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Abstract There are various adjunctions between model (co)slice categories. The author
gives a proposition to characterize when these adjunctions are Quillen equivalences. As
an application, a triangle equivalence between the stable category of a Frobenius category
and the homotopy category of a non-pointed model category is given.
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1 Introduction

Given a category C and a morphism f : X → Y in C, one can construct adjunctions between
coslice categories (X ↓ C) and (Y ↓ C), and between slice categories (C ↓ X) and (C ↓ Y ). If C is
a closed model category, all these (co)slice categories inherit a model structure from C. In this
case, the adjunctions between these (co)slice categories are Quillen adjunctions. Meanwhile,
if we start from a Quillen adjunction between two closed model categories C and D, we can
also construct Quillen adjunctions between some (co)slice categories. This note is aimed to
characterize when these adjunctions are Quillen equivalences.

As an application of these characterizations, we construct a triangle equivalence between
the stable category of a weakly idempotent complete Frobenius category and the homotopy
category of its coslice category (see Corollary 3.3). As a byproduct, we get a non-pointed
model category whose homotopy category is a triangulated category (see Theorem 3.1). This
shows that the pointed condition of Quillen’s theorem (see [8, Chapter I, Section 2, Theorem
2]) is not always necessary.

The contents of the note are as follows. In Subsection 2.1, we recall the standard material of
Quillen equivalences. In Subsections 2.2–2.3, we recall the notion of model (co)slice categories
and construct six Quillen adjunctions between model (co)slice categories (see Proposition 2.2).
In Section 3, we give a proposition to distinguish when these Quillen adjunctions are Quillen
equivalences (see Proposition 3.1). We end up this note by proving Theorem 3.1.

2 Preliminaries of (Co)slice Categories and Quillen Equivalences

In this section we recall the notions of Quillen equivalences and model (co)slice categories.
Our main references about model categories are [8, 1, 5, 4].
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2.1 Quillen equivalences

Recall that a category C is said to be bicomplete if it contains small limits and colimits. A
closed model category C is a bicomplete category in which there are three classes of morphisms,
called cofibrations, fibrations and weak equivalences and they satisfy some axioms. We will
denote the three classes of morphisms by Cof(C), Fib(C) and We(C), respectively. A morphism
which is both a (co)fibration and a weak equivalence is called an acyclic (co)fibration. An
object X ∈ C is called cofibrant if ∅ → A ∈ Cof(C) and fibrant if X → ∗ ∈ Fib(C), where ∅ is
the initial object of C and ∗ the terminal object of C. We use Cc and Cf to denote the classes
of cofibrant and fibrant objects, respectively. An object in Ccf := Cc ∩ Cf is called bifibrant.

Suppose that C and D are closed model categories. An adjunction F : C � D : G is called
a Quillen adjunction if F preserves cofibrations and acyclic cofibrations, or equivalently, G

preserves fibrations and acyclic fibrations (see [5, Definition 1.3.1, Lemma 1.3.4]). Sometimes
we will call F a left Quillen functor and G a right Quillen functor.

Definition 2.1 (see [5, Definition 1.3.12]) A Quillen adjunction (F, G; ϕ) : C → D is
called a Quillen equivalence if for all X ∈ Cc and Y ∈ Df , a morphism f : F (X) → Y ∈ We(D)
if and only if ϕ(f) : X → G(Y ) ∈ We(C).

If (F, G) : C → D is a Quillen equivalence, then the left derived functor LF and the right
derived functor RG exist (see [8, Chapter I, Section 4]). Furthermore, they induce an equivalent
adjunction (LF, RL) : Ho(C) → Ho(D) between the homotopy categories (see [8, Chapter I,
Theorem 3]).

In a model category C, we use p
X

: Q(X) → X to denote the cofibrant approximation of
an object X (it is an acyclic fibration) and r

X
: X → R(X) the fibrant approximation of X

(it is an acyclic cofibration), respectively (see [8, Chapter I, Section 1] or [1, Section 5]). The
following is the most useful criterion for checking when a given Quillen adjunction is a Quillen
equivalence.

