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1 Introduction

Throughout this paper, all groups are finite and G is always a group. We denote by π(G)
the set of prime divisors of |G|, and by πe(G) the set of element orders of G. If r is a prime
divisor of the order of G, then Pr denotes a Sylow r-subgroup of G and nr(G) denotes the
number of Sylow r-subgroups of G. Let n be an integer. We denote by ϕ(n) the Euler function
of n. G is called a simple Kn-group if G is simple such that |π(G)| = n.

The prime graph GK(G) of a group G is defined as a graph with the vertex set π(G). Two
distinct primes p, q ∈ π(G) are adjacent if G contains an element of order pq. Moreover, the
connected components of GK(G) are denoted by πi, 1 ≤ i ≤ t(G), where t(G) is the number
of connected components of G. In particular, we define by π1 the component containing the
prime 2 for a group of even order.

The motivation of this article is to investigate Thompson’s Problem as follows (see [1,
Problem 12.37]).

Write Mt(G) := {g ∈ G | gt = 1}. G1 and G2 are of the same order type if and only if
|Mt(G1)| = |Mt(G2)|, t = 1, 2, · · · .

Thompson’s Problem Suppose that G1 and G2 are of the same order type. If G1 is
solvable, is it true that G2 is also necessarily solvable?

Unfortunately, so far, no one could prove it completely, or even give a counterexample.
Let k ∈ πe(G) and mk(G) be the number of elements of order k in G. Let nse(G) :=

{mk(G) | k ∈ πe(G)}, the set of numbers of elements with the same order. If groups G1 and
G2 are of the same order type, we clearly see that |G1| = |G2| and nse(G1) = nse(G2). So it is
natural to investigate the Thompson’s Problem by |G| and nse(G). Notice that not all groups
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can be characterized by nse(G) and |G|. For instance, in 1987, Thompson gave an example as
follows: Let G1 = (C2 × C2 × C2 × C2) � A7 and G2 = L3(4) � C2 be two maximal subgroups
of M23, where M23 is a Mathieu group of degree 23. Then nse(G1) = nse(G2) and |G1| = |G2|.
Unfortunately, G1 � G2.

The authors of [2] proved that all simple K4-groups G can be uniquely determined by nse(G)
and |G|. Later, Asboei et al. [3] characterized sporadic simple groups by nse(G) and |G|. The
authors of this paper proved (see [4]) that linear groups L2(q) are characterizable by their
orders |L2(q)| and the set nse(L2(q)), if q = 2a − 1 or 2a + 1 is a prime. On the other hand,
some groups can be determined uniquely by the set nse. For instance, it is proved (see [5]) that
L2(3), L2(4) ∼= L2(5) and L2(9) are uniquely determined by nse(G). Khatami, Khosravi and
Akhlaghi [6] proved that simple groups L2(q) are characterizable uniquely by the set nse(L2(q))
if q ∈ {7, 8, 11, 13}. Moreover, Zhang and Shi [7], Asboei and Amiri [8] proved that L2(q) can
be characterized uniquely by the set nse(L2(q)), where q ∈ {16, 25}. In this present paper, by
introducing the prime graph of a group as a different method, we go on characterizing linear
groups L2(q) when q ∈ {17, 27, 29}. Our result is the following theorem 1.1.

Theorem 1.1 Let G be a group and q ∈ {17, 27, 29}. Then G ∼= L2(q) if and only if
nse(G) = nse(L2(q)).

We denote nr(G) by nr and mk(G) by mk if there is no confusion. Further unexplained
notation is standard, and readers may refer to [9].

2 Preliminaries

In this section, we give some lemmas which will be used in the sequel.

Lemma 2.1 Let G be a group. If 1 �= n ∈ nse(G) and 2 � n, then the following statements
hold:

(1) 2 | |G|;
(2) m2 = n;
(3) for any 2 < t ∈ πe(G), mt �= n.

Proof Let 1 �= t ∈ πe(G) and k be the number of cyclic subgroups of G with order t. Then
mt = kϕ(t). If t > 2, then ϕ(t) is even, so is mt. Hence mt �= n since n is odd. As a result,
m2 = n and 2 ∈ π(G), as required.

Lemma 2.2 (see [10]) Let G be a group and m be a positive integer dividing |G|. If
Mm(G) = {g ∈ G|gm = 1}, then m | |Mm(G)|.

