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Null Controllability of Some Reaction-Diffusion Systems
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Abstract In this article, the authors establish the local null controllability property
for semilinear parabolic systems in a domain whose boundary moves in time by a single
control force acting on a prescribed subdomain. The proof is based on Kakutani’s fixed
point theorem combined with observability estimates for the associated linearized system.
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1 Introduction and Main Results

In this article we investigate the question of local null controllability of a semilinear coupled
parabolic system in the case of time dependent domains with a single control force. To make
notations clear, let  be a bounded connected open set of R” with the boundary C2. For T > 0,
we represent by Q7 the cylinder  x (0,7) of R"*! with a lateral boundary Y7 defined by
I'x (0,T). Let us consider a family of functions {7 }o<i<7, where for each ¢, 7; is a deformation
of 2 into an open bounded set €2; of R™ defined by

Y ={zeR" v=u.(y) foryeQ}.

For t = 0, we identify Qy with Q and 7y with the identity mapping. For convenience of
notation, for vector y € Q, we will write y = (y1,¥2, -+ ,¥n) and the points in the deformed
domain Q;, 0 < t < T, will be denoted by © = (z1, 22, - ,2,). The smooth boundary of €, is
represented by I';. The non-cylindrical domain @T and its lateral boundary S are defined by

Qr= |J {ux{t}} and Sr= |J {Tvx{t}},

0<t<T 0<t<T

respectively.

We assume the following regularity on the functions 7 for 0 <t < T:
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(A1) 7 is a C? diffeomorphism from Q to Q.
(A2) 7 lies in C1([0, T]; C°(Q,R™)) N C°([0, T]; (2, R™)).

Thus we have a natural diffeomorphism 7, : Qr — @T defined by
(yvt) € QT - ({E,t) € Q\Tv where x = Tt(y)'

To simplify the presentation, the reference domain € is assumed to be bounded and of
class C?. Nevertheless, we remark that most of the results we present here still hold when
€ is Lipschitz continuous and unbounded. The regularity assumptions on the diffeomorphism
7+ may also be weakened. However, the minimal assumptions on the reference domain 2 and
the transformation 74 will depend very much on the notion of solution and the type of control
problem under consideration.

Concerning the class of domains @T which we are considering, it is important to point
out that the assumptions above are not very restrictive. For instance, the condition (A2)
that 7, depends in a C!' way on time (that, in practice, can often be replaced by a Lipschitz
dependence) indicates that the domain does not evolve in time too roughly but allows all kinds
of deformations on its shape. But, the conditions that €; can be mapped into the reference
domain € at every ¢ by means of a C? diffeomorphism impose that the topology of €; does
not change as time evolves. This is the main restriction that we impose on the geometry of the
space-time domain @T under consideration. In particular, we do not address here the problems
in which holes appear or disappear in §); as time increases. This type of situation requires a
separate analysis since solutions may develop singularities at those points where the topology
of ©; changes.

Our main goal is to establish the null controllability for the following general reaction-

diffusion system which arises in mathematical biology:

W =AY+ fi (i, ®) =0 in Qr,
=w=0 on X, ’

¥(z,0) = Yo(x), w(x,0)=wo(x) in

where the control force g acts on a unique equation of the system through an arbitrarily small
open set @, where @ is the image by 74 of a non-empty open subset w of €.

In (1.1) we havE v = i(x,t), w = w(x,t), @’ = %—f, w' = %, X5 is the characteristic
function of @, and 1y (x) and Wy (x) are the initial states.

Throughout this paper we assume that the nonlinear functions f; : RxR — R (i = 1,2) are

globally Lipschitz and f;(0,0) = 0. By this, we mean that there exist My, My > 0 such that

|fi(w7w)_fi(wvw)| SMt(lw_E|+|w_w|)a 1=1,2, (1 2)
Assume also that there exists a positive constant Cy > 0 such that
2 (Y, w) > Co, Y(1h,w) € R x R. (1.3)

ow
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Under natural hypotheses on the 720, Wy, we see that for each g, there exists exactly one
solution i, @ to (1.1), with
b e C(10,T); L(9).

The main aim of this paper is to analyze the controllability properties of (1.1) when the
control acts on a single equation of system.

The system (1.1) is to be said null controllable at time T if the following holds: For any given
o, Wy € L2 (), there exist controls g € L?(@ x (0,T)) such that the corresponding solutions
to (1.1) satisfy

o~

Y(x, T)=0, @, T)=0 inQ, (1.4)
with an estimate of the form

9172 @x 0.y < Clltol72q) + |[@olF2q))- (1.5)

The system (1.1) is to be said locally null controllable at time 7' if the previous property
holds for any 1, @ in a ball B(0;6) C L?(2), with & depending on T

Recently, important progress has been made in the controllability analysis of semilinear
parabolic equations. We refer to the works [7—8, 10-11, 14] and the references therein in the
context of bounded domains, and the works [3, 6] in the context of more general domains. It is
natural, from both the theoretical and applied viewpoints, to try to extend the known results
to systems of kind (1.1). It is particulary important to highlight that system (1.1) has only one
control, which is in accordance with the theoretical philosophy of trying to control a system
with the least possible controls; to this direction we cite [1, 12, 16-17].

Our main result is the following.

Theorem 1.1 Assume that the non-cylindrical domain @T and functions f;,i = 1,2, sat-
isfy the geometric conditions (A1)-(A2) and the conditions (1.2)-(1.3) respectively. Then the

nonlinear system (1.1) is locally null controllable at any time T > 0.

The methodology in the present paper consists in turning the non-cylindrical state equation
(1.1) into a cylindrical one (see (1.8) below) by the diffeomorphism 7.

