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Abstract Quillen proved that if a Hermitian bihomogeneous polynomial is strictly positive
on the unit sphere, then repeated multiplication of the standard sesquilinear form to this
polynomial eventually results in a sum of Hermitian squares. Catlin-D’Angelo and Varolin
deduced this positivstellensatz of Quillen from the eventual positive-definiteness of an as-
sociated integral operator. Their arguments involve asymptotic expansions of the Bergman
kernel. The goal of this article is to give an elementary proof of the positive-definiteness
of this integral operator.
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1 Introduction

A central problem in real geometry is to establish certificates that directly witness the pos-
itivity of an algebraic morphism. The first of such certificates, known as positivstellensatze,
was Artin’s 1927 solution to Hilbert’s 17th problem (see [1]). After a hiatus of four decades,
Quillen [8] proved the first Hermitian postivstellensatz, thereby filling a gap in the literature.
His positivestellensatz states that if a Hermitian bihomogeneous polynomial is strictly positive
on the unit sphere, then repeated multiplication of the standard sesquilinear form to this poly-
nomial eventually results in a sum of Hermitian squares. We will deduce this as Corollary 4.1
from the main result of this article.

Quillen’s positivstellensatz has attracted several proofs (see [3–5, 7, 10]). Some of these
approaches lead to further improvements of Quillen’s result. For instance, Catlin-D’Angelo [4]
gave a generalized embedding theorem of holomorphic vector bundles. To-Yeung’s positivstel-
lensatz (see [10]) is a more precise refinement of Quillen’s result. Putinar-Scheiderer [7] gave
pesudoconvex boundaries other than the unit sphere on which every strictly positive algebraic
morphism is a sum of Hermitian squares.

In 1997, Catlin-D’Angelo [3] independently rediscovered Quillen’s result. They observed
that this positivstellensatz of Quillen is equivalent to the eventual positive-definiteness of an
associated integral operator. They then showed that this integral operator is well approxi-
mated by the Bergman kernel in the limit. Later, this approach was taken by Varolin [11]. In
this article, we give an elementary proof that follows Varolin’s approach and deduce Quillen’s
positivstellensatz.
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The global holomorphic sections of the tautological line bundle O(1) → Pn over a com-
plex projective space form a complex vector space H0(Pn,O(1)). Fix a basis (Φ0, · · · , Φn) of
H0(Pn,O(1)). Let r := |Φ0|2 + · · · + |Φn|2. Then r induces a Hermitian metric (s, s) �→ |s|2

r

on O(1) whose curvature is a Fubini-Study Kähler form on Pn. More generally, given a non-
negative integer d, a Hermitian metric p on O(d) → Pn is globalizable if there exists a family
{aαβ}|α|=|β|=d of complex constants doubly indexed by multi-indices α and β of length d such
that

p(s, s) =
|s|2∑

|α|=|β|=d

aαβΦαΦ
β
,

where ΦαΦ
β

:= Φα0
0 Φα1

1 · · ·Φαn
n Φ0

β0Φ1
β1 · · ·Φn

βn . Catlin-D’Angelo introduced this concept of
gloablizability of the Hermitian metric in [4].

Normalize the Fubini-Study volume form Ω such that
∫

Pn Ω = 1. Let m be a nonnegative
integer. Equip the complex vector space H0(Pn,O(m + d)) of global holomorphic sections of
O(m + d) with an inner product

(s1, s2) :=
∫

Pn

s1s2

rmp
Ω. (1.1)

The induced norm is given by ‖s‖ =
√

(s, s). Associate to rmp a sesquilinear form Krmp :
H0(Pn,O(m + d)) × H0(Pn,O(m + d)) → C given by

Krmp(s1, s2) =
∫

Pn

∫
Pn

(rmp)(x, y)s2(x)s1(y)
(rmp)(x, x)(rmp)(y, y)

Ω(y)Ω(X). (1.2)

In this article, we show that Krmp is eventually positive definite.

