for example that b ≥ b0 > 0 in ωb × (0, T ) and introduce the function η := ξ6. For
real numbers β0, β1, p and q > 0, which will be chosen, set

Γ(t) =
∫

Ω

(epαη
4
3u2 + β0e2αηuv + β1eqαη

2
3 v2) dy. (2.21)

In the other case −b ≥ b0 > 0, we modify the term (β0e2αηuv) to (−β0e2αηuv) in the
expression for Γ.

Differentiating Γ with respect to t and replacing ut and vt by their expressions given by
(2.9), we obtain

Γ′(t) =
∫

Ω

(pepαη
4
3u2 + 2β0e2αηuv + β1qeqαη

2
3 v2)αtdy

+
∫

Ω

(2epαη
4
3 uut + β0e2αηutv + β0e2αηuvt + 2β1eqαη

2
3 vvt) dy

=
∫

Ω

(pepαη
4
3u2 + 2β0e2αηuv + β1qeqαn

2
3 v2)αt dy

+ 2
∫

Ω

epαη
4
3u(A∗u+ au+ cv) dy

+ β0

∫
Ω

e2αη[(A∗u+ au+ cv)v + u(A∗v + bu+ dv)] dy

+ 2β1

∫
Ω

eqαη
2
3 v(A∗v + bu+ dv) dy. (2.22)

Hence, integration from 0 to t ≤ T and using Γ(0) = Γ(T ) = 0 (because α(0) = 0, α(T ) =
−∞; see (2.10)) yield∫∫

QT

β0e2αηbu2dydt

=
∫∫

QT

−{(pαt + 2a)epαη
4
3u2 + (β1(qαt + 2d)eqαη

2
3 + β0e2αηc)v2

+ (β0(2αt + a+ d)e2αη + 2β1eqαη
2
3 b+ 2epαη

4
3 c)uv} dydt− 2

∫∫
QT

epαη
4
3uA∗u dydt

− β0

∫∫
QT

e2αη(uA∗v + vA∗u) dydt− 2β1

∫∫
QT

eqαη
2
3 vA∗v dydt

= J1 + J2 + J3 + J4. (2.23)

Next we estimate the above four integrals separately.

Estimate for J1 In fact, since αt 
∈ L∞(QT ), we introduce r ∈ [0, 2) and write e2α =
e(2−r)αerα. Assuming that

p > 2, q > 1 +
r

2
, r < 2, (2.24)

and that β0, β1 ≥ 1, by using the Cauchy-Schwarz inequality, we get

J1 ≤ C
([

1 + |a|∞ +
1
T 4

] ∫∫
QT

e2αηu2dydt
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+ |β|2
[
1 + |a|2∞ + |b|2∞ + |c|2∞ + |d|2∞ +

1
T 8

] ∫∫
QT

η
1
3 erαv2dydt

)
, (2.25)

where C = C(p, q, |η|∞) and |β|2 = β2
0 + β2

1 .

Estimate for J2 We have

J2 = −2
∫∫

QT

epαη
4
3uA∗u dydt

= 2
∫∫

QT

epαη
4
3 u

( n∑
i,j=1

∂

∂yj
(αij

∂u

∂yi
) + epαη

4
3 div(	bu)

)
dydt

= −2
∫∫

QT

epαη
4
3
∂u

∂yj
αij

∂u

∂yi
dydt

− 2
∫∫

QT

[ ∂

∂yj
(epαη

4
3 )αiju

∂u

∂yi
+ epαη

4
3
∂bi
∂yi

u2 + epαη
4
3 biu

∂u

∂yi

]
dydt

≤ −2α0

∫∫
QT

epαη
4
3 |∇u|2 +

∫∫
QT

∂

∂yi

(
αij

∂

∂yj
(epαη

4
3 )

)
u2dydt

+
∫∫

QT

[
epαη

4
3

∣∣∣∂bi
∂yi

∣∣∣u2 − ∂

∂yi
(epαη

4
3 bi)u2

]
dydt, (2.26)

where we have used the inequality (1.9).
Set ∣∣∣∣∣∣∣∣∣∣∣∣∣

N1 =
∫∫

QT

∂

∂yi

(
αij

∂

∂yj
(epαη

4
3 )

)
u2dydt,

N2 =
∫∫

QT

epαη
4
3

∣∣∣∂bi
∂yi

∣∣∣u2dydt,

N3 = −
∫∫

QT

∂

∂yi
(epαη

4
3 bi)u2dydt.

(2.27)

Derivate the integral N1 with respect to yi, ∂
∂yi

, we find 8 terms, namely:

e−2αη−1 ∂

∂yi

(
αij

∂

∂yj
(epαη

4
3 )

)

= e(p−2)α ∂αij
∂yi

∂α

∂yj
η

1
3 + e(p−2)αp2αij

∂α

∂yi

∂α

∂yj
η

1
3

+ e(p−2)αpαij
∂2α

∂yi∂yj
η

1
3 + e(p−2)αpαij

∂α

∂yj

4
3
η−

2
3
∂η

∂yi

+ e(p−2)α ∂αij
∂yi

4
3
η−

2
3
∂η

∂yj
+ e(p−2)ααijpη

− 2
3
4
3
∂α

∂yi

∂η

∂yj

+ e(p−2)ααij
4
3
(
4
3
− 1)η

4
3−3 ∂η

∂yi

∂η

∂yj
+ e(p−2)ααij

4
3
η

4
3−2 ∂2η

∂yi∂yj

= a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8. (2.28)

In the following, we estimate each of these terms.
From the definition of η = ξ6, we obtain∣∣∣η− 2

3
∂η

∂yi

∣∣∣ =
∣∣∣6ξ ∂ξ

∂yi

∣∣∣ ≤ C,
∣∣∣η− 5

6
∂η

∂yi

∣∣∣ =
∣∣∣6 ∂ξ
∂yi

∣∣∣ ≤ C,
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3
∂2η

∂yi∂yj

∣∣∣ =
∣∣∣30

∂ξ

∂yj

∂ξ

∂yi
+ 6ξ

∂2ξ

∂yi∂yj

∣∣∣ ≤ C.

