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Abstract In this paper, the continuous-time independent edge-Markovian random graph
process model is constructed. The authors also define the interval isolated nodes of the
random graph process, study the distribution sequence of the number of isolated nodes
and the probability of having no isolated nodes when the initial distribution of the random
graph process is stationary distribution, derive the lower limit of the probability in which
two arbitrary nodes are connected and the random graph is also connected, and prove that
the random graph is almost everywhere connected when the number of nodes is sufficiently
large.
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1 Introduction

In the study of complex networks (see [1–2]), network evolution is usually described by
the evolution of graphs (see [3–5]). Graph evolution includes adding vertices, adding edges,
deleting vertices, deleting edges, and reconnecting. Reconnection is to consider the connection
of edges on the assumption that the number of vertices remains unchanged. Researchers often
use the Markov process to describe the edge reconnection, and discuss the random graph process
model based on the classic theory of Markov chains; this assumption is also consistent with the
evolution characteristic of many actual networks.

Using the Markov process to describe the dynamic evolution of the network is an important
research content of the random graph process, which has gained a lot of achievements. Han
[6] assumed that the random graph process was a homogeneous Markov process; its state
space was a simple directed graph set which had the same set of vertices. By adding or
deleting an edge (probabilities of adding or deleting edges related to edge numbers of the
graph), transfer of the state was achieved. Under this assumption, stationary distribution
of the random graph sequences was studied; Chen Avin et al [7] proposed a general Markov
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dynamic graph model: The state space was a set composed of graphs which had the same set
of vertices; they also discussed the encountering time and continuing time between the nodes
of the model. Clementi et al [8] proposed a discrete Markov dynamic graph model based on
edge-independent evolution, namely, probability of every state which disconnects (connected)
in time t and connected (disconnects) in time t + 1 was p(n) (q(n)), where n was the number
of nodes. Under the assumptions of this model, Clementi discussed the flooding time of such
dynamic graphs. As a special case of [7], the edge-independent evolution Markov dynamic graph
model was easier to handle mathematically. As the supplement of [8], Herv et al [9] proposed
that the evolution graph defined on the time sequences was mapped to a weighted random
graph, which eliminated corrections of dynamic network evolution, and they also proved that
the weighted graph had the same topological properties as the time evolution graph. In 2011,
according to the highly dynamic topology and characteristics that are evaluated with time in
the opportunity network, Cai et al [10] proposed the time evolution graph model based on edge-
independent evolution, and the model assumed that the edge evolution between any node pair
was independent of the other node pairs. They used the discrete Markov chain and the birth and
death process to characterize the evolution of time correlation and the Laplace successor rule
to estimate the probability of the edge births and deaths, and then analyzed the convergence
characteristics of the dynamic evolution network. Du [11] constructed a probability space and
a random graph process: {Gt}t≥0, G0 is an m-complete graph, and v0, v1, · · · , vm−1 are m

vertices of it. Du proved that this mathematical model has the same marginal distributions
and boundary conditions as the BA model, and {Gt}t≥0 can be considered as graph value
Markov chains constructed on its probability space.

Unlike other researches on the discrete Markov dynamic graph model with independent
edge-Markovian evolution, this article discusses the topology properties of the continuous-time
Markov dynamic graph model with edge-independent evolution, and by using the independence
of the chain process and Markov assumptions, we have explored the statistical properties of the
distribution of the number of isolated nodes and the connection probability.

2 Distribution of the Number of Isolated Nodes

Definition 2.1 (see [1]) Suppose that (Ω, F, P ) is a probability space, and {Gt(ω) : t ≥ 0} is
an undirected random simple graph process defined on (Ω, F, P ), where ∀V (Gt) = {1, 2, · · · , N},
N ≥ 2, t ≥ 0, the corresponding adjacency matrix process is

A(Gt(ω)) = (ξij(t, ω))ij .