Theorem 1.1 Let d be a nonnegative integer and p be a Hermitian metric on O(d) → Pn.
If p is globalizable, then for m sufficiently large, the following asymptotic holds uniformly for
s ∈ H0(Pn,O(m + d)):

Krmp(s, s) =
{ n!

mn
+ O

((log m)n+2

mn+1

)}
‖s‖2. (1.3)

The author is aware that the above result (in fact, a stronger asymptotic without the
(log m)n+2 factor) would follow from pp. 313–314 of [11], but is unable to follow the argument
provided there.

In our proof, we show that the double integral (3.1) which represents this integral operator
concentrates in a tubular neighborhood of the diagonal with radius log m√

m
. This concentration

result is inspired by the asymptotically concentration of the Bergman kernel along the diagonal.
Our choice of log m√

m
as a radius is influenced by Tian, who used the same radius to construct

peak sections in [9] to prove the convergence of Bergman metrics.

2 Some Lemmas

We use the following notation and conventions throughout this article. Unless otherwise
stated, asymptotics in this article are taken in an integer m that approaches infinity. Following
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Knuth [6], the Iverson bracket of a proposition τ is the quantity

[τ ] :=

{
1, if τ is true,
0, if τ is false.

For example, the characteristic function of a subset E of Pn is given by χE(y) = [y ∈ E].
Another example is the Kronecker delta, which is given by δij = [i = j].

Recall from the introduction that r := |Φ0|2 + · · ·+ |Φn|2 for some chosen basis (Φ0, · · · , Φn)
of H0(Pn,O(1)). This globalizable metric r can be polarized to yield a metric on Pn. This metric
d̃ : Pn × Pn → [0,∞] is given by

d̃(x, y) =
(r(x, x)r(y, y)

|r(x, y)|2 − 1
) 1

2

=
( (|Φ0(x)|2 + · · · + |Φn(x)|2)(|Φ0(y)|2 + · · · + |Φn(y)|2)

|Φ0(x)Φ0(y) + · · · + Φn(x)Φn(y)|2 − 1
) 1

2
.

For each point x of Pn, there exists a canonical coordinate z centered at x such that

d̃([1 : 0], [1 : z]) =
((12 + 02 + · · · + 02)(12 + |z1|2 + · · · + |zn|2)

|1 · 1 + 0 · z1 + · · · + 0 · zn|2
− 1

) 1
2
.

= |z|.

For example, if x is a point of Pn, then the subset {y : d̃(x, y) < ∞} is biholomorphic to Cn.

Lemma 2.1 Let p be a globalizable metric on O(d) → Pn. There exists a positive constant
Cp such that ∣∣∣[ |p(x, y)|2

p(x, x)p(y, y)

] 1
2 −

[p(x, x)p(y, y)
|p(x, y)|2

] 1
2
∣∣∣ ≤ Cpd̃(x, y)2.

Proof Fix a point x of P
n. Define a function G : P

n → [0,∞) by

G(y) =
[ |p(x, y)|2
p(x, x)p(y, y)

] 1
2
. (2.1)

Choose a trivialization of O(d). Choose a canonical coordinate z centered at x. In this trivial-
ization and coordinate,

2 logG(z) = log p(z, 0) + log p(0, z) − log p(z, z) − log p(0, 0).

Taking the holomorphic derivative,

2
∂G(z)
G(z)

=
∂p(z, 0)
p(z, 0)

+ 0 − ∂p(z, z)
p(z, z)

− 0.

Noting that G(0) = 1, evaluation at z = 0 gives ∂G(0) = 0. The chain rule ∂(G−1) = −∂G
G2

implies ∂(G−1)(0) = 0. Since G = G, we also have the vanishing of the antiholomophic
derivatives, namely, ∂G(0) = ∂(G−1)(0) = 0.

Noting that G(0) − (G−1)(0) = 0, the Taylor theorem gives local functions hαβ defined
whenever |z| < δ for some small δ > 0, such that G(z)−G(z)−1 =

∑
|α|+|β|=2

hαβ(z)zαzβ . Hence,
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if |z| < δ, then |G(z)−G(z)−1| ≤ C′|z|2, where C′ :=
∑

|α|+|β|=2

(
sup
|z|<δ

|hαβ(z)|). Recall (2.1) for

the definition of G, which says that if d̃(x, y) < δ, then

∣∣∣[ |p(x, y)|2
p(x, x)p(y, y)

] 1
2 −

[p(x, x)p(y, y)
|p(x, y)|2

] 1
2
∣∣∣ ≤ C′d̃(x, y)2.