Proposition 2.1 (see [5, Definition 1.3.13, Corollary 1.3.16]) Suppose that (F, G, ϕ; η, ε):
C → D is a Quillen adjunction. The following are equivalent:

(i) (F, G, ϕ) is a Quillen equivalence.
(ii) (LF, RG) : Ho(C) → Ho(D) is an adjoint equivalence of categories.
(iii) If F (f) is a weak equivalence for a morphism f in Cc, so is f . And the morphism

F (Q(G(Y )))
F (p

G(Y ) )−→ FG(Y )
ε

Y−→ Y is a weak equivalence for every Y ∈ Df .
(iv) If G(g) is a weak equivalence for a morphism g in Df , so is g. And the morphism

X
η

X−→ GF (X)
G(r

F (X) )−→ G(R(F (X))) is a weak equivalence for every X ∈ Cc.

2.2 The model (co)slice categories

Definition 2.2 Let C be a category. For an object X in C, the coslice category (X ↓ C) is
the category in which an object is a morphism X

u→ C in C, and a morphism from X
u→ C to

X
u′→ C′ is a morphism α : C → C′ in C such that u′ = α ◦ u. The composition of morphisms

is defined by the composition of morphisms in C.

Dually, we define the slice category (C ↓ X) over X .
Now let C be a closed model category. If we define a morphism in (X ↓ C) and (C ↓ X)

is a weak equivalence, cofibration, or fibration if it is one in C, then both the coslice category
(X ↓ C) and the slice category (C ↓ X) become closed model categories (see [4, Theorem 7.6.5]).
In this case, we call (X ↓ C) a model coslice category and (C ↓ X) a model slice category.
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Lemma 2.1 Let C be a model category. Then
(i) (X ↓ C)c = {u ∈ (X ↓ C) | u ∈ Cof(C)} and (X ↓ C)f = {X u→ C ∈ (X ↓ C) | C ∈ Cf}.
(ii) (C ↓ X)c = {C u→ X ∈ (C ↓ X) | C ∈ Cc} and (C ↓ X)f = {u ∈ (C ↓ X) | u ∈ Fib(C)}.
Proof (i) Note that, the initial object in (X ↓ C) is X

1X→ X and the terminal object is
X → ∗. From these, the statement (i) can be verified directly. Dually, we can prove (ii).

2.3 Quillen adjunctions between model (co)slice categories
Let C be a bicomplete category and g : X → Y be a morphism in C. There are two

adjunctions:
(1)

g! : (X ↓ C) � (Y ↓ C) : g∗,

where g∗ takes the object v : Y → D to the composition vg : X → D and h : v → v′ to h,
g! sends u : X → C to its cobase change along g and f : u → u′ to the induced morphism
Y 	X C → Y 	X C′ by the universal property of pushouts and they fit into the following
commutative diagram:

X u
��

g

��

u′

��
C

su

��

f
�� C′

��
Y ��

��Y 	X C �� Y 	X C′

with the three squares being pushouts. The unit of this adjunction is su : u → g∗g!(u) for any
u ∈ (X ↓ C), where su is defined in the above diagram.

(2)
g∗ : (C ↓ X) � (C ↓ Y ) : g!,

where the constructions of the functors g∗ and g! are dual to (1). In fact, g∗ takes the object
u : C → X to the composition gu : C → Y and f : u → u′ to f , and g! takes the object v : D →
Y to its base change along g and h : v′ → v to the induced morphism D′ ×Y X → D ×Y X by
the universal property of pullbacks and they fit into the following commutative diagram:

D′ ×Y X ��

��

��
D ×Y X

tv

��

�� X

g

��
D′ h ��

v′

��D
v �� Y

with the three squares being pullbacks. The counit of this adjunction is tv : g∗g!(v) → v for
any v ∈ (C ↓ Y ), where tv is defined in the above diagram.

In particular, if we take X = ∅ to be the initial object of C, then g∗ is just the forgetful
functor from (Y ↓ C) to C = (∅ ↓ C), and if we take Y = ∗ to be the terminal object of C, then
g∗ is just the forgetful functor from (C ↓ X) to C = (C ↓ ∗).

If we already have an adjunction (S, U ; ϕ, η, ε) : C → D between the bicomplete categories
C and D, then for any object X ∈ C and Y ∈ D, (S, U) induces the following four adjunctions.