To carry on this methodology, we first denote by ¢.(z) the inverse map of 7, that is,
¢; = 7, *. According to the assumption (A1), ¢y is a C?%-map from Q; to Q, for all 0 <t < T.
We shall use the notation p(x,t) = ¢(x). Thus the state on Qr is defined by

D(y,t) = (r(y),t) = d(r(y,t),t) forallyeQ,
w(y,t) = w(r(y),t) = w(r(y,t),t) for all y € Q. (1.6)

@(m,t) =Y(pe(x),t)  forall z € Q,
w(z,t) = w(pe(z),t) forall x € Q. (1.7)
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Therefore, the initial-boundary value problem (1.1) is equivalent to:

wt"—A(t)w—’_fl(waw) =0 in QT}
wy + A(t)w + f2(wa w) = Xw9 in QT} (1 8)
w =w = on ET, :

w(xv 0) = wO(l‘)a w(xv O) = wo(ﬂ?) in €,

where
A(tyb(y, 1) = AD(y.1) + By 1) - Vo,
~ 9 O
Altyo(y,t) = - Z 3y (w07
ki 0:0) = Z25r).0) S rul0). 1),
b(y,t) = (b;(y,t)1<j<n,
b0 ) = SH ). 0) + 3 G nt) = By (). ),
k=1
g(yat) = g(Tt(y)at)v
Go(y) = do(ro(w)),  woly) = Bo(ro(v)).

The system (1.8) is a variable coefficient parabolic equation in the cylindrical domain Q7.
From the technical point of view, a new problem arises because the state equation (1.8) contains
a uniformly coercive operator A(t). More precisely, for ¢, w € H}(€) x H}(Q) and by Gaussian

lemma, we obtain the bilinear form «(t, ¢, w) defined by

~ n N Ow
altvow) = A = 35 [ auntizh gt a

This bilinear form is bounded because ¢(x,t) = 7~ !(z) is a C? diffeomorphism between €,
and € (see (A1)). Then its matrix M = (%)Ki i<n
[M =]

rn < aiOHnHRn, ap > 0. From the last inequality, we have the estimate:

is inversible and for all n € R™ we have

a(t,,¢) > 04(2)||¢H§{g(9)a (1.9)

proving the coercivity of o in H}(Q) x H}(2). Note that according to assumptions (A1) and
(A2), the boundary value problem (1.8) is a classical problem studied by Lions in [18]. If
we take Yo, wg € H}(Q) and g € L*(0,T;L?(Q)), then (1.8) has a strong solution ¥, w €
C([0,T); HY(Q)) N L2(0,T; H?(2)) N HY(0,T; L*(Q)). Otherwise, if ¥y, wo € L*(Q) and g €
L2(0,T; L*(2)), then (1.8) has a weak solution ¢, w € C([0,T]; L*(Q)) N L?(0,T; H}(Q)). In
both cases we have uniqueness.

By using the diffeomorphism (y,t) — (z,t), from Qr to CA)T, we obtain a unique solution
@Z, w to the problem (1.1) with the regularity, namely:

(1) 1t o, o € HE(Q), § € L2(0, T3 LA(4), then 6, @ € C([0, T); HA(R0) LA (0, T; HA(S))
NHY(0,T; L?(Y)).

(2) If tho, Wo € L2(Q), § € L2(0,T; L2(S)), then o, @ € C([0, T); L(€2))NL2(0,T; HL ().
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At this point we underline that, under assumptions (A1)—(A2), the transformation y — x
does indeed map the space of functions C([0,7]; HL(Q)) N L?(0,T; H?(2)) N H'(0,T; L*(Q))
into C([0,T]; HE(Q4)) N L2(0,T5 H2(2)) N HY(0,T; L*(Q4))-

For a detailed discussion about the existence, uniqueness and regularity of solutions to
the system (1.1), we refer to [23]. There, they have used the energy method combined with
Poincaré’s inequality (satisfied uniformly in the domains Q; for all 0 < ¢ < T'), the uniform
(with respect to t) elliptic regularity, and the classical trace results and interpolation. They
did not use the diffeomorphism (y,t) — (z,t) from Q7 to @T, and they worked directly on the
system (1.1) to see how the structure of the non-cylindrical domain affects the estimates that
are used in the energy method.

This paper is organized as follows. Section 2 is devoted to proving the null controllability
of a linearized system, which is similar to (1.8). In Section 3, we prove Theorem 1.1 by a fixed
point method.

We close this section by mentioning some basic references on the analysis of partial differ-
ential equations in non-cylindrical domains. Among many references we mention the following:
Lions [19], Cooper and Bardos [5], Medeiros [20], Inoue [15], Nakao and Narazaki [23] for wave
equations; Bernardi, Bonfanti and Lutteroti [2], Miranda and Medeiros [22] for Schrédinger
equations; He and Hsiano [13] for Euler equations; Miranda and Limaco [21] for Navier-Stokes

equations; Chen and Frid [4] for hyperbolic systems of the conservation law.

2 Analysis of the Controllability of the Linearized System

The main result of this article will be proved in Section 3 by means of a fixed point argument.
For this, we observe that for any 1, w € L?(Qr), the following identity holds:

f1(ih,w) = £1(0,0)
d
:/0 5 fl(Uwan) do

1

1
:/0 %fl(0w7aw)daw+/o %fl(0w70w)d0'w

= a(, w)y + (¢, w)w, (2.1)

9h denote the partial derivatives of fi; with respect to the variables ¢ and w,

where %+ and af !

respectively, and the functions a(v,w) and b(¢, w) are defined as

1
a(y,w) :/ gﬁ(aw,aw) do
0 4
1y (2.2)
b(v,w) :/0 8_77 fi(oy, ow)do.
Similarly, we define the functions ¢ = ¢(¢, w) and d = d(v, w) as
/ = Y, ow) do,
5 (o
8 (2.3)
8_ 2(0, ow) do.
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Note that

f2(¢7w) - f2(070) = C(wvw)¢+d(¢7w)w (24)
Moreover, we assume the bounds:

la(, w)|Le(@ry < M1, (), w)|pe~(qr) < M,

(2.5)
le(ih, w)| Lo (@r) < Mz, |d(, w)|pe(0r) < Ma,
where M7, My are the positive constants given in (1.2).
With this notation, the system (1.8) can be rewritten in the form
wt + A(t)w + G(W w)w + b(% w)w =0 in QT;
w + At)w + c(, w) + d(, w)w = xwg in Qr, (2.6)
PYp=w=0 on X, ’
$(0) = o, w(0) =wo n Q.
Given ¥, W € L?(Qr) we now consider the linearized system
Pr+ A(t)) + a(, W) + b, w)w = 0 in Qr,
w + A(t)w + c(, W) + d(, W)w = xwg in Qr, (2.7)
Yp=w=0 on X, '
¥(0) =0, w(0)=wo in Q.

Observe that the system (2.7) is linear on the states ¢ and w, and has potentials a, b, ¢,d €
L>(Qr) satisfying the uniform bound given in (2.5).