If the chain processes {ξij(t, ω) : t ≥ 0} (i < j) satisfy the following conditions:
(1) C2

N chain processes are independent of each other, namely, {ξij(t, ω) : t ≥ 0} (i < j)
independent of each other;

(2) Every chain process {ξij(t, ω) : t ≥ 0} is a continuous-time Markov chain which has two
states 0 and 1, and its density matrix is

Q =
(−βij βij

αij −αij

)
,

where P ′
ij(0; 0, 1) = βij , P ′

ij(0; 1, 0) = αij, then {Gt(ω) : t ≥ 0} is defined as an independent
edge-Markovian random graph process.
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The transfer function of the chain processes {ξij(t, ω) : t ≥ 0} (i < j) is denoted as
P(ij)(t; x, y), t ≥ 0, x, y ∈ {0, 1}. Obviously, the independent edge-Markovian random graph
process is a Markov random graph process having stationary distribution π(·), ∀(xkl), which is
a symmetric matrix with {0, 1} element. Then

π((xkl)) =
∏
i<j

πij(xij),

where πij(·) is the distribution on 0, 1, πij(1) = βij

αij+βij
, πij(0) = αij

αij+βij
.

In the article below, unless specially described, we always assume that the chain processes
have the same distributions, i.e., each chain process has the same density matrix

θ =
(−β β

α −α

)
.

Therefore, it has the same stationary distribution, namely, ∀i �= j,

πij(1) = p =
β

α + β
, πij(0) =

α

α + β
.

If we choose the stationary distribution as its initial distribution, then the independent edge-
Markovian random graph process is a stationary random graph process, namely, ∀t ≥ 0, i �= j,

P (ξij(t) = 1) = πij(1) = p,

P (ξij(t) = 0) = πij(0) = q.

That is to say, ∀t ≥ 0, Gt is such a random graph that |V (Gt)| = N ≥ 2, and for any two
nodes i and j, their connection probability is p, disconnected probability is q, and whether it
is connected or not every node pair is mutually independent.

Suppose that {Gt : t ≥ 0} is a graph family, V (Gt) = V, t ≥ 0. If node i ∈ V is an isolated
node of all Gs, t0 ≤ s ≤ t, then i is defined as the interval isolated node of the graph family
{Gt : t ≥ 0} on [t0, t].

The interval isolated node is a concept associated with the evolution of the graph. If node
i is the interval isolated node of the graph family {Gt : t ≥ 0} on [t0, t], that is in the evolution
process of the graph, node i always maintains the state of isolated nodes in the period [t0, t].

Definition 2.2 (see [2]) Suppose that {Gt(·) : t ≥ 0} is the independent edge-Markovian
random graph process, where V (Gt) = {1, 2, · · · , N}, N ≥ 2, t ≥ 0, and also suppose that the
chain process is identically distributed, and its initial distribution is the stationary distribution,
∀i ∈ V . Suppose further t ≥ 0,

i(ω, t) =

{
1, i is an isolated node of Gt(ω),
0, otherwise,

ηt(ω) =
∑
i∈V

i(ω, t).

Then the random variable ηt(ω) is the number of isolated nodes of the random graph process
{Gt(·) : t ≥ 0} at time t.
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∀0 ≤ t0 < t, i ∈ V , suppose

i(ω, t0, t) =

{
1, i is an isolated node of Gs(ω), t0 ≤ s ≤ t,

0, otherwise,

ξ(ω; t0, t) =
∑
i∈V

i(ω; t0, t).

Then the random variable ξ(ω; t0, t) is the number of interval isolated nodes of the random
graph process {Gt(·) : t ≥ 0} on [t0, t].

Note that the random events {i(ω, t) = 1} and {j(ω, t) = 1}, i �= j are not independent
of each other, because P{i(ω, t) = 1} = P{j(ω, t) = 1} = qN−1, P{i(ω, t) = 1, j(ω, t) = 1} =
q2N−3. So ηt(ω) does not obey binomial distribution. Similarly, the number of interval isolated
nodes ξ(ω; t0, t) does not obey binomial distribution either.

Lemma 2.1 (see [3]) Suppose that G(ω) is a random graph, and V (G(ω)) = {1, 2, · · · , n},
n ≥ 2; the probability of its arbitrary two different nodes connected is p, and the probability
of disconnected is q = 1 − p; and all node pairs, whether the nodes are connected or not, are
independent of each other. Then the probability of G(ω) having no isolated nodes is

Pn(0) = 1 − [nqn−1 − C2
nq2n−3 + · · · + (−1)k+1Ck

nq
[2n−(k+1)]k

2 + · · · + (−1)n+1qC2
n ].