(3)
SX : (X ↓ C) � (S(X) ↓ D) : UX ,
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where SX sends u : X → C to S(u) and f : u → u′ to S(f), while UX sends v : S(X) → D to
the composition U(v)η

X
: X → U(D) and h : v → v′ to U(h). The unit of this adjunction is

ηC : u → UXSX(u) for any u : X → C in (X ↓ C).

(4)
SX : (C ↓ X) � (D ↓ S(X)) : U

X
,

where SX sends u : C → X to S(u) : S(C) → S(X) and f : u → u′ to S(f), UX sends
v : D → S(X) to the base change of U(v) along the unit η

X
and h : v → v′ to the induced

morphism from U(D′)×US(X) X → U(D)×US(X) X by the universal property of pullbacks and
they fit into the following commutative diagram:

U(D′) ×US(X) X ��

��

��U(D) ×US(X) X ��

lv

��

X

η
X

��
U(D′)

U(h) ��

U(v′)

��U(D)
U(v) �� US(X)

with the three squares being pullbacks. The counit of this adjunction is ε
D

S(lv) : SXUX(v) → v

for any v : D → S(X) ∈ (D ↓ S(X)), where lv is defined in the above diagram.

(5)
S̃Y : (C ↓ U(Y )) � (D ↓ Y ) : ŨY ,

where the constructions of S̃Y and ŨY are dual to (3). In fact, S̃Y sends u : C → U(Y ) to
the composition εY S(u) : S(C) → Y and f : u → u′ to S(f), while ŨY sends v to U(v) and
h : v → v′ to U(h). The counit of this adjunction is ε

D
: S̃Y ŨY (v) → v for any v : D → Y in

(D ↓ Y ).

(6)
S̃′

Y : (U(Y ) ↓ C) � (Y ↓ D) : Ũ ′
Y ,

where the constructions of S̃′
Y and Ũ ′

Y are dual to (4). In fact, Ũ ′
Y sends v : Y → D to U(v)

and h : v → v′ to U(h), S̃′
Y sends u : U(Y ) → C to the cobase change of S(u) along the counit

ε
Y

and f : u → u′ to the induced morphism from Y 	SU(Y ) S(C) → Y 	SU(Y ) S(C′) by the
universal property of pushouts and they fit into the following commutative diagram:

SU(Y )
S(u)

��

ε
Y

��

S(u′)

��
S(C)

mu

��

S(f)
�� S(C′)

��
Y ��

��
Y 	SU(Y ) S(C) �� Y 	SU(U) S(C′)

with the three squares being pushouts. The unit of this adjunction is U(mu)η
C

: u → Ũ ′
Y S̃′

Y (u)
for any u : U(Y ) → C in (U(Y ) ↓ C), where mu is defined in the above diagram.

We have the following proposition about these adjunctions, in which the first statement in
some special case has been discussed in [5, Chapter 1, Section 3] and [7, Chapter 16, Section 2].

Proposition 2.2 (i) Let C be a closed model category and g : X → Y be a morphism in
C. Then the adjunctions (1) and (2) are Quillen adjunctions.
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(ii) Let C and D be two closed model categories. Assume that (S, U ; ϕ, η, ε) : C → D is a
Quillen adjunction and X ∈ C, Y ∈ D. Then the adjunctions (3)–(6) are Quillen adjunctions.
Moreover we have

(SX , UX) = (S̃S(X), ŨS(X)) ◦ ((η
X

)∗, η!
X

)

and
(S̃′

Y , Ũ ′
Y ) = ((ε

Y
)!, (εY

)∗) ◦ (SU(Y ), UU(Y )),

where the compsoitions of the adjunctions are in the sense of Theorem IV.8.1 of [6].

Proof These statements can be proved directly. We leave the details to the interested
reader. For example, since g∗(h) = h for any morphism h : v → v′ in (Y ↓ C) and h is a
fibration or an acyclic fibration in (Y ↓ C) if and only if it is one in C, g∗ preserves fibrations
and acyclic fibrations. Therefore the adjunction (1) is a Quillen adjunction.