Again, with this notation we rewrite the system (2.7) as

e+ A(t) + aly, t)Y + by, t)w =0 in Qr,
we + A()w + c(y, )Y + d(y, ) w = xwg in Qr,
PY=w=0 on X,
¥(0) =1, w(0) =wo in Q.

(2.8)

As usual, the controllability of (2.8) is closely related to the properties of the solutions to

the associated adjoint states. In this case, the adjoint systems are

—ug + A" (H)u+aly, t)u+cly,t)v =0 in Qr,
—vg + A (v + by, thu+d(y,t)v =0 in Qr,
u=v=0 on X,
w(T) =upr, o(T)=uvr in Q,

(2.9)

where A*(t) is the formal adjoint of the operator A(t), ur,vr € L*(Q).

Next we sketch the points used in the proof of the null controllability of the system (2.8)
using the observability estimate. First, we use a global-Carleman inequality satisfied by the
solutions to (2.9). Second, this inequality allows us to establish an observability estimate.
Third, we prove the null controllability of (2.8) by using the observability estimate.

In this approach, the following technical result, due to Fursikov and Imanuvilov [11], is

fundamental.



Null Controllability for Reaction-Diffusion Systems in Time-Dependent Domains 35

Lemma 2.1 Let w € Q be a non-empty open set. There exists a function p € C%(Q)
satisfying

ply) >0, Vye,

pn=0, Vyeoi,
Viy) > k>0, VyeQ\w.

Let us introduce the functions
e/\u(y) e)‘.“'(y) — 62)“11
¢ yvt = "o « yvt = T a
W0=Tm 0 *wI=""5g
where ¥ = ||u||pe, 5(t) =t(T — 1) for 0 <t < T and A > 0.

We will use the following Carleman inequality.

<0, (2.10)

Theorem 2.1 There exist positive constants \g, so, Co and C1 such that, for any s > sg,

any X > Xo and any solution to (2.9) (corresponding to some ur,vr € L*(R)), one has

// e2sa[(8¢)71(|ut|2 + |Au|2) + /\25¢|vu|2 + )\4(5¢)3|u|2] dydt
Qr

gco(// e25a|v|2dydt+// ( )eQSO‘)\4(s¢)3|u|Qdydt), (2.11)
T wx (0,T

// e2sa[(s¢)71(|vt|2 + |AU|2) + )\28¢|V7}|2 + A4(5¢)3|1}|2] dydt
Qr

< 01(// eQS“|u|2dydt+// ezsa/\4(s¢)3|v|2dydt>. (2.12)
T wx(0,T)

Furthermore, Cy, C1 and Ao depend only on 0 and w, and sy can be chosen of the form
s0 = C(Q,w)(T +T?). (2.13)

This result was essentially proved in [11] (in fact, similar Carleman inequalities were es-
tablished there for much more general linear parabolic equations); see also [9]. In fact, the
coefficients of the principal part A*(t), according to the assumptions (A1) and (A2), are of
class C' and a,b,c and d are uniformly bounded. Under these conditions, the Carleman in-
equalities presented in [11] or [9] guarantee (2.11) and (2.12).

We remark that the explicit dependence on time of the constants is not given in [11]. We

refer to [9] where the above formula for sy was obtained.

Remark 2.1 The Carleman inequalities presented in [11] and [9] were used there to derive
the null controllability. More precisely, they were applied to the adjoint equation after the coor-
dinate transformation x — y, which requires C' or the Lipschitz condition on the coefficients in
the principal part. This means that the geometric assumptions (A1)—(A2) are almost necessary
to establish the existence results.

Since, as far as we know, there is no negative result for the null controllability in the
case of parabolic equations with bounded and coercive coefficients, we expect that the null

controllability operates under much weaker assumptions than (A1)—(A2).



36 J. Limaco, M. Clark, A. Marinho, et al.

Let us introduce the following notation: For given A and s as in Theorem 2.1, we set
I(u) = // €22 ((50) " ([uaf? + [ Aul?) + A256|Vuf? + N (56)?|ul?] dydt (2.14)
and
10) = [ e 150) 0P + |A0P) + R2s6iT? + N (s) b e, (215)

As consequence of Theorem 2.1, we have the following lemma.

Lemma 2.2 Consider the same notations as in Theorem 2.1. For \,s > 0, the solutions
u,v of (2.9) satisfiy the estimate:

I(u) + I(v) < c(//wx(m =N (59)* (fuf? + [of?) dydt ). (2.16)

This lemma already implies the null controllability of (2.8) by two control forces. This
corresponds to the case where we plug a second force fy, into the right-hand side of the first
«(0.T) e259 \4(s¢)3|u|?dy dt
in the right-hand side of (2.16). The main plan to do this is to use the second equation in (2.9)
«(0.7) e252 \*(5¢)%|v|?dy dt. The construction of the

functional (2.21) below turns around this idea. This paper is based on the following crucial

equation of (2.8). So, now, the problem is to get rid of the term ffw
to estimate this last integral in terms of [J

result.

Theorem 2.2 Consider the hypotheses of Lemma 2.2 and assume, moreover, that there

exists a constant by > 0 and a domain wy such that
wp € w (2.17)
and
[b] > by in wp x (0,Tp) (2.18)

for some Ty > 0. Then for all r € [0,2) there exists a constant C = C(r,T, \) such that

// e (u? +v?) dydt < C// e v dydt (2.19)
w’x(0,T) wx(0,T)

for all W' satisfying W' € wp Ew € Q.