If d̃(x, y) ≥ δ, then

∣∣∣[ |p(x, y)|2
p(x, x)p(y, y)

] 1
2 −

[p(x, x)p(y, y)
|p(x, y)|2

] 1
2
∣∣∣ ≤ C′′d̃(x, y)2,

where

C′′ := δ−2 sup
x,y∈Pn

∣∣∣[ |p(x, y)|2
p(x, x)p(y, y)

] 1
2 −

[p(x, x)p(y, y)
|p(x, y)|2

] 1
2
∣∣∣.

Hence we obtain the desired inequality by setting Cp := max {C′, C′′}.
Let V denote the Lebesgue measure on Cn. Equip the unit sphere S2n−1 of Cn with its Haar

measure, namely, the unique rotationally invariant Borel probability measure. The integral of
a Borel measurable function f : Cn → C can be transformed into polar coordinates (see p. 6 in
[2]): ∫

Cn

f(z)
n! dV (z)

πn
= 2n

∫ ∞

0

r2n−1

∫
S2n−1

f(rξ) dξdr. (2.2)

If g : [0,∞) → C is Borel measurable, then (2.2) simplifies to∫
Cn

g(|z|) n! dV (z)
πn

= 2n

∫ ∞

0

r2n−1g(r) dr. (2.3)

Lemma 2.2 If a function R : N → [0,∞) satisfies lim
m→∞R(m) = 0, then the following

asymptotics hold uniformly for x ∈ P
n:∫

Pn

[ |r(x, y)|2
r(x, x)r(y, y)

]m

Ω(y) =
n!
mn

+ O
( 1

mn+1

)
, (2.4)∫

{y: d̃(x,y)≥R(m)}

[ |r(x, y)|2
r(x, x)r(y, y)

]m

Ω(y) = O(e−
m
2 R(m)2), (2.5)∫

{y: d̃(x,y)<R(m)}
Ω(y) = O(R(m)2n). (2.6)

Proof Choose a canonical coordinate z centered at x. Recall that Ω is a normalization of
the Fubini-Study volume form, so there exists a constant c > 0 such that

Ω(z) = c
n! dV (z)

πn(1 + |z|2)n+1
.

Hence ∫
Pn

[ |r(x, y)|2
r(x, x)r(y, y)

]m

Ω(y) =
∫

Cn

1
(1 + |z|2)m

c
n! dV (z)

πn(1 + |z|2)n+1

= c

∫
Cn

1
(1 + |z|2)m+n+1

n! dV (z)
πn

. (2.7)
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By the polar coordinate formula (2.3):∫
Cn

1
(1 + |z|2)m+n+1

n! dV (z)
πn

= 2n

∫ ∞

0

r2n−1 1
(1 + r2)m+n+1

dr

=
n!

(m + n)(m + n − 1) · · · (m + 1)
. (2.8)

Combine (2.7) and (2.8) to obtain∫
Pn

[ |r(x, y)|2
r(x, x)r(y, y)

]m

Ω(y) = c
n!

(m + n)(m + n − 1) · · · (m + 1)
.

In particular, when m = 0, this becomes
∫

Pn Ω = c. Hence c = 1, by our normalization of Ω.
This proves (2.4):∫

Pn

[ |r(x, y)|2
r(x, x)r(y, y)

]m

Ω(y) =
n!

(m + n)(m + n − 1) · · · (m + 1)

=
n!
mn

+ O
( 1

mn+1

)
.

Next we show (2.5). Note that

[ |r(x, y)|2
r(x, x)r(y, y)

]m

=
1

(1 + d̃(x, y)2)m
.