It follows from this last computation and the assumptions (A1)–(A2) that∣∣∣∣∣∣∣∣∣∣

|a1|∞ ≤ C
(
1 +

1
T 4

)
, |a2|∞ ≤ C

(
1 +

1
T 4

)
, |a3|∞ ≤

(
1 +

1
T 4

)
,

|a4|∞ ≤ C
(
1 +

1
T 4

)
, |a5|∞ ≤ C, |a6|∞ ≤ C

(
1 +

1
T 4

)
,

|a7|∞ ≤ C, |a8|∞ ≤ C,

(2.29)

where C = C(p, |η|∞).
Plugging these estimates into N1, we get

N1 =
∫∫

QT

e−2αη−1 ∂

∂yi

(
αij

∂

∂yj
(epαη

4
3 )

)
e2αηu2dydt

≤
∣∣∣e−2αη−1

( ∂

∂yi

(
αij

∂

∂yj
(epαη

4
3 )

))∣∣∣
∞

∫∫
QT

e2αηu2dydt

≤ C
(
1 +

1
T 4

)∫∫
QT

e2αηu2dydt. (2.30)

Proceeding as previously, we obtain

N2 ≤
∣∣∣e(p−2)αη

1
3
∂bi
∂yi

∣∣∣
∞

∫∫
QT

e2αηu2dydt ≤ C

∫∫
QT

e2αηu2dydt, (2.31)

because
∣∣e(p−2)αη

1
3 ∂bi
∂yi

∣∣
∞ ≤ C.

Also,

N3 = −
∫∫

QT

e−2αη−1
( ∂

∂yi
(epαη

4
3 bi)

)
e2αηu2. (2.32)

On the other hand,

∂

∂yi
(epαη

4
3 bi) = pepα

∂α

∂yi
η

4
3 bi + epα

4
3
η

1
3
∂η

∂yi
bi + epαη

4
3
∂bi
∂yi

,

and thus

N3 ≤
∣∣∣e−2αη−1

( ∂

∂yi
(epαη

4
3 bi)

)∣∣∣
∞

∫∫
QT

e2αηu2dydt ≤ C
(
1 +

1
T 4

)∫∫
QT

e2αηu2dydt. (2.33)

Substituting (2.30)–(2.31) and (2.33) into (2.26) we have

J2 ≤ −2α0

∫∫
QT

epαη
4
3 |∇u|2 + C

(
1 +

1
T 4

) ∫∫
QT

e2αηu2dydt. (2.34)

Estimate for J3 We have

J3 = β0

∫∫
QT

e2αηu
(
− ∂

∂yi

(
αij

∂v

∂yj

)
− ∂

∂yi
(biv)

)
dydt

+ β0

∫∫
QT

e2αηv
(
− ∂

∂yi

(
αij

∂u

∂yj

)
− ∂

∂yi
(biu)

)
dydt
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= β0

∫∫
QT

e2αη
∂u

∂yi
αij

∂v

∂yj
dydt+ β0

∫∫
QT

∂

∂yi
(e2αη)αiju

∂v

∂yj
dydt

− β0

∫∫
QT

e2αηu
∂(biv)
∂yi

dydt+ β0

∫∫
QT

e2αη
∂v

∂yi
αij

∂u

∂yj
dydt

+ β0

∫∫
QT

∂

∂yi
(e2αη)αijv

∂u

∂yj
dydt− β0

∫
QT

e2αηv
∂(biu)
∂yi

dydt. (2.35)

Next, we bound from above the fifth and the second terms on the right-hand side of (2.35),
respectively, as follows:

β0

∫∫
QT

∂

∂yi
(e2αη)αijv

∂u

∂yj
dydt

= β0

∫∫
QT

e
rα
2 vη

1
6 e2α− rα

2

(
2αij

∂α

∂yi

∂u

∂yj
η

5
6 + αij

∂η

∂yi

∂u

∂yj
η−

1
6

)
dydt

≤ β2
0

2ε

∫∫
QT

erαη
1
3 v2 + ε

∫
QT

e4α−rα2
[
4α2

ij

( ∂α
∂yi

)2

η
5
3 + α2

ij

( ∂η
∂yi

)2

η−
1
3

]( ∂u
∂yj

)2

dydt

≤ β2
0

2ε

∫∫
QT

erαη
1
3 v2dydt

+ 2εC(αij)
∫∫

QT

e(q−r)αepαη
4
3 (4|∇α|2η 1

3 + |∇η|2η− 5
3 )

∣∣∣ ∂u
∂yj

∣∣∣2dydt
≤ β2

0

2ε

∫∫
QT

erαη
1
3 v2dydt+ 2εC

(
1 +

1
T 8

)∫∫
QT

epαη
4
3 |∇u|2dydt, (2.36)

where we have used in (2.36) that∣∣∣∣∣∣∣∣

∣∣∣∂αi
∂yj

∣∣∣ ≤ |∇α|, ∇η
η

5
6

= 6∇ξ ∈ L∞(Ω) ⇒ |∇η|2
η

5
3

= 36|∇ξ|2 ∈ L∞(Ω),

∇α =
λeλψ∇ψ
t(T − t)

, p+ q ≤ α⇒ e4α ≤ e(p+q)α, q − r = q − r

2
− r

2
> 0.