Proof The main idea is to estimate ffw’X(O e e22y2dydt by fwa(O e e"*v2dydt for some
r € [0,2) using the second equation of (2.9). To do this, let £ € C>°(R™) be a truncation

function satisfying

£(y) =1, Yy € W,
0<&(y) <1, Vyeuw, (2.20)
£(y) =0, Vy € R™\w”,

where W’ €@ W' €@ wy, € w E 0.
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Assume for example that b > by > 0 in wy, x (0,T) and introduce the function 7 := £%. For

real numbers [y, 81,p and ¢ > 0, which will be chosen, set
I'(t) = / (e”o‘n%u2 + Boe®“nuu + ﬂleqo‘n%UQ) dy. (2.21)
Q

In the other case —b > by > 0, we modify the term (Bpe*nuv) to (—Boe®*nuv) in the
expression for T,

Differentiating I" with respect to ¢ and replacing u; and v; by their expressions given by
(2.9), we obtain

I'(t) = /Q(pepo‘néu2 + 2602 nuv + Brge?®nsv?)aydy
+ /52(2epa77%uut + Boe®*nuyv + Boe® nuvy + 2619y vy) dy
= /Q(pepo‘n%u2 + 230> nuv + 51(]eqan§02)at dy
+2 /Q epan%u(A*u + au + cv) dy
+ Bo /Q e?n[(A*u + au + cv)v + u(A*v + bu + dv)] dy
+ 2061 /Q eq(’n%v(A*v + bu + dv) dy. (2.22)

Hence, integration from 0 to ¢ < T and using I'(0) = I'(T") = 0 (because a(0) =0, a(T') =
—o0; see (2.10)) yield

/ Boe?*nbudydt

Qr

- // —{(pas + 2a)ePn3u® + (B1 (g + 2d)e™ nF + B ne)v?
T

+ (Bo(2as + a+ d)e®*n + 2616903 b + 2eP*n3 c)uv} dydt — 2 // ePons uA*u dydt

T
— fo // e n(ud*v +vA*u) dydt — 23, // eqo‘n%vA*v dydt
T T

=Ji1+Ja+J3+ J4. (2.23)

Next we estimate the above four integrals separately.

Estimate for J; In fact, since a; ¢ L°°(Qr), we introduce r € [0,2) and write e?* =
e(2=maera - Agsuming that
r
p> 2, q>1—|—§7 r<2, (2.24)

and that Gy, 81 > 1, by using the Cauchy-Schwarz inequality, we get

J1 < C({l + |aloo + %} //Q e2nudydt
T
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1821+ ol + bl + lef2, + Jdl%

where C' = C(p, ¢, 1) and |5/?

Estimate for Jo We have

Jo = —2// epan%uA*u dydt
4 0

= 2// eP*niy — (g
T ( Z ay]

i,j=
10 ou
Q= o

u
=9 pap s
// e dy;

J

ou
—2// (eP*n3 ) u
. 3y3 ns ) J

— 4+ epan

yi

J. Limaco, M. Clark, A. Marinho, et al.

+—} // n%emvzdydt),
T80 JJar

(2.25)

=35+ 6.

g ) + ePons dlv(bu)) dydt

dydt

b; 4
gy u? + epan§ bzug—u} dydt

4

(o3 a [e3
< 2a0//QT ePn3 |Vu|2 // o 04”8 (eP*n )) 2dydt

u2

where we have used the inequality (1.9).

Set
N
L //T ay; \*
Ny = // epam

Derivate the integral Ny with respect to

Qr i

0

—2a, —1
T oy,
- (p 2)a 80&w Oa
0Yi ay]

e

0
(aij a_ (ep(yn
Yj

77%+e

=a1 +ag + a3+ aq + as + ag + a7 + as.

0
yi

Z(erntn)u }dydu (2.26)

(epa )) u?dydt,

Yj

u?dydt,

(2.27)
(ep(’n§ b )uldydt.

Yis %, we find 8 terms, namely:

%))

(2.28)

In the following, we estimate each of these terms.

From the definition of n = £%, we obtain

it

et

3yz

5

5 <,

e iy

‘ 62

oy; | —
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_2 0% o5 ¢ 0%¢
‘ 3ayiayj‘ ‘ 9y, 00 T % ay0y,

+6¢ ‘gc

It follows from this last computation and the assumptions (A1)—(A2) that

1 1 1

=) e <C(14 =), asleo < (14 7).
1

la4]oo < 0(1 + T4) lasloe < C,  ag|eo < 0(1 n T4>

|a7|oo < 07 |a8|oo < 07

la1|oo < c(1+

where C' = C(p, |n]).

Plugging these estimates into Ny, we get

5} d 4
Ny = // e_QQU_la—y(aijy(epanﬁ))emnuzdydt
0

0
< —2a, —1 pa 2
7‘6 n (8%(0[”8 e // e2nuldydt
< C’(l + ﬁ // e?*nudydt.
Qr

Proceeding as previously, we obtain

1 Ob;
31 // e puldydt < C// e2“nuldydt,
o0 T T

N, < ‘e(p—zmns
Oy

(p—2)a 3 Obi
because |e UEN-T
Also,

L<cC.

0 1
_ —2a,—1 pa, 37\ a2, 2
//Te 7 <3yi(e 7 bl))e nu”.

On the other hand,

0
g

1
3

8’17 861
b; +eP%n
ayz e 3%‘ ’

COI»Jk

Oa
POpSL) — peP
e’*n3b;) = pe m

and thus

N3 < ‘e*hn*l(a(z epamb // e nuldydt < C 1 —|— — // e2nu2dydt.
T

Substituting (2.30)—(2.31) and (2.33) into (2.26) we have

Js < —2a0// ep“n%|Vu|2+C 1—|—— // e2pudydt.
Estimate for J3 We have
v 0
ii— ) — —(b; dydt
T = 50// . nu 8%( j(?yj) 8%’( v)) Y

+»30// e®“nu ——( jgyi) 8ji(biu)) dydt

39

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)
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v 0 v
= [ // e? 77 Yo dydt + ﬁo/ (62&77)@,.“_ dydt
T ayz ”a Qr 3% ” a j

ou
_ﬁo//T m ddt—i—ﬁo//Te na oz”a dydt

ou o Ofbin)
+50/QT 9% (e? “n)o;v 8 " dydt 50/ e“nu—= o0, dydt. (2.35)

T

Next, we bound from above the fifth and the second terms on the right-hand side of (2.35),

respectively, as follows:

5o // (e?*n) Qv Ou dydt
T 8 Yj
ra ra Jda Ju s on du _1

= e unse?® F (20 —— —n6 + ayj—r —n 8 ) dydt

ﬂO //T Y ( Jayi 8%77 Jayz 8y]77 ) Yy

B ra, 1 2 da—ra 2 (02 5 o (ONN\2 _17(0u
< — ‘[ — - (L
S o // e"“n3v —l—e/ e 2[40[”(8%) ns —1—04”(8%) n 3}(8;(;3) dydt

T T

34 2
< = e’ 77311 dydt
2e

+ 260(%’) // ela=Naeray s (4|Val?ns + V|2~ F)
T

oN

ou |2
— | dydt
8yj ‘ Y

g—(z //QT eronsu3dydt + 260(1 + %) //QT P3| Vul2dydt, (2.36)
where we have used in (2.36) that
2] < \val, T =ovee 12 = VIE = ave e (@),
’ AN Ve " do — _(prq)a r_r (237
Voz:m, p+Hg<a=e*<e , q—Tzq—§—§>0-
Similarly,

ﬂo// e “n)oju v dydt
r 9Yi 8j

. I T
:// eanzaiju<2ﬂoe 8—6%772 + Boe™n 28_77)(‘)_v dydt

] 2
<c e nuldydt + (2 // 2e 0‘ 1 } ‘ddt
2 Jar *Jax 3% 9yi

1 5
< 5 // e2“nU2dydt+ﬁ§ // e(2—q)aeqan§(|va|2n§ +n_3|Vn|2)a?j|Vv|2dydt

Qr .