Hence ∫
{y: d̃(x,y)≥R(m)}

[ |r(x, y)|2
r(x, x)r(y, y)

]m

Ω(y)

≤
∫
{y: d̃(x,y)≥R(m)}

1
(1 + d̃(x, y)2)m

Ω(y)

≤ 1
(1 + R(m)2)m

∫
{y: d̃(x,y)≥R(m)}

Ω(y)

≤ 1
(1 + R(m)2)m

∫
Pn

Ω(y)

=
1

(1 + R(m)2)m
.

The inequality 1 + ε ≥ e
ε
2 holds for small ε > 0. By the assumption lim

m→∞R(m) = 0, hence

1
1 + R(m)2

≤ 1

e
R(m)2

2

.

Hence (2.5) follows.
Finally we prove (2.6). In the canonical coordinate z, the volume form Ω has an upper

bound

Ω =
n! dV (z)

πn(1 + |z|2)n+1
≤ n! dV (z)

πn
.

Integrating, the polar coordinate formula (2.3) gives
∫
{y: d̃(x,y)<R(m)} Ω(y) ≤ 2n

∫ R(m)

0
r2n−1 dr

= R(m)2n. Hence (2.6) follows.
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Lemma 2.3 Let R0 ≥ 0. If q : Pn × Pn → [0,∞) and g : Pn → [0,∞) are continuous
functions, then ∫

Pn

∫
{y: d̃(x,y)<R0}

q(x, y)g(x)g(y)Ω(y)Ω(x)dxdy

≤
√

sup
x∈Pn

∫
{y: d̃(x,y)<R0}

q(x, y)2 Ω(y)

√∫
{y: d̃(•,y)<R0}

Ω
∫

Pn

g2 Ω. (2.9)

For any two points x and x′ on Pn, the integrals
∫
{y: d̃(x,y)<R0} Ω and

∫
{y: d̃(x′,y)<R0} Ω are equal.

Let
∫
{y: d̃(•,y)<R0} Ω denote this particular value.

Proof For convenience, we suppress the integrand of (2.9) in the notation. That is to say,
when a single or double integral appears without the integrand, the reader understands that
we refer respectively to the inner or double integral on the left-hand side of (2.9).

Suppose that x is a point on Pn. By the Schwarz inequality,∫
{y: d̃(x,y)<R0}

q(x, y)g(x)g(y)Ω(y)

= g(x)
∫
{y: d̃(x,y)<R0}

q(x, y)g(y)Ω(y)

≤ g(x)

√∫
{y: d̃(x,y)<R0}

q(x, y)2 Ω(y)

√∫
{y: d̃(x,y)<R0}

g(y)2 Ω(y)

≤ g(x)

√
sup
x∈Pn

∫
{y: d̃(x,y)<R0}

q(x, y)2 Ω(y)

√∫
{y: d̃(x,y)<R0}

g(y)2 Ω(y).

Integrating with respect to x,∫
Pn

∫
{y: d̃(x,y)<R0}

q(x, y)g(x)g(y)Ω(y)Ω(x)

≤
∫

Pn

g(x)

√
sup
x∈Pn

∫
{y: d̃(x,y)<R0}

q(x, y)2 Ω(y)

√∫
{y: d̃(x,y)<R0}

g(y)2 Ω(y)Ω(x)

=

√
sup
x∈Pn

∫
{y: d̃(x,y)<R0}

q(x, y)2 Ω(y)
∫

Pn

g(x)

√∫
{y: d̃(x,y)<R0}

g(y)2 Ω(y)Ω(x).

Apply the Schwarz inequality again,

∫
Pn

∫
{y: d̃(x,y)<R0}

≤
√

sup
x∈Pn

∫
{y: d̃(x,y)<R0}

q(x, y)2 Ω(y)

·
√∫

Pn

g(x)2 Ω(x)

√∫
Pn

∫
{y: d̃(x,y)<R0}

g(y)2 Ω(y)Ω(x). (2.10)

By the Fubini theorem, we compute by using the Iverson bracket notation,∫
Pn

∫
{y: d̃(x,y)<R0}

g(y)2 Ω(y)Ω(x)

=
∫

Pn

∫
Pn

[d̃(x, y) < R0]g(y)2 Ω(y)Ω(x)
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=
∫

Pn

g(y)2
∫

Pn

[y ∈ {y : d̃(x, y) < R0}] Ω(x)Ω(y)

=
∫

Pn

g(y)2
∫
{x: d̃(x,y)<R0}

Ω(x)Ω(y)

=
∫
{y: d̃(•,y)<R0}

Ω
∫

Pn

g(y)2 Ω(y).