(2.37)

Similarly,

β0

∫∫
QT

∂

∂yi
(e2αη)αiju

∂v

∂yj
dydt

=
∫∫

QT

eαη
1
2αiju

(
2β0eα

∂α

∂yi
η

1
2 + β0eαη−

1
2
∂η

∂yi

) ∂v

∂yj
dydt

≤ 1
2

∫∫
QT

e2αηu2dydt+ β2
0

∫∫
QT

2e2α
[∣∣∣ ∂α
∂yi

∣∣∣2η + η−1
∣∣∣ ∂η
∂yi

∣∣∣2]α2
ij

∣∣∣ ∂v
∂yj

∣∣∣2dydt
≤ 1

2

∫∫
QT

e2αηu2dydt+ β2
0

∫∫
QT

e(2−q)αeqαη
2
3 (|∇α|2η 1

3 + η−
5
3 |∇η|2)α2

ij |∇v|2dydt

≤ 1
2

∫∫
QT

e2αηu2dydt+ β2
0 |e(2−q)α(|∇α|2η 1

3 + η−
5
3 |∇η|2)α2

ij |∞
∫∫

QT

eqαη
2
3 |∇v|2dydt

≤ 1
2

∫∫
QT

e2αηu2dydt+ β2
0C

(
1 +

1
T 8

)∫∫
QT

eqαη
2
3 |∇v|2dydt. (2.38)

Substituting (2.36), (2.38) into (2.35), we obtain

J3 ≤ 2β0

∫∫
QT

e2αηαij
∂u

∂yi

∂v

∂yj
dydt+

β0
2

2ε

∫∫
QT

erαη
1
3 |v|2dydt+

1
2

∫∫
QT

e2αηu2dydt
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+ εC
(
1 +

1
T 8

)∫∫
QT

epαη
4
3 |∇u|2dydt+ Cβ0

2
(
1 +

1
T 8

)∫∫
QT

eqαη
2
3 |∇v|2dydt

− β0

∫∫
QT

e2αηu
∂

∂i
(biv) dydt+ β0

∫∫
QT

e2αηv
∂

∂yi
(biv) dydt. (2.39)

Estimate for J4 We have

J4 = −2β1

∫∫
QT

eqαη
2
3 v

(
− ∂

∂yj

(
αij

∂v

∂yj

)
− ∂

∂yi
(biv)

)
dydt

= −2β1

∫∫
QT

eqαη
2
3
∂v

∂yj
αij

∂v

∂yj
dydt− 2β1

∫∫
QT

∂

∂yj
(eqαη

2
3 )vαij

∂v

∂yj
dydt

+ 2β1

∫∫
QT

e2αη
2
3 v

∂

∂yi
(biv) dydt

≤ −2β1α0

∫∫
QT

eqαη
2
3 |∇v|2dydt

+ β1

∫∫
QT

∂

∂yj

( ∂

∂yj
(eqαη

2
3 )αij

)
v2dydt+ 2β1

∫∫
QT

e2αη
2
3 v

∂

∂yi
(biv) dydt

≤ −2β1α0

∫∫
QT

eqαη
2
3 |∇|2 + C

(
1 +

1
T 4

)
β1

∫∫
QT

erαη
1
3 |v|2dydt

+ 2β1

∫∫
QT

eqαη
2
3 v

∂

∂yi
(biv) dydt. (2.40)

From (2.25), (2.34), (2.39) and (2.40) applied to (2.23), we obtain

b0β0

∫∫
QT

e2αηu2dydt

≤ C1

(
1 + |a|∞ +

1
T 4

)∫∫
QT

e2αηu2dydt

+
(
β0 + β1 + |a, b, c, d|∞ +

1
T 4

)∫∫
QT

erαη
1
3 v2dydt− 2α0

∫∫
QT

epαη
4
3 |∇u|2dydt

+ C
(
1 +

1
T 4

)∫∫
QT

e2αηu2dydt+ 2β0

∫∫
QT

e2αηαij
∂u

∂yj

∂v

∂yj
dydt

+
β0

2

2ε

∫
QT

erαη
1
3 |v|2dydt+

1
2

∫∫
QT

e2αηu2dydt+ εC
(
1 +

1
T 8

)∫∫
QT

epαη
4
3 |∇u|2

+ Cβ0
2
(
1 +

1
T 8

)∫∫
QT

eqαη
2
3 |∇v|2dydt− β0

∫∫
QT

e2αηu
∂

∂yi
(biv) dydt

− β0

∫
QT

e2αηv
∂

∂yi
(biu) − 2β1α0

∫∫
QT

eqαη
2
3 |∇v|2dydt

+ C
(
1 +

1
T 4

)
β1

∫∫
QT

erαη
1
3 |v|2 + 2β1

∫∫
QT

eqαη
2
3 v

∂

∂yi
(biv) dydt. (2.41)

But fixing now

b0β0

2
≥ C1

(
1 + |a|∞ +

1
T 4

)
+ C

(
1 +

1
T 4

)
+

3
2
, (2.42)

we obtain
β0b0

2

∫∫
QT

e2αηu2dydt
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≤
(
β2

0 + β2
1 + |a, b, c, d|∞ +

β2
0

2ε
+ C

(
1 +

1
T 4

)
β1

) ∫∫
QT

erαη
1
3 v2dydt

+
(
− α0 + εC

(
1 +

1
T 8

))∫∫
QT

epαη
4
3 |∇u|2dydt− α0

∫∫
QT

epαη
4
3 |∇u|2dydt

−
(
2β1α0 − Cβ2

0

(
1 +

1
T 8

))∫∫
QT

eqαη
2
3 |∇v|2dydt+ α0

∫∫
QT

epαη
4
3 |∇u|2dydt

+
β2

0C

α0

∫∫
QT

eqαη
2
3 |∇v|2dydt− β0

∫∫
QT

e2αηu
∂

∂yi
(biv) dydt

− β0

∫∫
QT

e2αηv
∂

∂yi
(biu) dydt+ 2β1

∫∫
QT

eqαη
2
3 v

∂

∂yi
(biv) dydt. (2.43)