Proof Suppose that Ai is a random event, and i is an isolated node, i = 1, 2, · · · , n. Then
in addition to the multi-less complement principle

P
( n⋃

i=1

Ai

)
=

n∑
i=1

P (Ai) −
∑
i<j

P (AiAj) + · · · + (−1)k+1
∑

i1,··· ,ik

P
( k⋂

j=1

Aij

)
+ · · ·

+ (−1)n+1P
( n⋂

i=1

Ai

)

= C1
nqn−1 − C2

nqn−1qn−2 + · · · + (−1)k+1Ck
nqn−1qn−2 · · · qn−k + · · · + (−1)n+1qC2

n

= nqn−1 − C2
nq2n−3 + · · · + (−1)k+1Ck

nq
2n−(k+1)

2 ·k + · · · + (−1)n+1qC2
n ,

we can get

Pn(0) = 1 − P
( n⋃

i=1

Ai

)

= 1 − [nqn−1 − C2
nq2n−3 + · · · + (−1)k+1Ck

nq
[2n−(k+1)]k

2 + · · · + (−1)n+1qC2
n ].

This completes the proof.

Theorem 2.1 Suppose that {Gt(·) : t ≥ 0} is an independent identically distribution edge-
Markovian random graph process which has stationary distribution as its initial distribution,
V (Gt) = {1, 2, · · · , N}, N ≥ 2, t ≥ 0, and the density matrix of the chain process is

θ =
(−β β

α −α

)
.
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Then ηt(ω) is the number of isolated nodes of the random graph process {Gt(·) : t ≥ 0} at time
t ≥ 0, and its distribution is

P (ηt(ω) = 0) = 1 − [NqN−1 − C2
N q2N−3 + · · · + (−1)k+1Ck

Nq
[2N−(k+1)]k

2 + · · · + (−1)N+1qC2
N ],

P (ηt(ω) = n) = Cn
Nq

[2N−(n+1)]n
2 PN−n(0), n = 1, 2, · · · , N − 1,

where

PN−n(0) = 1 − [(N − n)qN−n−1 − C2
N−nq2N−2n−3 + · · · + (−1)N−n+1qC2

N−n ], q =
α

α + β
.

Remark 2.1 Obviously, (ηt(ω) = N − 1) = (ηt(ω) = N). Therefore,

N−1∑
n=0

P (ηt(ω) = n) = 1.

That is to say, the value of ηt(ω) is 0, 1, 2, · · · , N − 1, or 0, 1, 2, · · · , N − 2, N .

Proof of Theorem 2.1 According to the assumptions, ∀t ≥ 0, Gt(ω) have the independent
chains, and the probability of any two nodes connected is p = β

α+β , while the probability of
disconnected is q = α

α+β . According to Lemma 2.1,

P (ηt(ω) = 0) = PN (0) = 1 − [NqN−1 − C2
Nq2N−3 + · · · + (−1)N+1qC2

N ].

Suppose that Ai is a random event, i is an isolated node of Gt(ω), i = 1, 2, · · · , N . Then from
Lemma 2.1 and the total probability formula for V = V (Gt), ∀n ≥ 1,

P (ηt(ω) = n) =
∑

i1,··· ,in

P (Ai1Ai2 · · ·Ain)P (ηt(ω) = n | Ai1Ai2 · · · , Ain)

=
∑

i1,··· ,in

q
[2N−(n+1)]n

2 P (V − (i1, i2, · · · , in) has no isolated node | Ai1Ai2 · · ·Ain)

=
∑

i1,··· ,in

q
[2N−(n+1)]n

2 PN−n(0) = Cn
Nq

[2N−(n+1)]n
2 PN−n(0),

where

PN−n(0) = 1 − [(N − n)qN−n−1 − C2
N−nq2N−2n−3 + · · · + (−1)N−n+1qC2

N−n ].

This completes the proof.

Lemma 2.2 Suppose that {Gt(·) : t ≥ 0} is the stationary Markov random graph process in
Theorem 2.1. Then ∀t ≥ 0, the probability of {Gt(·) : t ≥ 0} having no interval isolated nodes
on [0, t] is

P
(t)
N (0) = 1 − [NqN−1

t − C2
N q2N−3

t + · · · + (−1)k+1Ck
N q

[2N−(k+1)]k
2

t + · · · + (−1)N+1q
C2

N
t ],

where qt = qe−βt.