Hence by (2.10),∫
Pn

∫
{y: d̃(x,y)<R0}

g(y)2 Ω(y)Ω(x)

≤
√

sup
x∈Pn

∫
{y: d̃(x,y)<R0}

q(x, y)2 Ω(y)

√∫
Pn

g(x)2 Ω(x)

√∫
{y: d̃(x,y)<R0}

Ω
∫

Pn

g(y)2 Ω(y)

=

√
sup
x∈Pn

∫
{y: d̃(x,y)<R0}

q(x, y)2 Ω(y)

√∫
{y: d̃(x,y)<R0}

Ω
∫

Pn

g2 Ω.

Our normalization of Ω implies that
∫
{y: d̃(x,y)<R0} Ω ≤ ∫

Pn Ω = 1. Hence the above lemma
has the following weaker form.

Corollary 2.1 Under the same conditions as in the above lemma, the following inequality
holds:∫

Pn

∫
{y: d̃(x,y)<R0}

q(x, y)g(x)g(y)Ω(y)Ω(x) ≤
√

sup
x∈Pn

∫
{y: d̃(x,y)<R0}

q(x, y)2 Ω(y)
∫

Pn

g2 Ω.

Lemma 2.4 Let R0 ∈ [0,∞] and let x be a point of Pn. If h : [0, R0) → C is a continuous
function and f is holomorphic on {y : d̃(x, y) < R0}, then∫

{y: d̃(x,y)<R0}
h(d̃(x, y))f(y)Ω(y) = f(x)

∫
{y: d̃(x,y)<R0}

h(d̃(x, y))Ω(y).

Proof Define J as the difference between the two sides of the required identity. Then
J =

∫
{y: d̃(x,y)<R0}h(d̃(x, y)){f(y) − f(x)}Ω(y). We wish to show that J = 0.

Choose a canonical coordinate z centered at x. Write B(R0) for the Euclidean ball in Cn

centered at the origin of radius R0. In terms of this coordinate z,

J =
∫

B(R0)

h(|z|){f(z)− f(0)} n! dV (z)
πn(1 + |z|2)n+1

=
∫

B(R0)

h(|z|){f(z)− f(0)}
(1 + |z|2)n+1

n! dV (z)
πn

.

Transform this integral to polar coordinates using (2.2):

J = 2n

∫ R0

0

r2n−1

∫
S2n−1

h(r){f(rξ) − f(0)}
(1 + r2)n+1

dμ(ξ)dr

= 2n

∫ R0

0

r2n−1h(r)
(1 + r2)n+1

∫
S2n−1

{f(rξ) − f(0)} dμ(ξ)dr.

A holomorphic function f is harmonic. By the mean value property of harmonic functions
(see [2]), we have

∫
S2n−1{f(rξ) − f(0)} dμ(ξ) = 0. Thus J = 0, which completes the proof.
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3 Proof of the Main Theorem

Let m be a nonnegative integer and s ∈ H0(Pn,O(m + d)). Suppose that R : N → [0,∞)
is a function with lim

m→∞R(m) = 0. We will choose a particular R later. By our definition (1.2)
of Krmp,

Krmp(s, s) =
∫

Pn

∫
Pn

(rmp)(x, y)s(x)s(y)
(rmp)(x, x)(rmp)(y, y)

Ω(y)Ω(x),

= A + B + C, (3.1)

where

A :=
∫

Pn

∫
{y: d̃(x,y)<R(m)}

[ |r(x, y)|2
r(x, x)r(y, y)

]m s(x)s(y)
(rmp)(y, x)

Ω(y)Ω(x),

B :=
∫

Pn

∫
{y: d̃(x,y)<R(m)}

[ |r(x, y)|2
r(x, x)r(y, y)

]m[ |p(x, y)|2
p(x, x)p(y, y)

− 1
] s(x)s(y)
(rmp)(y, x)

Ω(y)Ω(x),

C :=
∫

Pn

∫
{y: d̃(x,y)≥R(m)}

(rmp)(x, y)s(x)s(y)
(rmp)(x, x)(rmp)(y, y)

Ω(y)Ω(x).