Besides, we also have used in (2.43) that

β0

∫∫
QT

e2αηαij
∂u

∂yi

∂v

∂yj
dydt

≤ β0

∫∫
QT

(
e
pα
2 η

2
3α

1
2
0

∂u

∂yi

)(
eqαη

1
3α

− 1
2

0

∂v

∂yj

)
αij dydt

≤ α0

∫∫
QT

epαη
4
3 |∇u|2dydt+

β2
0C

α0

∫∫
QT

eqαη
2
3 |∇v|2dydt. (2.44)

Analysis of the Terms in (2.43) We have

β0

∫∫
QT

e2αηu
∂

∂yi
(biv) dydt

=
∫∫

QT

eαη
1
2u

(
β0η

1
2

(∂bi
∂yi

v + bi
∂v

∂yi

))
eα dydt

≤
∫∫

QT

e2αηu2dydt+ Cβ2
0

∫∫
QT

e2αη(|v|2 + |∇v|2) dydt

≤
∫∫

QT

e2αηu2dydt+ Cβ2
0

∫∫
QT

erαη
1
3 |v|2dydt+ Cβ2

0

∫∫
QT

eqαη
2
3 |∇v|2dydt. (2.45)

Also

β0

∫∫
QT

e2αηv
∂

∂yi
(biu) dydt

≤ β0

∫∫
QT

e
pα
2 e

qα
2 ηv

( ∂bi
∂yi

u+ bi
∂u

∂yi

)
dydt

≤ β2
0

ε

∫∫
QT

eqαη
1
3 v2dydt+ 4ε

∫∫
QT

epαη
5
3 (|u|2 + |∇u|2) dydt

≤ β2
0

ε

∫∫
QT

erαη
1
3 v2dydt+ εC

∫∫
QT

epαη|u|2dydt+ εC

∫∫
QT

epαη
4
3 |∇u|2dydt, (2.46)

because q > 1 + r
2 >

r
2 + r

2 = r.

Also, and finally, we have

2β1

∫∫
QT

eqαη
2
3 v

∂

∂yi
(biv)dydt
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= 2β1

∫∫
QT

eqαη
2
3 v2 ∂bi

∂yi
dydt+ 2β1

∫∫
QT

eqαη
2
3 vbi

∂v

∂yi
dydt

≤ Cβ1

∫∫
QT

erαη
1
3 |v|2dydt+ β1

∫∫
QT

eqαη
2
3 bi

∂

∂yi
(v2)dydt

≤ Cβ1

∫∫
QT

erαη
1
3 |v|2dydt

+ β1

∫∫
QT

(
qeqα

∂α

∂yi
η

2
3 bi + eqα

2
3
η−

1
3
∂η

∂yi
bi + eqαη

2
3
∂bi
∂yi

)
v2dydt

≤ Cβ1

∫∫
QT

erαη
1
3 |v|2dydt+ β1C

(
1 +

1
T 4

) ∫∫
QT

erαη
1
3 v2dydt. (2.47)

Combining (2.45)–(2.47) with (2.43) and again with (2.42) yields

βb0
2

∫∫
QT

e2αηu2dydt

≤
(
β2

0 + β2
1 + |a, b, c, d|∞ +

β2
0

2ε
+ C

(
1 +

1
T 4

)
β1 + Cβ2

0

+
β2

0

ε
+ Cβ1 + β1

(
1 +

1
T 4

)) ∫∫
QT

erαη
1
3 |v|2dydt

+
(
− α0 + εC

(
1 +

1
T 4

)
+ 2εC

)∫∫
QT

epαη
4
3 |∇u|2dydt

−
(
2β1α0 − Cβ2

0

(
1 +

1
T 8

)
− β2

0

α0
C − Cβ2

0

)∫∫
QT

eqαη
2
3 |∇v|2dydt. (2.48)

Select ∣∣∣∣∣∣∣∣∣∣

β1 >
1

2α0

(
Cβ2

0

(
1 +

1
T 8

)
+
β2

0

α0
C + Cβ0

)
,

β0 as in (2.42) andε small enough satisfying:

ε
(
C

(
1 +

1
T 8

)
+ 2C

)
< α0.

(2.49)

By using (2.24) and (2.49) in the last inequality (2.48) we obtain∫∫
QT

e2αηu2dydt ≤ C

∫
QT

erαη
1
3 v2dydt. (2.50)

From the definition of ξ(y) given in (2.20), we obtain∫∫
w′×(0,T )

e2αu2dydt ≤
∫∫

QT

e2αηu2dydt

≤ C

∫∫
QT

erαη
1
3 v2dydt ≤ C

∫∫
w×(0,T )

erαv2dydt. (2.51)

Since r < 2, α < 0, then∫∫
w′×(0,T )

e2αv2dydt ≤
∫∫

w×(0,T )

e2αv2dydt ≤
∫∫

w×(0,T )

erαv2dydt. (2.52)

This completes the proof of Theorem 2.2.