1

< ) // e2anu2dydt—|—5g|e(2fq)a(|va|2n% +n*§|vn|2)a12j|oo // eqan%|Vv|2dydt
. Qr

l 202 2 i qa, 2 2
< e**nuidydt + B5C (1 + e?n3|Vo|~dydt. (2.38)

2/ 57 ) Jqq

Substituting (2.36), (2.38) into (2.35), we obtain

J3 <208 // e? na”g (‘? d dt+—// e"n3 |v|2dydt—|— // e nuldydt
T Yj
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+eC 1+— // P |Vau|?dydt + C 5> 1+— // el*ns |Vv|2dydt

— B // b (bjv) dydt + By // e 88 (b;v) dydt. (2.39)

Estimate for J; We have
0
- _9 ac 3 i b; dydt
ﬁl//Te nv ayg( ]ayj) a9; = v)) y
=23 // eqo‘n§ ana dydt — 23, // eqa voz”g dydt
+25 //
< 26100 [ eqanﬂwdydt
Qr
0 /0 2 2 0
——qa_i' Qddt 2 // 20(—_bi dudt
o [ g (et )vtdvie s 2m [[coiog oo ay
2 1 1
< —Zﬁlao//QT eqan§|V|2+C(1+ﬁ)61 //QT e"ns v Adydt
+ 2061 // ety

From (2.25), (2.34), (2.39) and (2.40) applied to (2.23), we obtain

boSo // e2°‘77u2dydt
T
1
<Ci(1+aloeo + = // e nudydt
( °° T4) or

1
+ (50 + 01+ ]a,b,¢,d| + ﬁ // emn%UQdydt — 29 [/ epan% |Vu|>dydt
T

Ju Ov
+C 1+T4 //Te nu2dydt+25o//T i e —dydt

+62L/ E lv[2dydt + = // e? nuzdydt—l—eC 1+ // ePn |Vu|2
€ T T

—I—Cﬁo 1—|—— // eq(’n |Vo|?dydt — 60// e? nu bv) dydt

—60/ e? nva (b; u)—ZBlozo// e |Vo|2dydt
Qr T

+C(1+ﬁ 61// e””n§|v|2+251// s

But fixing now

v) dydt

8(3 (biv) dydt. (2.40)

0
; . 2.41
8yi (biv) dydt (2.41)

boﬂo > 1 (1+lale + ;4) ro(1+ %) n g (2.42)

b
—ﬂOZO // e2°‘nu2dydt
T

we obtain
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< (B8 +5 +lab.c d|oo+§0 v 014 2)5 // &t o dyds
+ (— ag + eC 1 —|— — // ePons |Vu|2dydt —ap // epan%|Vu|2dydt

- (Zﬁlao - Cp32 (1 + ﬁ // eq"775|Vv| dydt + o // ep“n%|Vu|2dydt
Qr

2
ﬁOC’// e |Vo2dydt — o // bv) dydt

— Bo //TQQQUUa_%(biu) dydt 4 20 //Teqa 3 (bv) dydt.

Besides, we also have used in (2.43) that

2 1 0u 1 —1 v
<50// e2773a )(eqo‘nﬁa 2—)ai-dydt
0 yz 0 8yj /
2C
< ag // e | Vul2dydt + foC // e®n3 | Vol 2dydt.
Qr @0 Qr

Analysis of the Terms in (2.43) We have

Bo // b (biv) dydt
o 1 1/ 0b; ov
e
< // e**nuidydt + C32 // e?n(jv]? + |Vol?) dydt
Qr T
< // e*nudydt + C32 // emn%|v|2dydt+ (o5 // eqan%|Vv|2dydt.
Qr Qr Qr

Also

Bo // e2anvi(biu) dydt
T
pa go b
<60// 626277 au)dydt
T y 8y
<& J[ emnboragaerac [ e qu + 19u) dya
€ . Qr
2
< i) // eran%UQdydt—f— eC // ePonlul2dydt + eC // epan%|Vu|2dydt,
€ T Qr Qr

because ¢ > 14+ 5> 5+ 5 =7
Also, and finally, we have

201 //T eqan%vaiyi(biv)dydt

(2.43)

(2.44)

(2.45)

(2.46)
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=23 // eqa773v dydt + 261 // el%ns
<o [[ emn§|v|2dydt+ﬁl [ e
Qr Qr

<co [ / "o uf2dydt
T
ob;

Jda 2 2 (977 2
90 23 h; 4 1S5 L 4 8 dydt
+ﬂ1//T<qe 8%773 +e 37 9 +e 7738%) Yy

dv
“dy;

2 2
m (v )dydt

< Cp // emn%|v|2dydt + ﬁlc(l + ﬁ // emn%UQdydt. (2.47)

Combining (2.45)—(2.47) with (2.43) and again with (2.42) yields

ﬂbo // e nu2dydt
T

< (8 + 82 +a.bic, d|oo+
L&

i +C(1+—)ﬂ1+Cﬂ0

+ OB+ B (1 + = T4 // "5 |v|2dydt
+ ( — a0+ eC’(l + ﬁ) + 250 // e”an§|Vu|2dydt
1
- (Zﬁlao - Cps (1 + ﬁ) 606’ CB3 // e |Vo|?dydt. (2.48)
Select

TS
Bo asin (2.42) ande small enough satisfying: (2.49)

(C(l + %) n 20) < ag.