Term A will be dominant for our eventual choice of R.
First we compute A. The zero section of the polarization of p lies off the diagonal of Pn×Pn.

Hence for sufficiently large m, we have R(m) small, so that for d̃(x, y) < R(m), the expression
s(x)s(y)

(rmp)(y,x) is well-defined and holomorphic in y. Note that

[ |r(x, y)|2
r(x, x)r(y, y)

]m

=
1

(1 + d̃(x, y))m
.

Hence, we may use Lemma 2.4, which gives for each x,∫
{y: d̃(x,y)<R(m)}

[ |r(x, y)|2
r(x, x)r(y, y)

]m s(x)s(y)
(rmp)(y, x)

Ω(y)

=
s(x)s(x)
rmp(x, x)

∫
{y: d̃(x,y)<R(m)}

[ |r(x, y)|2
r(x, x)r(y, y)

]m

Ω(y).

Integrating with respect to x,

A =
∫

Pn

s(x)s(x)
rmp(x, x)

∫
{y: d̃(x,y)<R(m)}

[ |r(x, y)|2
r(x, x)r(y, y)

]m

Ω(y)Ω(x).

Taking the difference of (2.4) and (2.5),∫
{y: d̃(x,y)<R(m)}

[ |r(x, y)|2
r(x, x)r(y, y)

]m

Ω(y) =
n!
mn

+ O
( 1

mn+1
+

1
e

m
2 R(m)2

)
.

Hence

A =
[ n!
mn

+ O
( 1

mn+1
+

1
e

m
2 R(m)2

)] ∫
Pn

s(x)s(x)
(rmp)(x, x)

Ω(x)

=
[ n!
mn

+ O
( 1

mn+1
+

1
e

m
2 R(m)2

)]
‖s‖2. (3.2)
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Next, we estimate B. By Lemma 2.1, The modulus of its integrand is∣∣∣[ |r(x, y)|2
r(x, x)r(y, y)

]m[ |p(x, y)|2
p(x, x)p(y, y)

− 1
] s(x)s(y)
(rmp)(y, x)

∣∣∣
=

[ |r(x, y)|2
r(x, x)r(y, y)

]m
2
∣∣∣[ |p(x, y)|2

p(x, x)p(y, y)

] 1
2 −

[p(x, x)p(y, y)
|p(x, y)|2

] 1
2 |s(x)|
(rmp)

1
2 (x, x)

|s(y)|
(rmp)

1
2 (y, y)

≤ Cpd̃(x, y)2
[ |r(x, y)|2
r(x, x)r(y, y)

] m
2 |s(x)|

(rmp)
1
2 (x, x)

|s(y)|
(rmp)

1
2 (y, y)

.

Hence

|B| ≤
∫

Pn

∫
{y: d̃(x,y)<R(m)}

∣∣∣[ |r(x, y)|2
r(x, x)r(y, y)

]m[ |p(x, y)|2
p(x, x)p(y, y)

− 1
] s(x)s(y)
(rmp)(y, x)

∣∣∣ Ω(y)Ω(x)

= CpR(m)2
∫

Pn

∫
{y: d̃(x,y)<R(m)}

[ |r(x, y)|2
r(x, x)r(y, y)

]m
2 |s(x)|

(rmp)
1
2 (x, x)

|s(y)|
(rmp)

1
2 (y, y)

Ω(y)Ω(x).