Note that if we modify the expression of functional Γ(t) defined in (2.21) by taking sα

instead of α, s > s0 > 0, we have the following result.
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Corollary 2.1 As an immediate consequence of Theorem 2.2, it follows that for all r ∈
[0, 2), there exists a constant C = C(r, T ) such that∫∫

ω′×(0,T )

e2sα(u2 + v2) dydt ≤ C

∫∫
ω×(0,T )

ersαv2dydt. (2.53)

Now, we will prove the observability inequality for weak solutions of the adjoint system
(2.9). Observe that it is a consequence of the Carleman inequality proved in Theorem 2.1 and
Corollary 2.1.

Theorem 2.3 Let the assumptions of Theorem 2.2 be satisfied. Then there exists a positive
constant C depending on T , s and λ, such that every pair of solutions u = u(y, t), v = v(y, t)
to (2.9) satisfies

|u(0)|2L2(Ω) + |v(0)|2L2(Ω) ≤ C

∫∫
ω×(0,T )

e
rsα
2 v2dydt, (2.54)

where s and λ are taken as in Theorem 2.1.

Proof By the Carleman inequality (Theorem 2.1), we have∫∫
QT

e2sα{(sφ)−1(|ut|2 + |vt|2 + |Δu|2 + |Δv|2) + λ2sφ(|∇u|2 + |∇v|2)} dydt

+
∫∫

QT

e2sαλ4(sφ)3(|u|2 + |v|2) dydt

≤ C

∫∫
ω×(0,T )

e2sαλ4(sφ)3(|u|2 + |v|2) dydt (2.55)

for all ω � Ω, λ ≥ λ0, and s ≥ s0. If we set ω = ω′ (with ω′ as in Theorem (2.2)) in (2.55), we
have∫∫

QT

e2sαλ4(sφ)3(|u|2 + |v|2) dydt ≤ C

∫∫
ω′×(0,T )

e2sαλ4(sφ)3(|u|2 + |v|2) dydt. (2.56)

We have

φ3 ≤ C

t3(T − t)3
, (2.57)

because φ(x, t) ≤ eλ||ψ||
β(t) ≤ C

t(T−t) .
By using Corollary 2.1 and (2.56)–(2.57) we obtain∫∫

QT

e2sαφ3(|u|2 + |v|2) dydt ≤ C

∫∫
ω′×(0,T )

e2sαφ3(|u|2 + |v|2) dydt

≤ C1

( 1
T 6

)∫∫
ω′×(0,T )

esα(|u|2 + |v|2) dydt ≤ C2

∫∫
ω×(0,T )

e
rsα
2 |v|2dydt. (2.58)

On the other hand, we also have

φ3 ≥ 1
t3(T − t)3

, (2.59)
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because φ(x, t) = eλψ(x)

β(t) ≥ 1
t(T−t) .

Combining (2.58)–(2.59) yields

C

∫ 3T
4

T
4

∫
Ω

(|u|2 + |v|2) dydt ≤ C

∫∫
ω×(0,T )

e
rsα
2 |v|2dydt. (2.60)

Multiplying both sides of the first equation of (2.9) by u and integrating on Ω, and multi-
plying both sides of the second equation of (2.9) by v and integrating on Ω, we obtain∣∣∣∣∣∣∣∣

−1
2

d
dt

|u|2 +
∫

Ω

αij
∂u

∂yi

∂u

∂yj
≤

∫
Ω

∂bi
∂yi

u2 + bi
∂u

∂yi
u+ au2 + cvu,

−1
2

d
dt

|v|2 +
∫

Ω

αij
∂v

∂yi

∂v

∂yj
≤

∫
Ω

∂bi
∂yi

v2 + bi
∂v

∂yi
v + cv2 + duv.

(2.61)

Recalling the assumptions (A1)–(A2) and using (2.5) and (1.9), we rewrite (2.61) and obtain

− 1
2

d
dt

(|u|2L2(Ω) + |v|2L2(Ω)) + α0(‖u‖2
H1

0(Ω) + ‖v‖2
H1

0 (Ω))

≤ C(|u|2L2(Ω) + |v|2L2(Ω)) +
α0

2
(‖u‖2

H1
0(Ω) + ‖v‖2

H1
0 (Ω)). (2.62)

Thus

|u(0)|2L2(Ω) + |v(0)|2L2(Ω) ≤ C(|u|2L2(Ω) + |v|2L2(Ω)). (2.63)

Employing (2.60) and (2.63) we finally obtain

|u(0)|2L2(Ω) + |v(0)|2L2(Ω)

=
2
T

∫ 3T
4

T
4

(|u(0)|2L2(Ω) + |v(0)|2L2(Ω)) dt

≤ C

∫ 3T
4

T
4

(|u|2L2(Ω) + |v|2L2(Ω)) dt

≤ C

∫∫
ω×(0,T )

e
rsα
2 v2dydt. (2.64)

Theorem 2.4 Assume that b satisfies the same assumptions (2.17)–(2.18) as in Theorem
2.2. For each ψ0, w0 ∈ L2(Ω), there exists a control g ∈ L2(ω × (0, T )) such that the weak
solution ψ = ψ(y, t), w = w(y, t) of the state equation (2.8) satisfies

ψ(y, T ) = 0, w(y, T ) = 0 in Ω, (2.65)

with an estimate for the control of the form

|g|2L2(ω×(0,T ) ≤ C(|ψ0|2L2(Ω) + |w0|2L2(Ω)). (2.66)

Proof We prove this theorem by using a variational method and the observability inequality
(see (2.54)). For g ∈ L2(QT ), r ∈ [0, 2) and ε > 0 given, let us introduce the functional Jε by

Jε(g) =
∫∫

QT

e
−rsα

2 g2dydt+
1
ε
|ψ(T )|2L2(Ω) +

1
ε
|w(T )|2L2(Ω). (2.67)
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Here, the pair ψ,w is the solution of (2.8) associated to the initial data ψ(T ), w(T ). It is not
difficult to check that Jε is continuous, strictly convex and coercive in L2(QT ), so it possesses
a unique minimum gε ∈ L2(QT ), whose associated solution is denoted by ψε, wε.