Lemma 2.3 (see [4, Lemma 2.3]) Let G be a group and P be a cyclic Sylow p-subgroup
of G. Assume further that |P | = pa and r is an integer such that par ∈ πe(G). Then mpar =
mr(CG(P ))mpa . In particular, ϕ(r)mpa | mpar.

Lemma 2.4 (see [11]) Let G be a group and p ∈ π(G) be odd. Suppose that P is a Sylow
p-subgroup of G and n = psm, where (p, m) = 1. If P is not cyclic and s > 1, then the number
of elements of order n is always a multiple of ps.

Recall that G is a 2-Frobenius group if G has a normal series 1�H �K �G such that G/H

and K are Frobenius groups with K/H and H being Frobenius kernels, respectively.

Lemma 2.5 (see [12, Theorem 2]) If G is a 2-Frobenius group of even order, then t(G) = 2
and G has a normal series 1 � H � K � G such that π(K/H) = π2, π(H) ∪ π(G/K) = π1,
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|G/K| | |Aut (K/H)|, G/K and K/H are cyclic. In particular, |G/K| < |K/H | and G is
solvable.

Lemma 2.6 (see [13, Theorem A]) Let G be a group such that t(G) ≥ 2. Then G has one
of the following structures:

(a) G is a Frobenius or 2-Frobenius group.
(b) G has a normal series 1 � N � G1 � G such that π(N) ∪ π(G/G1) ⊆ π1 and G1/N is a

nonabelian simple group.

Lemma 2.7 Let G be a simple group. If π(G) = {2, 3, 17}, then G ∼= L2(17); if π(G) =
{2, 3, 7, 13}, then G ∼= L2(13) or L2(27); if π(G) = {2, 3, 5, 7, 29}, then G ∼= L2(29).

Proof This follows immediately by [14, Theorem 2], [15, Corollary 1] and [16, Theorem].

Lemma 2.8 (see [2, Lemma 2.5]) Let G be a group with a normal series: K � L � G.
Suppose that P ∈ Sylp(G), where p ∈ π(G). If P ≤ L and p � |K|, then the following statements
hold:

(1) |G : NG(P )| = |L : NL(P )|, that is, np(G) = np(L);
(2) |L/K : NL/K(PK/K)|t = |G : NG(P )| = |L : NL(P )|, that is, np(L/K)t = np(G) =

np(L) for some positive integer t. Furthermore, |NK(P )|t = |K|.

3 Proof of Theorem 1.1

Proof of Theorem 1.1 The necessity is obvious, so we only prove the sufficiency. Let
n ∈ πe(G) and k be the number of cyclic subgroups of order n in G. Then mn = k · ϕ(n). In
particular,

ϕ(n) | mn. (3.1)

We divide the proof into three cases.
Case 1 nse(G) = {1, 153, 272, 306, 612, 816, 288} = nse(L2(17)).
By Lemma 2.1, we see that 2 ∈ π(G) and m2 = 153. Further, Lemma 2.2 indicates that

π(G) ⊆ {2, 3, 7, 13, 17, 19, 43, 307, 613}. If 13 ∈ π(G), then Lemma 2.2 implies that m13 = 272
and |P13| = 13, yielding n13 = m13

ϕ(13) = 272
12 , which is not an integer, a contradiction. Similarly,

we have 7 �∈ π(G). Suppose 307 ∈ π(G). Then m307 = 306 and |P307| = 307 by Lemma 2.2.
We claim that P307 acts fixed-point-freely on Ω2 := {all elements of order 2 in G}. If not, then
307 · 2 ∈ πe(G). By Lemma 2.3, we have m307 | m2·307, which leads to m2·307 = 306 or 612.
However, both cases indicate that 2 · 307 � (1 + m2 + m307 + m2·307), a contradiction to Lemma
2.2. Analogously, we obtain that 19, 43, 613 �∈ π(G), and thus π(G) ⊆ {2, 3, 17}. Now we prove
that the equality holds.

Assume that exp(P2) = 2s. Then by (3.1) we have ϕ(2s) | m2s , yielding s ≤ 6. Analogously,
if 3 ∈ π(G), then exp(P3) ≤ 33 with m3 = 272, m9 = 816, m27 = 612 or 288; if 17 ∈ π(G), then
m17 = 288, |P17| ≤ 172 and exp(P17) = 17. Further, if exp(P3) = 32 or 33, then P3 is cyclic by
Lemma 2.4.