By using (2.24) and (2.49) in the last inequality (2.48) we obtain

B > %%(CQO(H —) ﬁoc+cgo)

// e nuldydt < C e” n3v2dydt (2.50)
T Qr

From the definition of £(y) given in (2.20), we obtain

// e?uldydt < // e?pudydt
"% (0,T) T

< C// e s vldydt < C// e v3dydt. (2.51)
T wx(0,T)

Since r < 2, a < 0, then

// e?*v?dydt < // e2?dydt < // e" 2 dydt. (2.52)
w’ x(0,T) wx (0,T) wx(0,T)

This completes the proof of Theorem 2.2.

Note that if we modify the expression of functional I'(t) defined in (2.21) by taking s«

instead of a, s > s¢ > 0, we have the following result.
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Corollary 2.1 As an immediate consequence of Theorem 2.2, it follows that for all r €
[0,2), there exists a constant C = C(r,T) such that

// e (u? + %) dydt < C// e %2 dydt. (2.53)
w’x(0,T) wx(0,T)

Now, we will prove the observability inequality for weak solutions of the adjoint system
(2.9). Observe that it is a consequence of the Carleman inequality proved in Theorem 2.1 and
Corollary 2.1.

Theorem 2.3 Let the assumptions of Theorem 2.2 be satisfied. Then there exists a positive
constant C' depending on T, s and X\, such that every pair of solutions u = u(y,t), v =v(y,t)
to (2.9) satisfies

() 220 + [0(0) By < C / / o5 p2dydt, (2.54)
wx(0,T)

where s and \ are taken as in Theorem 2.1.

Proof By the Carleman inequality (Theorem 2.1), we have
S e ts0) ™ uel? + ol + 180 +180) + X256 Tl + Vo)) dya
T

2sa 4 3 2 2
+// e\ (50) (Ju]” + |v|*) dydt

T

< c// 629 )4 (503 (Juf2 + [v]?) dydt (2.55)
wx(0,T)

forallw @ 2, A > Ao, and s > s¢. If we set w = w’ (with w’ as in Theorem (2.2)) in (2.55), we

have

// €22 (30)% ((uf? + [v]?) dydt < c// e\ (50)* ([uf* + [v]*) dydt.  (2.56)
T w’x(0,T)

We have

C

¢ < BT 17 (2.57)

Aol
because ¢(z,t) < WO ﬁ

By using Corollary 2.1 and (2.56)—(2.57) we obtain

J[ et up s papar<c [ @ P+ o) dye
Qr w’x(0,T)

1 rsa
< cl(—ﬁ) e (Juf? + |v]?) dydt < Cs ™5 [v[2dydt. (2.58)
T W' x(0,T) wx(0,T)

On the other hand, we also have

¢* >

= m, (2.59)



Null Controllability for Reaction-Diffusion Systems in Time-Dependent Domains 45

A ()
because ¢(z,t) = S = ﬁ

Combining (2.58)—(2.59) yields

c / ' / (luf? + [vf?) dydt < C //
Tz Q wx(0,T)

Multiplying both sides of the first equation of (2.9) by w and integrating on €2, and multi-

v|2dydt. (2.60)

plying both sides of the second equation of (2.9) by v and integrating on 2, we obtain

_li|u|2+/a“%%</ abiu2+b.%u+au2+cvu
2dt o 0y dy; ~ Jo Oy "Dy ’

1d||2+/ ov 8v< abiv2—|—b avv—f—ch—i—duv
———v Qj— ; .
2dt o 70y 0y ~ Jo Oy "Dy

Recalling the assumptions (A1)-(A2) and using (2.5) and (1.9), we rewrite (2.61) and obtain

1d
= g [l + lolia) + ao(llullzry ) + vl o)

ao
< O(lulfz () + 01720)) + 7(”“”%{5(9) + ||U||§{g(9))- (2.62)

(2.61)

Thus

|U(0)|%2(Q) + |U(0)|%2(Q) < C(|U|2L2(Q) + |U|%2(Q))' (2.63)
Employing (2.60) and (2.63) we finally obtain
|U(0)|%2(Q) + |U(0)|2L2(Q)
9 [
— 7 [ (O + 100}z

4

=3

3
<C (lulZ2q) + [v]72(qy) dt

T
4

< C// e 2 vidydt. (2.64)
wx(0,T)

Theorem 2.4 Assume that b satisfies the same assumptions (2.17)-(2.18) as in Theorem
2.2. For each g, wg € L*(Q), there exists a control g € L*(w x (0,T)) such that the weak
solution ¥ = P(y,t),w = w(y,t) of the state equation (2.8) satisfies

Yy, T)=0, w(y,T)=0 inQ, (2.65)
with an estimate for the control of the form

191720 x 0,1y < CIol 20y + [wolF2(ay)- (2.66)

Proof We prove this theorem by using a variational method and the observability inequality
(see (2.54)). For g € L?(Qr), r € [0,2) and € > 0 given, let us introduce the functional J, by

—rsa 1 1
Ie) = [[[ o7 Paydt+ Dy + 7 0D (2.67)
T
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Here, the pair ¢, w is the solution of (2.8) associated to the initial data ¢(T"), w(T). It is not
difficult to check that J. is continuous, strictly convex and coercive in L?(Qr), so it possesses
a unique minimum g, € L?(Qr), whose associated solution is denoted by ., w..

We find g. € L?(Q7), and by means of the state equation (2.8), we find the weak solution

e, we. The next step consists in proving the convergence of g., 1. and we, that is,
limg. =g, limy=1, limw.=w. (2.68)
e—0 e—0 e—0

And the further step consists in proving that the pair ¢, w is the weak solution of (2.8)

corresponding to the control g and that
Yy, T)=0, w(y,T)=0 in Q. (2.69)

Initially, we observe that by the maximum principle (or see, for instance, [9]) we obtain that

rsa

ge =€ 2 Y, . a.e. in Qr, (2.70)

where the pair u., v. is the weak solution of the parabolic problem:

—Ue + A" (B)ue + aly, t)ue + c(y, t)ve =0 in Qr,
_Ue,t + A* (t)vs + b(yv t)ue + d(yv t)ve = 0 in QT;
Ue =ve =0 on X, (2.71)
1 1
uc(T) = == (T), ve(T)=—-w(T) in Q,
€

€
with ¥, we being the solution of
we,t + A(t)we + a’(d)v w)l/k + b(wa w)ws =0 in QT}
We,t + A(t)we + c(P, w)pe + d(Y, w)we = Xwge in Qr,

e =we =0 on X,
w€(0) = ¢07 We (O) = Wo in Q.