We find gε ∈ L2(QT ), and by means of the state equation (2.8), we find the weak solution
ψε, wε. The next step consists in proving the convergence of gε, ψε and wε, that is,

lim
ε→0

gε = g, lim
ε→0

ψε = ψ, lim
ε→0

wε = w. (2.68)

And the further step consists in proving that the pair ψ,w is the weak solution of (2.8)
corresponding to the control g and that

ψ(y, T ) = 0, w(y, T ) = 0 in Ω. (2.69)

Initially, we observe that by the maximum principle (or see, for instance, [9]) we obtain that

gε = e
rsα
2 χωvε a.e. in QT , (2.70)

where the pair uε, vε is the weak solution of the parabolic problem:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−uε,t +A∗(t)uε + a(y, t)uε + c(y, t)vε = 0 in QT ,
−vε,t +A∗(t)vε + b(y, t)uε + d(y, t)vε = 0 in QT ,
uε = vε = 0 on ΣT ,

uε(T ) = −1
ε
ψε(T ), vε(T ) = −1

ε
wε(T ) in Ω,

(2.71)

with ψε, wε being the solution of⎧⎪⎪⎨
⎪⎪⎩
ψε,t +A(t)ψε + a(ψ,w)ψε + b(ψ,w)wε = 0 in QT ,
wε,t +A(t)wε + c(ψ,w)ψε + d(ψ,w)wε = χwgε in QT ,
ψε = wε = 0 on ΣT ,
ψε(0) = ψ0, wε(0) = w0 in Ω.

(2.72)

Recall that our objective is to show that ψε(y, T ) = 0 and, wε(y, T ) = 0 in Ω. For this,
we need to estimate the functions gε and the pair ψε, ωε in order to assure the convergence of
gε to g and ψε, ωε to ψ, ω as ε goes to zero. In the following, we describe how to obtain such
estimates. As the first step, multiply both sides of the first equation of (2.71) by ψε and both
sides of the second equation of (2.71) by wε, and integrate on QT . As the second step, multiply
both sides of the first equation of (2.71) by uε and both side of the second equation of (2.71)
by vε, and integrate on QT . Adding the results of these steps, we obtain∫∫

QT

e
rsα
2 |vε|2χw dydt−

∫
Ω

wε(T )vε(T ) dy −
∫

Ω

ψε(T )uε(T ) dy

= −
∫

Ω

wε(0)vε(0) dy −
∫

Ω

ψε(0)uε(0) dy. (2.73)

By the inequality of observability for (2.71) (see Theorem 2.3), we obtain from (2.71) and
(2.73): ∫∫

QT

e
rsα
2 |vε|2dydt+

1
ε
|wε(T )|2L2(Ω) +

1
ε
|ψε(T )|2L2(Ω)
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≤ |w0|L2(Ω)|vε(0)|L2(Ω) + |ψ0|L2(Ω)|uε(0)|L2(Ω)

≤ C(|ψ0|2L2(Ω) + |w0|2L2(Ω)) +
1
2

∫∫
QT

e
rsα
2 |vε|2dydt. (2.74)

Thus from (2.74) we obtain∫∫
QT

|gε|2dydt =
∫∫

QT

e
rsα
2 e

rsα
2 |vε|2dydt ≤ C(|ψ0|2L2(Ω) + |w0|2L2(Ω)), (2.75)

from which it follows that

gε ⇀ g in L2(ω × (0, T )) with |g|L2(ω×(0,T )) ≤ C(|ψ0|2L2(Ω) + |w0|2L2(Ω)). (2.76)

Also from (2.74) we have

ψε(y, T ) → 0, wε(y, T ) → 0 stronglyL2(Ω) as ε→ 0. (2.77)

From (2.72) we obtain

ψε ⇀ ψ weaklyL∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)),

wε ⇀ w weaklyL∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)),

ψε, t ⇀ ψt weaklyL2(0, T ;H−1(Ω)),

wε, t ⇀ wt weaklyL2(0, T ;H−1(Ω)).

(2.78)

Applying a compactness result (see, for example, Lions [18]), we can extract a subsequence
of (ψε), (wε), which shall still be represented by (ψε), (wε), such that∣∣∣∣ψε → ψ stronglyL2(QT ),

wε → w stronglyL2(QT ). (2.79)

It is easy to see that the limit g is such that the solution ψ,w of the system⎧⎪⎪⎨
⎪⎪⎩
ψt +A(t)ψ + a(ψ,w)ψ + b(ψ,w)w = 0 inQT ,
wt +A(t)w + c(ψ,w)ψ + d(ψ,w)w = χwg inQT ,
ψ = w = 0 on ΣT ,
ψ(0) = ψ0, w(0) = w0 in Ω

(2.80)

satisfies (2.65).
Moreover, by the lower semi-continuity of the norm with respect to the weak topology and

in view of (2.76)–(2.79), we deduce that (2.66) holds. This completes the proof of Theorem 2.4.

3 Null Controllability of the Nonlinear Problem

This section is devoted to proving the main result in this paper, namely, Theorem 1.1. By
the inverse mapping τ−1, we prove that Theorem 3.1 below implies Theorem 1.1. For this
reason, we only need to prove Theorem 3.1. It will be a consequence of Theorem 2.4 and
Kakutani’s fixed-point theorem.