First we say that G is not a 2-group. Otherwise, exp(P2) = 26 because |nse(G)| = 7. This
implies that |G| =

∑

i∈nse(G)

i = 2548, which is not a power of 2, a contradiction. On the other

hand, suppose that G is a {2, 3}-group. Note that exp(P3) ≤ 33. If exp(P3) = 33, then P3 is
cyclic by Lemma 2.4. Moreover, 22 · 33 �∈ πe(G) by Lemma 2.3. If 22 ∈ πe(G), then P3 acts
fixed-point-freely on Ω4 := {all elements of order 4 in G}, indicating that |P3| | |Ω4|. Notice
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that |Ω4| = m4 = 306 = 2 · 32 · 17 by Lemma 2.2, which is a contradiction. Hence exp(P2) = 2.
Furthermore, |P2| | (1 + m2) yields that |P2| = 2 and thus |G| = 2 · 33, also a contradiction.
Hence exp(P3) = 32. Recall that P3 is cyclic. It follows that n3 = m9

ϕ(9) = 23 ·17 | |G|, contradicts
our assumption. Similarly, we rule out the case exp(P3) = 3. Consequently, π(G) �= {2, 3}.

Suppose that π(G) = {2, 17}. Notice that |P17| ≤ 172 and exp(P17) = 17. We show that
|P17| = 172. If not, n17(G) = m17/ϕ(17) = 2 · 32 | |G|, a contradiction to our assumption.
Further, 17 · 23 �∈ πe(G) by (3.1). As a result, |P17| | m2i with i ≥ 3 because P17 acts fixed-
point-freely on Ω2i := {all elements of order 2i in G}, again a contradiction to Lemma 2.2. This
shows that exp(P2) ≤ 22. In this case, Lemma 2.2 implies that |P2| | (1 + m2 + m4), leading
to |P2| | 22. However, |G| ≤ 22 · 172 = 1156 <

∑

i∈nse(G)

i = 2458, a contradiction. Therefore,

π(G) = {2, 3, 17}, as required.
We prove that |P17| = 17. Assume that this is false. Then |P17| = 172. If exp(P3) = 33,

then P3 is cyclic, implying n3 = m33

ϕ(33) = 24. Hence 17 | |NG(P3)|. Let A ≤ NG(P3) be a group
of order 17. Then P3 � A = P3 × A by Sylow’s theorem, implying 17 · 33 ∈ πe(G). It follows
by Lemma 2.3 that 16 · m33 | m33·17. Note that m27 = 612 or 288, which is a contradiction.
Suppose that exp(P3) = 3. By Lemma 2.2, |P3| = 3. Moreover, |G : NG(P3)| = 23 · 17. By
the same argument as above there is a contradiction, leading to exp(P3) = 32 and |P3| = 32.
Moreover, |G : NG(P3)| = m9

ϕ(9) = 23 · 17 and thus 17 | |NG(P3)|. Let A ∈ Syl3(NG(P3)). Then
P3 � A ≤ G. By Sylow’s theorem, we obtain that P3 � A = P3 × A and thus 3 · 17 ∈ πe(G).
However, 51 � (1 + m3 + m17 + m51), a contradiction to Lemma 2.2. Hence |P17| = 17, as
required.

If there is some prime r �= 17 such that 17r ∈ πe(G), then (r − 1)m17 | m17r by Lemma 2.3.
Further, r = 2 and m34 = m17. However, 34 � (1 + m2 + m17 + m34), contradicting Lemma 2.2.
As a result, t(G) ≥ 2.

Assume first that G = K � H is a Frobenius group with the kernel K and a complement
H . As t(G) = 2, we see that π1 = {2, 3} and π2 = {17} as there is no element of order 17r