Recall that our objective is to show that ¢.(y,T) = 0 and, wc(y,T) = 0 in Q. For this,

we need to estimate the functions g. and the pair 1., w, in order to assure the convergence of

(2.72)

ge to g and Y., we to Y, w as € goes to zero. In the following, we describe how to obtain such
estimates. As the first step, multiply both sides of the first equation of (2.71) by v, and both
sides of the second equation of (2.71) by w,, and integrate on Q7. As the second step, multiply
both sides of the first equation of (2.71) by u. and both side of the second equation of (2.71)
by ve, and integrate on Q7. Adding the results of these steps, we obtain

e 2
T

. / we(0)v,(0) dy — / e(0)uc(0) dy. (2.73)
Q Q

ve|? — [ w(T)v, - (T)ue
Py dydt /Q (T)o(T) dy /Q $e(T)ud(T) dy

By the inequality of observability for (2.71) (see Theorem 2.3), we obtain from (2.71) and
(2.73):

1 1
J[ e oyt + oD + fod Dl
T
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< wolr2(0)|ve(0)|L2() + [Yolr2()ue(0)| L2 ()

1 i
< C(l4o 20 +|w0|iz(m)+5//Q o o [Pyt (2.74)
T

Thus from (2.74) we obtain

JIL taeayar= [ % e gt < Clvoley + hoolfae), @75)
from which it follows that
ge =g nL*wx(0,7)) with |g|r2(ux(0,1)) < C|%0l72() + [wolF2(ay)- (2.76)
Also from (2.74) we have
Ye(y, T) =0, we(y,T) — 0 strongly L*(Q) as ¢ — 0. (2.77)

From (2.72) we obtain
e = weakly L(0,T; L*(9)) M L*(0,T; Hg (92)),
we —w  weakly L>(0,T; L*(Q)) N L*(0,T; Hy(2)),
et =y weakly L2(0,T; H™1(92)),
we, ¢ —w;  weakly L2(0,T; H1(Q)).

(2.78)

Applying a compactness result (see, for example, Lions [18]), we can extract a subsequence
of (1), (we), which shall still be represented by (¢¢), (w.), such that

e =¥ strongly L*(Qr),

we —w  strongly L?(Qr). (2.79)
It is easy to see that the limit g is such that the solution 1, w of the system
1/% + A(t)l/J + a’(d)v w)ﬁ’ + b(wa w)w =0 in QTv
w + A(t)w + c(, w)p + d(y, w)w = xwg InQr, (2.80)
Yp=w=0 on X, ’
’Lﬂ(O) = ’Lﬂo, w(O) = Wy in{)

satisfies (2.65).
Moreover, by the lower semi-continuity of the norm with respect to the weak topology and
in view of (2.76)—(2.79), we deduce that (2.66) holds. This completes the proof of Theorem 2.4.

3 Null Controllability of the Nonlinear Problem

This section is devoted to proving the main result in this paper, namely, Theorem 1.1. By

the inverse mapping 77!

, we prove that Theorem 3.1 below implies Theorem 1.1. For this
reason, we only need to prove Theorem 3.1. It will be a consequence of Theorem 2.4 and

Kakutani’s fixed-point theorem.

Remark 3.1 The system (1.1) is to be said locally null controllable at time T if the previous
property holds for any v, wo in a ball B(0;8) C L?(f2), with 6 depending on T
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Theorem 3.1 Assume that the conditions of Theorem 1.1 hold. Then for any g, wo in a
ball B(0;0) C L*(Q2), with § depending on T, the nonlinear system (1.8) is locally null control-
lable at time T.

More precisely, for any 1o, wo in a ball B(0;6) C L*(Q), with § depending on T and T > 0,
there exists a control g € L?(w x (0,T)) such that the solution v, w of (1.8) satisfies

Yy, T)=0, w(y,T)=0 inQ. (3.1)

Proof We apply the fixed point method, as is usually done. As we will work with the
multi-valued function, we need an infinite dimensional version of Shizuo Kakutani’s fixed point

theorem. In order to do this, we introduce the following Hilbert space:
W =W(0,T, Hy (), H () = {£ € L*(0,T; Hy()): & € L*(0,T; H ()},
which is equipped with the norm

(€ = 1817200 m3 ) + [t 22 00,7010
(see, for instance [18]). We observe that

W(0,T, HY(Q), H-*(Q)) C L*(Qr) with compact imbedding,

3.2
W(0,T,Hi(Q), H1(Q)) c C([0,T); L*(Q)) with continuous imbedding. (3.2)

Let us fix R > 0 and denote by B = B(0, R) the closed ball in W x W of center 0 and radius
R. Hence, B is a convex and compact subset of X := L?(Qr) x L*(Qr).
For each (¢, W) € B and g € L*(Q), we consider the null controllability problem for

Pr+ A(t)) + a(, W) + b, w)w = 0 in Qr,

wy + A(t)w + C(il%@)ﬂ) + d(?/%@)’w = Xwg in Qr, (3 3)
Y=w=0 on Yrp, '
w(o) = ¢07 w(o) = Wo in Qa

where a,b, c and d are given in (2.2)-(2.3).

In view of (1.3) and Theorem 2.4, there exists a control g € L?*(w x (0,7)) such that the
associated state 1, w satisfies (2.65)—(2.66).

We define the mapping ® : B — 2% as follows: For (¢,W) € B, we set, by definition

(1, w) = {(1h,w) € W x W, weak solution of (3.3) for g € L*(Qr), with
|9|%2(QT) < C(W’Oﬁz(n) + |w0|%2(9)), such that ¢(y, T) = 0, w(y,T) = 0 in 0},

Then, the goal is to prove that the multi-valued mapping ® satisfies the hypotheses of
Kakutani’s fixed-point theorem.