Assume now that C and D are closed model categories and denote by C∗ = (∗ ↓ C) and
D∗ = (∗ ↓ D) the slice categories of C and D induced by the terminal object ∗, respectively.
If (S, U) : C → D is a Quillen adjunction, M. Hovey defined a functor U∗ from D∗ → C∗ by

mapping object ∗ v→ D to U(∗) = ∗ U(v)→ U(X) in [5]. This functor is a right Quillen functor
as proved in [5]. Note that if we denote the morphism S(∗) → ∗ as g in D∗, then U∗ is the

composition of the functors D∗
g∗
→ (S(∗) ↓ D) U∗→ C∗. So by Proposition 2.2, this functor has a

left adjoint S∗ = S∗ ◦ g!, and then we get Proposition 1.3.5 of [5] directly.

Corollary 2.1 (see [5, Proposition 1.3.5]) A Quillen adjunction (S, U) : C → D induces
a Quillen adjunction (S∗, U∗) : C∗ → D∗.

3 Main Results

Proposition 3.1 (a) Let C be a closed model category and g : X → Y be a morphism in
C. Then

(i) the adjunction (g!, g
∗) : (X ↓ C) → (Y ↓ C) is a Quillen equivalence if and only if the

cobase change of g along u for each cofibration u : X → C with C ∈ C is a weak equivalence;
(ii) dually, the adjunction (g∗, g!) : (C ↓ X) → (C ↓ Y ) is a Quillen equivalence if and only

if the base change of g along v for each fibration v : C → Y with Y ∈ C is a weak equivalence.
(b) Let C and D be closed model categories and (S, U ; ϕ, η, ε) : C → D be a Quillen equiva-

lence. Then given any object X ∈ C and Y ∈ D,
(i) if X ∈ Cc, the adjunction (SX , UX) : (X ↓ C) → (S(X) ↓ D) is a Quillen equivalence;
(ii) if Y ∈ Df , the adjunction (S̃Y , ŨY ) : (C ↓ U(Y )) → (D ↓ Y ) is a Quillen equivalence;
(iii) if S(X) ∈ Df , the adjunction (SX , UX) : (C ↓ X) → (D ↓ S(X)) is a Quillen equiva-

lence if and only if the base change of η
X

along v for each fibration v : D → US(X) with D ∈ D
is a weak equivalence;

(iv) if U(Y ) ∈ Cc, the adjunction (S̃′
Y , Ũ ′

Y ) : (U(Y ) ↓ C) → (Y ↓ D) is a Quillen equivalence
if and only if the cobase change of ε

Y
along u for each cofibration u : SU(Y ) → D with D ∈ D

is a weak equivalence.

Proof By Proposition 2.2, all the adjunctions in the statements are Quillen adjunctions.
We only prove the assertions (i) of (a), (i) and (iii) of (b). The others can be proved dually.

The proof of (a)(i). On the one hand, since g∗(h) = h for any morphism h : v → v′ in
(Y ↓ C), if g∗(h) is a weak equivalence, so is h. On the other hand, for any u : X → C in
(X ↓ C)c = {u ∈ (X ↓ C) | u ∈ Cof(C)} (see Lemma 2.1), the unit of the adjunction (g!, g

∗) is
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su : C → Y 	X C (see the construction of this adjunction) which is the cobase change of g along
u. So by (iv) of Proposition 2.2, (g!, g

∗) is a Quillen equivalence if and only if the composite

C
su→ Y 	X C

r
Y �X C−→ R(Y 	X C)

is a weak equivalence. Since r
Y �XC

is a weak equivalence, by the 2-out-of-3 axiom of weak
equivalences, we know that (g!, g

∗) is a Quillen equivalence if and only if su is a weak equivalence.
The proof of (b)(i). If h : v → v′ is in (S(X) ↓ D)f = {S(X) v→ D ∈ (S(X) ↓ D) | D ∈ Df},

then h is a morphism in Df , and UX(h) = U(h). Recall that the unit of the adjunction
(SX , UX) is η

C
: C → US(C) for any u : X → C (see the construction of this adjunction). If

u is in (X ↓ C)c = {u ∈ (X ↓ C) | u ∈ Cof(C)}, since X ∈ Cc, we know that C ∈ Cc. Thus by
(iv) of Lemma 2.2, (SX , UX) is a Quillen equivalence if and only if when UX(h) = U(h) is a

weakly equivalence, so is h and the composition C
η

C→ US(C)
U(r

S(C)
)

−→ U(R(S(C))) is a weak
equivalence. But again by (iv) of Lemma 2.2, this holds since(S, U) is a Quillen equivalence.