By Lemma 2.3, this becomes

|B| ≤ CpR(m)2
√∫

{y: d̃(x,y)<R(m)}

[ |r(x, y)|2
r(x, x)r(y, y)

]m

Ω(y)

√∫
{y: d̃(•,y)<R0}

Ω
∫

Pn

|s|2
rmp

Ω

≤ CpR(m)2
√∫

Pn

[ |r(x, y)|2
r(x, x)r(y, y)

]m

Ω(y)

√∫
{y: d̃(•,y)<R0}

Ω‖s‖2.

Hence, by the asymptotics (2.4) and (2.6),

B = O
(
R(m)2

)√
n!
mn

√
O(R(m)2n)‖s‖2

= O
(R(m)n+2

m
n
2

)
‖s‖2. (3.3)

Finally, we estimate C. Let

Mp := sup
x,y∈Pn

[ |p(x, y)|2
p(x, x)p(y, y)

] 1
2
.

By the compactness of Pn, this positive constant Mp is finite. Hence

|(rmp)(x, y)||s(x)||s(y)|
(rmp)(x, x)(rmp)(y, y)

=
[ |r(x, y)|2
r(x, x)r(y, y)

]m
2
[ |p(x, y)|2
p(x, x)p(y, y)

] 1
2 |s(x)|
(rmp)

1
2 (x, x)

|s(y)|
(rmp)

1
2 (y, y)

≤ Mp

[ |r(x, y)|2
r(x, x)r(y, y)

]m
2 |s(x)|

(rmp)
1
2 (x, x)

|s(y)|
(rmp)

1
2 (y, y)

.

Hence

|C| ≤ Mp

∫
Pn

∫
{y: d̃(x,y)≥R(m)}

[ |r(x, y)|2
r(x, x)r(y, y)

]m
2 |s(x)|

(rmp)
1
2 (x, x)

|s(y)|
(rmp)

1
2 (y, y)

Ω(y)Ω(x).

By Corollary 2.1, this becomes

|C| ≤ Mp

√∫
{y: d̃(x,y)≥R(m)}

[ |r(x, y)|2
r(x, x)r(y, y)

]m

Ω(y)
∫

Pn

|s|2
rmp

Ω
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= Mp

√∫
{y: d̃(x,y)≥R(m)}

[ |r(x, y)|2
r(x, x)r(y, y)

]m

Ω(y)‖s‖2.

Hence, by the asymptotic (2.5),

C = O(1)

√
O

( 1
e

m
2 R(m)2

)
‖s‖2

= O
( 1

e
m
4 R(m)2

)
‖s‖2. (3.4)

Since Krmp(s, s) = A + B + C, combining (3.2)–(3.4),

Krmp(s, s) =
{ n!

mn
+ O

( 1
mn+1

+
1

e
m
2 R(m)2

+
R(m)n+2

m
n
2

+
1

e
m
4 R(m)2

)}
‖s‖2

=
{ n!

mn
+ O

( 1
mn+1

+
R(m)n+2

m
n
2

+
1

e
m
4 R(m)2

)}
‖s‖2.

To complete the proof, it suffices to find R such that lim
m→∞R(m) = 0 and

1
mn+1

+
R(m)n+2

m
n
2

+
1

e
m
4 R(m)2

= O
((log m)n+2

mn+1

)
. (3.5)

Indeed, such a function is given by

R(m) =
log m√

m
.

4 Application to Quillen’s Positivstellensatz

Let n be a positive integer. Let C[Z, Z] denote the complex polynomial algebra on the
indeterminates Z0, · · · , Zn, Z0, · · · , Zn. A multi-index α is a sequence (α0, · · · , αn) of n + 1
nonnegative integers whose length |α| is α0 + · · · + αn. Given a nonnegative integer d, a
bihomogeneous polynomial of bidegree (d, d) is a finite sum

∑
|α|=|β|=d

aαβZαZ
β
, where each

aαβ is a complex scalar and ZαZ
β

:= Zα0
0 · · ·Zαn

n Z0
β0 · · ·Zn

βn . This polynomial is said to
be Hermitian if aαβ = aβα for each α and β. A polynomial is said to be holomorphic if only
the indeterminates Z0, · · · , Zn occur. Given a holomorphic polynomial s(Z), write |s(Z)|2 :=
s(Z)s(Z).