Proof Suppose that the random adjacency matrix process according to {Gt(·) : t ≥ 0} is

{At(·) : t ≥ 0} = {(ξij(t))ij : t ≥ 0}.
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Suppose further that Ai is a random event, i is an isolated node on [0, t], i = 1, 2, · · · , N . Then

P (Ai) = P (i(ω; 0, t) = 1) = P (i is an isolated node on [0, t])

= P (ξij(s) = 0, 0 ≤ s ≤ t, i �= j) =
∏
i�=j

P (ξij(s) = 0, 0 ≤ s ≤ t)

=
∏
i�=j

P (ξij(0) = 0)P (ξij(s) = 0, 0 ≤ s ≤ t | ξij(0) = 0)

=
∏
i�=j

q · e−βt = (q · e−βt)N−1 = qN−1
t .

∀Ai, Aj , i �= j,

P (AiAj) = P (ξik(s) = 0, 0 ≤ s ≤ t, k �= i; ξjr(s) = 0, 0 ≤ s ≤ t, r �= j)

= P (ξij(s) = 0, 0 ≤ s ≤ t)
∏
k �=i
k �=j

P (ξij(s) = 0, 0 ≤ s ≤ t)
∏
r �=i
r �=j

P (ξjr(s) = 0, 0 ≤ s ≤ t)

= qt · q2N−4
t = q2N−3

t .

Generally, for any k different events Ai1Ai2 · · ·Aik
, 1 ≤ k ≤ N , similarly, we can get

P (Ai1Ai2 · · ·Ain) = qN−1
t · qN−2

t · · · qN−k
t = q

[2N−(k+1)]k
2

t .

According to the multi-less complement principle,

P (ξ(ω; 0, t)) = P
( N⋃

i=1

Ai

)

=
N∑

i=1

P (Ai) −
∑
i<j

P (AiAj) + (−1)k+1
∑

i1,··· ,ik

P (Ai1Ai2 · · ·Aik
)

+ (−1)N+1P (A1A2 · · ·AN )

= NqN−1
t − C2

Nq2N−3
t + · · · + (−1)N+1Ck

Nq
[2N−(k+1)]k

2
t + · · · + (−1)N+1q

C2
N

t .

So

P
(t)
N (0) = P (ξ(ω; 0, t) = 0) = 1 − P (ξ(ω; 0, t) ≥ 1)

= 1 − [NqN−1
t − C2

N q2N−3
t + · · · + (−1)N+1q

C2
N

t ].

This completes the proof.

Theorem 2.2 Suppose that {Gt(·) : t ≥ 0} is the stationary Markov random graph process
in Theorem 2.1. Then ∀t ≥ 0, ξ(ω; 0, t) is the number of interval isolated nodes of {Gt(·) : t ≥ 0}
on [0, t], and its distribution is

P (ξ(ω; 0, t) = 0) = 1−[NqN−1
t −C2

Nq2N−3
t +· · ·+(−1)N+1Ck

Nq
[2N−(k+1)]k

2
t +· · ·+(−1)N+1q

C2
N

t ],

P (ξ(ω; 0, t) = n) = Cn
Nq

[2N−(n+1)]n
2

t P
(t)
N−n(0), n = 1, 2, · · · , N − 1,

where

P
(t)
N−n(0) = 1 − [(N − n)qN−n−1

t − C2
N−nq2N−2n−3

t + · · · + (−1)N−n+1q
C2

N−n

t ].
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Proof According to Lemma 2.2,

P (ξ(ω; 0, t) = 0)

= 1 − [NqN−1
t − C2

N q2N−3
t + · · · + (−1)N+1Ck

N q
[2N−(k+1)]k

2
t + · · · + (−1)N+1q

C2
N

t ].

Suppose that Ai is a random event, i is an interval isolated node on [0, t], i = 1, 2, · · · , N .
According to the total probability formula and Lemma 2.2, for V = V (Gt), ∀1 ≤ n ≤ N − 1,

P (ξ(ω; 0, t) = n)

=
∑

i1,··· ,in

P (Ai1Ai2 · · ·Ain)P (ξ(ω; 0, t) = n | Ai1Ai2 · · ·Ain)

=
∑

i1,··· ,in

q
[2N−(n+1)]n

2
t P (V−(i1, i2, · · · , in) has no interval isolated node on [0, t] | Ai1Ai2 · · ·Ain)

=
∑

i1,··· ,in

q
[2N−(n+1)]n

2
t P

(t)
N−n(0) = Cn

Nq
[2N−(n+1)]n

2
t P

(t)
N−n(0),

where

P
(t)
N−n(0) = 1 − [(N − n)qN−n−1

t − C2
N−nq2N−2n−3

t + · · · + (−1)N−n+1q
C2

N−n

t ].

This completes the proof.