The proof of (b)(iii). By assumption and (ii) of (b), we know that (S̃S(X), ŨS(X)) is a Quillen
equivalence. Since SX = S̃S(X)(ηX

)∗ by (ii) of Proposition 2.2, we know that (SX , UX) is a
Quillen equivalence if and only if ((η

X
)∗, η!

X
) is a Quillen equivalence by Corollary 1.3.15 of [5].

Then the assertion follows from (ii) of (a).

Corollary 3.1 (see [5, Proposition 1.3.7]) Suppose that (S, U) : C → D is a Quillen
equivalence, and suppose in addition that the terminal object ∗ ∈ Cc and that S preserves
the terminal object. Then (S∗, U∗) : C∗ → D∗ constructed as in Corollary 2.1 is a Quillen
equivalence.

Proof In this case, (S∗, U∗) = (S∗, U∗) is a Quillen equivalence by Proposition 3.1.

Recall that a closed model category C is called left proper if every cobase change of a weak
equivalence along a cofibration is a weak equivalence. Dually, C is called right proper if every
base change of a weak equivalence along a fibration is a weak equivalence. By Proposition 3.1,
we can redescribe the left or right properness of a model category by Quillen equivalences.

Corollary 3.2 1 (1) A closed model category C is left proper if and only if (g!, g
∗) is a

Quillen equivalence for every weak equivalence g : X → Y .
(2) A closed model category C is right proper if and only if (g∗, g!) is a Quillen equivalence

for every weak equivalence g : X → Y .

Remark 3.1 In general, if g is not a weak equivalence, and even C is proper, (g!, g
∗) is

not necessarily a Quillen equivalence. For example, take C = modk[x]/(x2) where k is a field.
Then C is a proper model category in which weak equivalences are stable equivalences and
every object is bifibrant, and its homotopy category is the stable category modk[x]/(x2). Take
g = 0 : 0 → k, and then η = ( 1

0 ) is the unit of the adjunction (g!, g
∗). In this case, every

object is fibrant, the morphisms in (iv) of Proposition 2.2 are just ηC for any C ∈ C. But
ηk : k → k⊕ k is in no way a weak equivalence. So the Quillen adjunction (g!, g

∗) : C → (k ↓ C)
is not a Quillen equivalence.

If F is a weakly idempotent complete Frobenius category, then F has a canonical model
structure in which the cofibrations are the monomorphisms, the fibrations are the epimorphisms
and the weak equivalences are the stable equivalences (see [2, Theorem 3.3]). Let A be any

1This should be the right version of Proposition 16.2.4 of [7], and there the authors claimed that a closed
model category C is left proper or right proper if and only if (g!, g

∗) or (g∗, g!) is Quillen equivalence for a given
morphism g. For a counter example see Remark 3.1.
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nonzero projective-injective object in F . Take g = 0 : 0 → A, and then 0!(0 → C) = C
( 0
1 )→ A⊕C

is a weak equivalence for any C ∈ F . By Proposition 3.1, we have a Quillen equivalence (0!, 0∗) :
(0 ↓ F) = F → (A ↓ F). So the derived functors of 0! and 0∗ are equivalences of the homotopy
categories between Ho(F) and Ho(A ↓ F). Note that in this case, the homotopy category
Ho(F) is just the stable category F (see [3, Chapter I, Section 2.2]) which is a triangulated
category by Theorem 2.6 of [3]. If we can show that the homotopy category Ho(A ↓ F) is
a triangulated category, then the derived adjunction (L0!, R0∗) : F → Ho(A ↓ F) will be a
triangle equivalence since Quillen equivalences are automatically triangle equivalences if the
corresponding homotopy categories are triangulated categories (see [8, Chapter I, Theorem 3]).

Next we will show that the homotopy category Ho(A ↓ F) is a triangulated category. And
then we give the promised example as advertised in the introduction since the coslice category
(A ↓ F) is not pointed by noting that its initial object is A

1A→ A and its terminal object is
A → 0.

Theorem 3.1 The homotopy category Ho(A ↓ F) is a triangulated category.