We consider (E, w) € B. Then ® (1), W) is non-empty and convex (a consequence of Theorem
2.4). Let us now prove that ® : B — 25 that is, ®(B) C B. In fact, for all (v,w) € B, if
(¢, w) € ®(h, W), by the definition of ® (), W), (¢, w) is a weak solution of (3.3).
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By the same argument to obtain (2.62), which is applied to (3.3), we obtain
1d

5&(|¢|QL2(Q) + |w[Za(q)) + 040(”1/)“?{3(9) + ||w||fqg(n))
o

< C(|1/1|2L2(Q) + |w|2L2(Q) + |9|%2(w)) + 7(”1/)“?{3(9) + ||w||§{3(9))' (3.4)

Thus
T
[l + ol + 200 | (101300 + lolBig o)t

< (|%ol72(q) + [wolF20) + |g|2L2(w><(O,T)))e2CT =Ch. (3.5)

Hence
T
/0 (|"/’|2L2(Q) + |w|%2(9)) dt < Cy, (3.6)

where Cy = Co(|[¢0|L2(q), [wolL2(9)s 1912 (wx 0,1)), T)-
Fix any 2z € Hj(Q) with [zl 1) < 1. From the first equation of (3.3) and by using

Poincaré’s inequality, assumptions (A1)—(A2) and the estimate (2.5), we obtain
(Wt 2) -1 @)xmz @) < Ol my ) + 1wl a @)zl m @) (3.7)
and thus
91710y < 203(”7/}”?{[%(9) + ||w||§{g(9))- (3.8)

Again, using (3.5) yields

T
/0 W”?{—l(g)dt < Cy. (3.9)

By a similar argument we obtain finally

T
/0 (4131 + [1n[3 1 ) < C. (3.10)

We observe that Cy and C5 depend on [o]z2(q), [wolr2(0), 19|22 (wx (0,7)) and T
Thus, if ¥y, wg are sufficiently small, i.e., if
R2
max{Cs,C5} < -5 (3.11)
then ®(B) C B.
We claim now that ®(v), ) is closed in X. Indeed, let (1, W) be fixed in B, and (¢,,, w,) €
® (v, W) such that: 1, — ¥, w, — w strongly in L2(Q7) for all n. By the definition of ® (), )

we have

Ui+ At)n + a(d, Wy + b(Y, Whw, =0 in Qr,
Wn,t + A(t)wn + 0(1/)7@)1/% + d(d)v@)wn = Xwfn In QT; (3 12)
wn = Wp = 0 on ZT; .

Un (0) =10, Wn (0)

wo in Q,
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with |9n|i2(QT) < C(|1/)0|2L2(Q) + |w0|%2(9)).
We extract a subsequence (g, )nen such that

gn — g weakly in L*(Qr). (3.13)

By the same argument to obtain (3.10) from (3.3), we get

[Wntl220.m -1 () + Wt T2 0,701 + |1/1n|2L2(o,T;H5(Q)) + |wn|%2(0,T;H§(Q)) <R?(3.14)

or

From (3.14) we extract a subsequence (¥, )nen, (Wn)nen such that

Yo — ¢ weakly L(0,T; L*(Q)) N L*(0,T; Hy(2)),
wy, —w  weakly L>(0,T; L*()) N L0, T; H3 (Q)),
Yot — by weakly L2(0,T; HH(Q)),
wn, ¢ — w;  weakly L?(0, T; H-1(Q)),
Y, — 1 strongly L*(Qr),
wy, — w  strongly L*(Qr).

(3.16)

We have assured the last two convergence by Aubin-Lions compactness result; see, for
example, Lions [18] (or equivalently, as a consequence of the compactness of the embedding of
W (0,T, H}(Q), H1(Q)) into L*(Qr), cf. (3.2)).

From (3.13) and (3.16), we pass to the limits in (3.12) as n — oo and obtain

Pr+ A(t)) + a(, W) + b, w)w = 0 in Qr,

wy + A(t)w + 0(11)7@)11) + d(?/%@)’w = Xwg in Qr, (3 17)
Y=w=0 on Yrp, '
w(o) = ¢07 w(o) = Wo in Qa

and |g|2L2(QT) < C(|1/)0|2LQ(Q) + |w0|%2(ﬂ)). Thus, (¢, w) € ®(1h,w) and (), W) is closed in X.

Thus, since B is a compact of X and ®(¢,w) C B is closed, it implies that ®(¢,w) is a
compact of X.

We now intend to show that ® has the closed graph in X x X. This is not difficult to
check: Assume that (¢, @,) — (¢, @) strongly in X and (¢, w,) — (¥,w) strongly in X,
with (Y, w,) € ® (¢, Wy,) for all n. It remains to show that (¢, w) € ®(¢),w). In fact, from
(Y, wn) € ®(Y,, W), it follows that (¢, w,) is a weak solution of the following problem:

Ut + AP0 + a(n, W )on + b(Pn, Wp)w, = 0 in Qr,

Wn,t + A(t)wn + C(wnvw_n)wn + d(wn;w_n)wn = Xwfn In QT; (3 18)
Yy =w, =0 on X, '
Yn(0) =0,  wn(0) = wo in Q

with [, |gn[*dydt < C(|vol3 (o) + |wol72(q))-
Recall (see, e.g., (3.15) or equivalently (3.14)) that the following energy inequality holds for
(3.18):

| (s wn) [y < B2 (3.19)
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By Aubin-Lions compactness theorem (see (3.3)) and using that (¢, w,) — (1, w) strongly
in X x X, we can derive the estimates similar to (3.16) for the sequence (¢, Wy )nen of a weak

solution of (3.18). They are as follows:
Y =1 weakly L(0, T3 L*(Q)) 1 L*(0, T; Hy (),
w, —w weakly L°°(0,T; L*(Q )) N L*(0,T; Hy (Q)),
Un,t = weaklyLQ(O T:H~ ( ),

Q)

Wn, ¢ — w;  weakly L2 (O,T,H ¢ (3.20)
VY — 1 strongly L?(Qr) and a.e. in Qr,
w, — w strongly L*(Q7) and a.e. in Qr.
Notice that by hypothesis we have
P — b strongly L?(Qr) and a.e. inQr, (3.21)

W, —w strongly L*(Qr)and a.e. inQr.

From the convergences above, passing to the limits in (3.18) as n — oo, it is then easy to
see that (¢, w) € ® (), W).

Therefore, the multi-valued mapping ® : B — 2% satisfies the conditions of Kakutani’s
fixed-point theorem, which are: B is a non-empty convex compact set, ¥(B) C B, and ¥ has

a closed graph in X x X. Hence it has a fixed point. The proof of Theorem 3.1 is complete.
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