Remark 2.2 Because {Gt(·) : t ≥ 0} is the stationary Markov random graph process,
according to its stationarity, ∀t0 ≥ 0, t ≥ 0, ξ(ω; t0, t0 + t) is the number of interval isolated
nodes on [t0, t0 + t], and it has the same distribution as ξ(ω; 0, t), that is to say, the distribution
of ξ(ω; t0, t0 + t) has nothing to do with t0, but only has something to do with the interval
length t.

Theorem 2.3 Suppose that {Gt(·) : t ≥ 0} is the stationary Markov random graph process
in Theorem 2.1. Then when N → ∞, {Gt(·) : t ≥ 0} has no isolated node at any time t ≥ 0
and no interval isolated node on any interval.

Proof For V = V (Gt(·)), t ≥ 0, ∀i ∈ V , Ai are random events, i is the isolated node.
∀i �= j, Aij denotes that i and j are disconnected. Then

P (Ai) = P
( ⋂

j∈V
i�=j

Aij

)
=

∏
j∈V
i�=j

P (Aij) =
∏
j∈V
i�=j

q = qN−1.

Therefore,

lim
N→∞

P (Ai) = lim
N→∞

qN−1 = 0.

Then

P
( ⋃

i∈V

Ai

)
≤

∑
i∈V

P (Ai) = 0.

Namely, {Gt(·) : t ≥ 0} has no isolated node at any time t ≥ 0. Similarly, we can also prove
that it has no interval isolated node on any interval.
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This completes the proof.

Corollary 2.1 Suppose 0 < q < 1. Then

lim
N→∞

[NqN−1 − C2
Nq2N−3 + · · · + (−1)N+1Ck

Nq
[2N−(k+1)]k

2 + · · · + (−1)N+1qC2
N ] = 0.

The proof of Corollary 2.1 can be obtained directly from Theorems 2.1 and 2.3. However,
it is worth noting that to prove the corollary by the method usually used to derive limit does
not seem obvious. By applying the random graph method, Corollary 2.1 gives an interesting
limit of the sum formula.

3 Connection Probability

Suppose that G is a graph. A pathway of G refers to a finite non-empty sequence W =
V0e1V1e2 · · · ekVk. W is a pathway from V0 to Vk, and integer k is called the length of the
pathway W . A pathway with length k is defined as k-pathway.

In the sample graph, pathway V0e1V1e2 · · · ekVk is determined by its vertices sequence
V0V1 · · ·Vk, so the pathway of the sample graph is also denoted by its vertices sequence. Even in
a non-simple graph, in the case of no ambiguity, we also use the vertices sequence to represent
a pathway.

Suppose that G(ω) is an undirected random graph. For ω0 ∈ Ω and u, v ∈ V (G(ω0)), if there
is a pathway from u to V in G(ω), then u and v are defined as connected in G(ω). Suppose
Ω0 ⊆ Ω. If ∀ω ∈ ω0, u and v are connected in G(ω), then we call u and v are connected in G(ω)
on Ω0. Specially, if P (Ω0) = 1, then u and v are defined as almost everywhere connected on Ω.
If any two nodes in G(ω) are almost everywhere connected, then G(ω) is defined as an almost
everywhere connected random graph, and G is abbreviatedly called a connected random graph.

Lemma 3.1 (see [3]) Suppose that {Gt(·) : t ≥ 0} is an independent identically distribution
edge-Markovian random graph process which has stationary distribution as its initial distribution
in Theorem 2.1, where V (Gt(ω)) = {1, 2, · · · , N}, t ≥ 0. Then ∀t ≥ 0, the probability of Gt(·)
existing a k-pathway (k ≥ 1) in which i is the start point is

P (existing a k-pathway in which i is the start point) = (1 − qN−1)k, k ≥ 1.

Proof Assume i = 1, and suppose that A1j is a random event, nodes 1 and j are connected,
2 ≤ j ≤ N . Suppose that Aj(k) denotes a random event: There is a k-pathway in which j is
the start point, 1 ≤ j ≤ N, k ≥ 1. Next, we prove the lemma by the mathematical induction
method.

When k = 1, the conclusion is obviously established. In fact,

P (A1(1)) = P
( N⋃

j=2

A1j

)
= 1 − P

( N⋂
j=2

Aij

)
= 1 − qN−1.