Proof Since Fcf = F and A is injective, we know that (A ↓ F)f = (A ↓ F) and cofibrant
objects in (A ↓ F) are split monomorphisms in F with domain A. So for any object u ∈ (A ↓
F)c, we may write u as A

( 1
0 )→ A⊕C up to isomorphism. The morphisms from u = A

( 1
0 )→ A⊕C

to v = A
( 1
0 )→ A ⊕ D are of the form ( 1 r

0 s ). By Quillen’s homotopy category theorem (see [8,
Theorem I.1]), we know that the homotopy category Ho(A ↓ F) can be realized as the quotient
category (A ↓ F)c/ ∼, where ∼ is the homotopy relation. For details, we refer the reader to
Section 1 of Chapter I of [8] or Sections 4–5 of [1].

Let (A ↓ F)0c be the subcategory of (A ↓ F)c consisting of the objects of the form A
( 1
0 )→ A⊕C

and morphisms from u = A
( 1
0 )→ A⊕C to v = A

( 1
0 )→ A⊕D be of the form ( 1 0

0 s ). The subcategory
(A ↓ F)0c has zero object A

1A→ A.
We claim that the inclusion (A ↓ F)0c ↪→ (A ↓ F)c induces an equivalence of quotient

categories (A ↓ F)0c/ ∼� (A ↓ F)c/ ∼. Firstly, note that A

(
1
0
0

)
→ A ⊕ C ⊕ I(C) is a very good

cylinder object of u = A
( 1
0 )→ A ⊕ C:

A

(
1
0
0

)

		

(
1
0
0

)
��

( 1
0 )




A ⊕ C ⊕ C

(
1 0 0
0 1 1
0 i 0

)
�� A ⊕ C ⊕ I(C)

( 1 0 0
0 1 0 )

�� A ⊕ C

where C
i→ I(C) is an injective preenvelope of C in F . Given any morphism ( 1 r

0 s ) : u =

A
( 1
0 )→ A ⊕ C → v = A

( 1
0 )→ A ⊕ D, there is a morphism r′ : I(C) → A such that r′i = r since

A is injective. Then
(

1 0 r′
0 s 0

)
is a cylinder homotopy from ( 1 r

0 s ) to ( 1 0
0 s ) in (A ↓ F)c. That

is ( 1 r
0 s ) ∼ ( 1 0

0 s ) in (A ↓ F)c. Meanwhile, it is easy to prove that given any two morphisms
( 1 0

0 s ) , ( 1 0
0 t ) : u → v in (A ↓ F)0c , they are cylinder homotopic if and only if they are cylinder

homotopic in (A ↓ F)c. So we have (A ↓ F)c/ ∼� (A ↓ F)0c/ ∼. In particular, Ho(A ↓ F) �
Ho((A ↓ F)0c).

We can use Quillen’s Theorem I.2 of [8] to the homotopy category Ho((A ↓ F)0c). Recall
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that A

(
1
0
0

)
→ A ⊕ C ⊕ I(C) is a very good cylinder object of u = A

( 1
0 )→ A ⊕ C, where I(C) is

an injective preenvelope of C. By the construction of the suspension functor of the homotopy
category Ho(A ↓ F) (see [8, The proof of Theorem 2 in Chapter I]), we may define Σ(u) =

A
( 1
0 )→ A ⊕ ΣF(C), where ΣF is the suspension functor of the stable category F which is an

automorphism of F (see [3, Chapter I, Proposition 2.2]). Then it can be verified directly that
the suspension functor Σ defined above on the homotopy category Ho((A ↓ F)0c) is an auto-
equivalence and thus Ho(A ↓ F) is a triangulated categories by Propositions 5–6 in Section I.3
of [8].

Corollary 3.3 The derived functor L0! : F → Ho(A ↓ F) is a triangle equivalence with
quasi-inverse R0∗.

Proof By construction, (0!, 0∗) : F → (A ↓ F) is a Quillen equivalence. Then the derived
adjunction (L0!, R0∗) is an equivalent adjunction and L0! is a triangle equivalence by Theorem
I.3 of [8].

Remark 3.2 Dually, we can construct a slice category (F ↓ A) for a nonzero projective-
injective object A, and there is a triangle equivalence (L0∗, R0!) : F → Ho(F ↓ A).
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