Remark 3.1 The system (1.1) is to be said locally null controllable at time T if the previous
property holds for any ψ0, w0 in a ball B(0; δ) ⊂ L2(Ω), with δ depending on T .
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Theorem 3.1 Assume that the conditions of Theorem 1.1 hold. Then for any ψ0, w0 in a
ball B(0; δ) ⊂ L2(Ω), with δ depending on T, the nonlinear system (1.8) is locally null control-
lable at time T .

More precisely, for any ψ0, w0 in a ball B(0; δ) ⊂ L2(Ω), with δ depending on T and T > 0,
there exists a control g ∈ L2(ω × (0, T )) such that the solution ψ,w of (1.8) satisfies

ψ(y, T ) = 0, w(y, T ) = 0 in Ω. (3.1)

Proof We apply the fixed point method, as is usually done. As we will work with the
multi-valued function, we need an infinite dimensional version of Shizuo Kakutani’s fixed point
theorem. In order to do this, we introduce the following Hilbert space:

W = W (0, T,H1
0 (Ω), H−1(Ω)) = {ξ ∈ L2(0, T ;H1

0 (Ω)): ξt ∈ L2(0, T ;H−1(Ω))},

which is equipped with the norm

|ξ|2W = |ξ|2L2(0,T ;H1
0 (Ω)) + |ξt|2L2(0,T ;H−1(Ω))

(see, for instance [18]). We observe that∣∣∣∣∣
W (0, T,H1

0 (Ω), H−1(Ω)) ⊂ L2(QT ) with compact imbedding,

W (0, T,H1
0 (Ω), H−1(Ω)) ⊂ C([0, T ];L2(Ω)) with continuous imbedding.

(3.2)

Let us fix R > 0 and denote by B = B(0, R) the closed ball in W ×W of center 0 and radius
R. Hence, B is a convex and compact subset of X := L2(QT ) × L2(QT ).

For each (ψ,w) ∈ B and g ∈ L2(Ω), we consider the null controllability problem for⎧⎪⎪⎨
⎪⎪⎩
ψt +A(t)ψ + a(ψ,w)ψ + b(ψ,w)w = 0 in QT ,

wt +A(t)w + c(ψ,w)ψ + d(ψ,w)w = χwg in QT ,
ψ = w = 0 on ΣT ,
ψ(0) = ψ0, w(0) = w0 in Ω,

(3.3)

where a, b, c and d are given in (2.2)–(2.3).

In view of (1.3) and Theorem 2.4, there exists a control g ∈ L2(ω × (0, T )) such that the
associated state ψ,w satisfies (2.65)–(2.66).

We define the mapping Φ : B → 2X as follows: For (ψ,w) ∈ B, we set, by definition

Φ(ψ,w) = {(ψ,w) ∈W ×W, weak solution of (3.3) for g ∈ L2(QT ), with

|g|2L2(QT ) ≤ C(|ψ0|2L2(Ω) + |w0|2L2(Ω)), such that ψ(y, T ) = 0, w(y, T ) = 0 in Ω},

Then, the goal is to prove that the multi-valued mapping Φ satisfies the hypotheses of
Kakutani’s fixed-point theorem.

We consider (ψ,w) ∈ B. Then Φ(ψ,w) is non-empty and convex (a consequence of Theorem
2.4). Let us now prove that Φ : B → 2B, that is, Φ(B) ⊂ B. In fact, for all (ψ,w) ∈ B, if
(ψ,w) ∈ Φ(ψ,w), by the definition of Φ(ψ,w), (ψ,w) is a weak solution of (3.3).
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By the same argument to obtain (2.62), which is applied to (3.3), we obtain

1
2

d
dt

(|ψ|2L2(Ω) + |w|2L2(Ω)) + α0(‖ψ‖2
H1

0(Ω) + ‖w‖2
H1

0 (Ω))

≤ C(|ψ|2L2(Ω) + |w|2L2(Ω) + |g|2L2(ω)) +
α0

2
(‖ψ‖2

H1
0(Ω) + ‖w‖2

H1
0 (Ω)). (3.4)

Thus

|ψ|2L2(Ω) + |w|2L2(Ω) + 2α0

∫ T

0

(‖ψ‖2
H1

0(Ω) + ‖w‖2
H1

0 (Ω))dt

≤ (|ψ0|2L2(Ω) + |w0|2L2(Ω) + |g|2L2(ω×(0,T )))e
2CT = C1. (3.5)

Hence ∫ T

0

(|ψ|2L2(Ω) + |w|2L2(Ω)) dt ≤ C2, (3.6)

where C2 = C2(|ψ0|L2(Ω), |w0|L2(Ω), |g|L2(ω×(0,T )), T ).
Fix any z ∈ H1

0 (Ω) with ‖z‖H1
0(Ω) ≤ 1. From the first equation of (3.3) and by using

Poincaré’s inequality, assumptions (A1)–(A2) and the estimate (2.5), we obtain

|〈ψt, z〉|H−1(Ω)×H1
0 (Ω) ≤ C3(‖ψ‖H1

0 (Ω) + ‖w‖H1
0 (Ω))‖z‖H1

0(Ω), (3.7)

and thus

|ψt|2H−1(Ω) ≤ 2C3(‖ψ‖2
H1

0(Ω) + ‖w‖2
H1

0 (Ω)). (3.8)

Again, using (3.5) yields
∫ T

0

|ψt|2H−1(Ω)dt ≤ C4. (3.9)

By a similar argument we obtain finally∫ T

0

(|ψt|2H−1(Ω) + |wt|2H−1(Ω))dt ≤ C5. (3.10)