Suppose that the conclusion is established when k − 1, namely,

P (Aj(k − 1)) = (1 − qN−1)k−1, 1 ≤ j ≤ N.
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Obviously, A1(k) ⊆ A1(1), k ≥ 1, A1(1) =
N⋃

j=2

A1j . From the above and the total probability

formula, we get

P (A1(k)) = P (A1(1) ∩ A1(k)) = P
( N⋂

j=2

A1j ∩ A1(k)
)

=
N∑

j=2

P (A12A13 · · ·A1j−1A1jA1(k))

=
N∑

j=2

P (A12A13 · · ·A1j−1A1j) · P (A1(k) | A12A13 · · ·A1j−1A1j)

=
N∑

j=2

pqj−2P (Aj(k − 1)) =
N∑

j=2

pqj−2(1 − qN−1)k−1

= p(1 − qN−1)k−1 1 − qN−1

1 − q
= (1 − qN−1)k.

So the conclusion is established according to the principle of induction.
This completes the proof.

Lemma 3.2 (see [3]) Suppose that {Gt(·) : t ≥ 0} is an independent identically distribution
edge-Markovian random graph process which has stationary distribution as its initial distribution
in Theorem 2.1, where V (Gt(ω)) = {1, 2, · · · , N}, t ≥ 0. For i, j ∈ V (Gt(ω)), suppose that
Aij(k) denotes a random event: There is a k-pathway in which i is the start point, and j is the
end point. Then

P (Aij(k)) = pqk−1(1 − qN−1)k−1.

Proof Suppose that i = 1, j = N , and A1(k − 1) denotes the event: There is a (k − 1)-
pathway in which 1 is the start point. All (k − 1)-pathways in which 1 is the start point are
marked, denoted as B1, B2, · · · . Then A1(k − 1) =

⋃
j≥1

Bj , A1N (k) ⊆ A1(k − 1). Apply the

assumption and the total probability formula, we can get

P (A1N (k)) = P (A1N (k) ∩ A1(k − 1)) = P
(
A1N (k) ∩

( ⋃
j≥1

Bj

))

= P
(
A1N (k) ∩

( ⋃
j≥1

(
Bj −

j−1⋃
i=1

Bi

)))
=

∑
j≥1

P
(
A1N (k) ∩

(
Bj −

j−1⋃
i=1

Bi

))

=
∑
j≥1

P
((

Bj −
j−1⋃
i=1

Bi

))
P

(
A1N (k)

∣∣∣(Bj −
j−1⋃
i=1

Bi

))
=

∑
j≥1

P
(
Bj −

j−1⋃
i=1

Bi

)
· qk−1p

= pqk−1P (A1(k − 1)) = pqk−1(1 − qN−1)k−1.

This completes the proof.

Theorem 3.1 Suppose that {Gt(·) : t ≥ 0} is an independent identically distribution edge-
Markovian random graph process which has stationary distribution as its initial distribution in
Theorem 2.1, where V (Gt(ω)) = {1, 2, · · · , N}, t ≥ 0. ∀i, j ∈ V (Gt(ω)), Cij denotes the event:
Nodes i and j are connected. Then

P (Cij) =
p

p + qN
.
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Proof Suppose that ςij denotes the length of the pathway (+∞ can be obtained) in which
i is the start point, and j is the end point. Then ςij is a random variable which can obtain the
positive integer value or +∞. From Lemma 3.2, we have

P (Cij) = P (ςij < +∞) =
∞∑

k=1

P (ςij = k) =
∞∑

k=1

pqk−1(1 − qN−1)k−1

=
∞∑

k=1

p[q(1 − qN−1)]k−1 =
p

1 − q(1 − qN−1)
=

p

p + qN
.

This completes the proof.

Theorem 3.2 Suppose that {Gt(·) : t ≥ 0} is a random graph process in Theorem 2.1, and
C denotes the random event: Gt(ω) is connected. Then

(1) P (C) ≥ 1 − N(N−1)qN

2(p+qN ) .
(2) When N → +∞, Gt(ω) is almost everywhere connected.

Proof

P (C) = P
( ⋂

i<j

Cij

)
= 1 − P

( ⋃
i<j

Cij

)
≥ 1 −

∑
i<j

P (Cij)

= 1 −
∑
i<j

(
1 − p

p + qN

)
= 1 −

∑
i<j

qN

p + qN
= 1 − N(N − 1)qN

2(p + qN )
.

Obviously,

P (C) = lim
N→+∞

(
1 − N(N − 1)qN

2(p + qN )

)
= 1.

This completes the proof.
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