With these concepts, we can state Quillen’s positivstellensatz.

Corollary 4.1 Let p be a Hermitian bihomogeneous polynomial of bidegree (d, d). If p(z, z)
> 0 for each point z 
= 0 in Cn+1, then for sufficiently large m, there exists a basis {sη}|η|=m+d

of the holomorphic polynomials of degree m + d such that

(|Z0|2 + · · · + |Zn|2)mp(Z, Z) =
∑

|η|=m+d

|sη(Z)|2. (4.1)

Proof Recall from the introduction that we chose a basis (Φ0, · · · , Φn) of H0(Pn,O(1)).
The map Z0 �→ Φ0, · · · , Zn �→ Φn induces a graded C-algebra isomorphism

C[Z] →
∞⊕

k=0

H0(Pn,O(k)). (4.2)
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This isomorphism induces the given Hermitian bihomogeneous polynomial p of bidegree (d, d)
with a globalizable metric on O(d), which we will also denote as p by abuse of notation.

Recall the inner product on H0(Pn,O(m + d)) defined by (1.1). Choose an orthonormal
basis (eγ) of H0(Pn,O(m + d)). In terms of this basis, write rmp =

∑
γ,δ

cγδeγeδ. Since this

polynomial rmp is Hermitian, its coefficients form a Hermitian matrix (cδγ). Diagonalizing,
there exists a unitary matrix P = (Pγη) and a real-valued diagonal matrix D = diag(· · · , λη, · · · )
such that (cδγ) = PDP ∗. In particular, we have cγδ =

∑
η

PγηληPδη. Hence, setting fη :=∑
γ

Pγηeγ ,

rmp =
∑
η,γ,δ

PγηληPδηeγeδ

=
∑

η

λη

∑
γ

Pγηeγ

∑
δ

Pδηeδ

=
∑

η

ληfηfη. (4.3)

We claim that (fη) is an orthonormal basis of H0(Pn,O(m + d)). Indeed, the basis (eγ) is
chosen to be orthonormal, so

(fη, fθ) =
∑
γ,δ

PγηPδθ(eγ , eδ) =
∑

γ

PγηPγθ.

The columns of a unitary matrix are orthonormal under the standard inner product. The matrix
P is unitary, and hence

∑
γ

PγηPγθ = [η = θ], the Kronecker delta. Therefore (fη, fθ) = [η = θ],

which proves the claim.
By (1.1) and (1.2), the inner product Krmp(fη, fη) is given by a double integral:

Krmp(fη, fη) =
∫

Pn

∫
Pn

(rmp)(x, y)fη(x)fη(y)
(rmp)(x, x)(rmp)(y, y)

Ω(y)Ω(x). (4.4)

By (4.3) and the orthonormality of {fη}, this becomes

Krmp(fη, fη) =
∫

Pn

∫
Pn

∑
θ

λθfθ(x)fθ(y)fη(x)fη(y)

(rmp)(x, x)(rmp)(y, y)
Ω(y)Ω(x)

=
∑

θ

λθ

∫
Pn

fθ(x)fη(x)
(rmp)(x, x)

Ω(x)
∫

Pn

fη(y)fθ(y)
(rmp)(y, y)

Ω(y)

=
∑

θ

λθ(fθ, fη)(fη, fθ)

= λη. (4.5)

By the main theorem, for sufficiently large m and each fη,

Krmp(fη, fη) =
{ n!

mn
+ O

((log m)n+2

mn+1

)}
‖fη‖2.

A global section that forms part of a basis is necessarily nonzero, and hence ‖fη‖2 
= 0. The
above asymptotic has a leading coefficient n! > 0, so Krmp(fη, fη) > 0 for m large. From (4.5),
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we get λη > 0. Thus (4.3) can be rewritten as rmp =
∑
η

∣∣√ληfη

∣∣2, where (
√

ληfη) is a basis of

H0(Pn,O(m + d)). Apply the C-algebra isomorphism (4.2) between C[Z] and
∞⊕

k=0

H0(Pn,O(k))

to complete the proof.
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