We observe that C2 and C5 depend on |ψ0|L2(Ω), |w0|L2(Ω), |g|L2(ω×(0,T )) and T .
Thus, if ψ0, w0 are sufficiently small, i.e., if

max{C2, C5} < R2

2
, (3.11)

then Φ(B) ⊂ B.
We claim now that Φ(ψ,w) is closed in X . Indeed, let (ψ,w) be fixed in B, and (ψn, wn) ∈

Φ(ψ,w) such that: ψn → ψ, wn → w strongly in L2(QT ) for all n. By the definition of Φ(ψ,w)
we have ⎧⎪⎪⎨

⎪⎪⎩
ψn,t +A(t)ψn + a(ψ,w)ψn + b(ψ,w)wn = 0 in QT ,

wn,t +A(t)wn + c(ψ,w)ψn + d(ψ,w)wn = χwgn in QT ,
ψn = wn = 0 on ΣT ,
ψn(0) = ψ0, wn(0) = w0 in Ω,

(3.12)
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with |gn|2L2(QT ) ≤ C(|ψ0|2L2(Ω) + |w0|2L2(Ω)).
We extract a subsequence (gn)n∈N such that

gn ⇀ g weakly in L2(QT ). (3.13)

By the same argument to obtain (3.10) from (3.3), we get

|ψn,t|2L2(0,T ;H−1(Ω)) + |wn,t|2L2(0,T ;H−1(Ω)) + |ψn|2L2(0,T ;H1
0 (Ω)) + |wn|2L2(0,T ;H1

0 (Ω)) ≤ R2 (3.14)

or

|(ψn, wn)|2W×W ≤ R2. (3.15)

From (3.14) we extract a subsequence (ψn)n∈N, (wn)n∈N such that∣∣∣∣∣∣∣∣∣∣∣∣

ψn ⇀ ψ weaklyL∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)),

wn ⇀ w weaklyL∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)),

ψn, t ⇀ ψt weaklyL2(0, T ;H−1(Ω)),
wn, t ⇀ wt weaklyL2(0, T ;H−1(Ω)),
ψn −→ ψ stronglyL2(QT ),
wn −→ w stronglyL2(QT ).

(3.16)

We have assured the last two convergence by Aubin-Lions compactness result; see, for
example, Lions [18] (or equivalently, as a consequence of the compactness of the embedding of
W (0, T,H1

0 (Ω), H−1(Ω)) into L2(QT ), cf. (3.2)).
From (3.13) and (3.16), we pass to the limits in (3.12) as n→ ∞ and obtain⎧⎪⎪⎨

⎪⎪⎩
ψt +A(t)ψ + a(ψ,w)ψ + b(ψ,w)w = 0 in QT ,

wt +A(t)w + c(ψ,w)ψ + d(ψ,w)w = χwg in QT ,
ψ = w = 0 on ΣT ,
ψ(0) = ψ0, w(0) = w0 in Ω,

(3.17)

and |g|2L2(QT ) ≤ C(|ψ0|2L2(Ω) + |w0|2L2(Ω)). Thus, (ψ,w) ∈ Φ(ψ,w) and Φ(ψ,w) is closed in X .
Thus, since B is a compact of X and Φ(ψ,w) ⊂ B is closed, it implies that Φ(ψ,w) is a

compact of X .
We now intend to show that Φ has the closed graph in X × X . This is not difficult to

check: Assume that (ψn, wn) → (ψ,w) strongly in X and (ψn, wn) → (ψ,w) strongly in X ,
with (ψn, wn) ∈ Φ(ψn, wn) for all n. It remains to show that (ψ,w) ∈ Φ(ψ,w). In fact, from
(ψn, wn) ∈ Φ(ψn, wn), it follows that (ψn, wn) is a weak solution of the following problem:⎧⎪⎪⎨

⎪⎪⎩
ψn,t +A(t)ψn + a(ψn, wn)ψn + b(ψn, wn)wn = 0 in QT ,

wn,t +A(t)wn + c(ψn, wn)ψn + d(ψn, wn)wn = χwgn in QT ,
ψn = wn = 0 on ΣT ,
ψn(0) = ψ0, wn(0) = w0 in Ω

(3.18)

with
∫∫
QT

|gn|2dydt ≤ C(|ψ0|2L2(Ω) + |w0|2L2(Ω)).
Recall (see, e.g., (3.15) or equivalently (3.14)) that the following energy inequality holds for

(3.18):

|(ψn, wn)|2W×W ≤ R2. (3.19)
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By Aubin-Lions compactness theorem (see (3.3)) and using that (ψn, wn) → (ψ,w) strongly
in X ×X , we can derive the estimates similar to (3.16) for the sequence (ψn, wn)n∈N of a weak
solution of (3.18). They are as follows:∣∣∣∣∣∣∣∣∣∣∣∣

ψn ⇀ ψ weaklyL∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)),

wn ⇀ w weaklyL∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)),

ψn, t ⇀ ψt weaklyL2(0, T ;H−1(Ω)),
wn, t ⇀ wt weaklyL2(0, T ;H−1(Ω)),
ψn → ψ stronglyL2(QT ) and a.e. in QT ,
wn → w stronglyL2(QT ) and a.e. in QT .

(3.20)

Notice that by hypothesis we have∣∣∣∣ψn → ψ stronglyL2(QT ) and a.e. inQT ,
wn → w stronglyL2(QT ) and a.e. inQT .

(3.21)

From the convergences above, passing to the limits in (3.18) as n → ∞, it is then easy to
see that (ψ,w) ∈ Φ(ψ,w).

Therefore, the multi-valued mapping Φ : B → 2X satisfies the conditions of Kakutani’s
fixed-point theorem, which are: B is a non-empty convex compact set, Ψ(B) ⊂ B, and Ψ has
a closed graph in X ×X . Hence it has a fixed point. The proof of Theorem 3.1 is complete.
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