for each prime r distinct from 17. Then either |H | = 17 or |K| = 17. If the latter holds,
then |H | | 16 and |G| | 16 · 17, a contradiction. Hence |H | = 17. Moreover, K3 � H is also a
Frobenius group with a kernel K3 and a complement H , yielding to |H | | (|K3| − 1). However,
|K3| | 33, which is a contradiction. Let G be a 2-Frobenius group. Then G has a normal series
1 � H � K � G such that |K/H | = 17 and |G/K| | |Aut(K/H)|. Hence H3 ∈ Syl3(G) and
thus H3 � C17 is also a Frobenius group with a Frobenius kernel H3 and a complement C17.
By the same reasoning as above, this is also a contradiction. Hence by Lemma 2.6, G has
a normal series 1 � H � K � G such that K/H is a simple K3-group since |π(G)| = 3. By
Lemma 2.7, we get K/H ∼= L2(17). Moreover, Lemma 2.8 implies that n17(K/H)t = n17 and
|NH(P17)|t = |H |. Since n17(K/H) = n17, we have t = 1 and thus H = NH(P17). So we
obtain that HP17 = H × P17. Since 17r �∈ πe(G), we get H = 1 and K ∼= L2(17). Note that
|Out(L2(17))| = 2. Then we have G = K · 2 or G = K. If G = K · 2, then by [9], we obtain
that m2 = 289 �= 153, a contradiction. Hence G = K ∼= L2(17).

Case 2 nse(G) = {1, 351, 728, 2106, 4536} = nse(L2(27)).
By Lemma 2.1, we see that 2 ∈ π(G) and m2 = 351. Notice that 1+728 = 36, 1+2106 = 72 ·

43, 1+4536 = 13·349. Then π(G) ⊆ {2, 3, 7, 13, 43, 349} by Lemma 2.2. Assume that 43 ∈ π(G).
Then Lemma 2.2 implies that m43 = 2106. Further, exp(P43) = 43 and |P43| | (1+m43), which
leads to that P43 is a cyclic group of order 43. Hence n43 = m43

ϕ(43) = 2106
42 , which is not an

integer, a contradiction. Similarly, 349 �∈ π(G) and thus π(G) ⊆ {2, 3, 7, 13}. We show that the
equality holds.
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Assume exp(P2) = 2s. Then by (3.1) we obtain that ϕ(2s) | m2s ∈ {728, 2106, 4536},
leading to s ≤ 4. If the equality holds, then m22 ∈ {728, 2106, 4536}, m23 ∈ {728, 2106, 4536},
m24 ∈ {728, 2106, 4536}, which is contrary to the fact that 24 | (1 + m2 + m22 + m23 + m24) by
Lemma 2.2. Thus exp(P2) ≤ 23. Furthermore, |P2| ≤ 26. On the other hand, if 3, 7, 13 ∈ π(G),
then m3 = 728, m7 = 2106 and m13 = 4536 according to Lemma 2.2. Further, exp(P3) ≤ 34,
|P3| ≤ 36, exp(P7) = 7, |P7| ≤ 72 and |P13| = 13 by a similar argument as above. Assume that
13 ∈ π(G). Then n13 = m13

ϕ(13) = 2 ·33 ·7, yielding that π(G) = {2, 3, 7, 13}, as required. Suppose
7 ∈ π(G). If |P7| = 7, then n7 = m7

ϕ(7) = 33 · 13, which also implies that π(G) = {2, 3, 7, 13}.
Hence we may assume that 13 �∈ π(G) and |P7| = 72 if 7 ∈ π(G). Note that G is neither a
2-group nor a {2, 7}-group because |G| ≤ 26 · 72 <

∑

i∈nse(G)

i = 7722. As a result, 3 ∈ π(G). If

7 ∈ π(G), then G is a {2, 3, 7}-group with |πe(G)| ≤ 4 · 5 · 2 = 40. Therefore,

|G| = 2a · 3b · 72 = 7722 + 728k1 + 2106k2 + 4536k3, (3.2)

where a, b, k1, k2 and k3 are non-negative integers such that
3∑

i=1

ki ≤ 40 − 5 = 35, 1 ≤ a ≤ 6

and 1 ≤ b ≤ 6 as |P2| ≤ 26 and |P3| ≤ 36. We see easily that the equation (3.2) is equivalent to

23 · 7 · 13k1 + 2 · 34 · 13k2 + 23 · 34 · 7k3 = 2a · 3b · 72 − 2 · 33 · 11 · 13. (3.3)

Assume first that b ≥ 3. Then we see clearly that 27 | k1, leading to either k1 = 0 or k1 = 27

since
3∑

i=1

ki ≤ 35. If the former holds, we divide 2 · 33 at both sides of (3.3), and then

3 · 13k2 + 22 · 3 · 7k3 = 2a−1 · 3b−3 · 72 − 11 · 13 (3.4)

indicating b = 3, since, otherwise, 3 | 11 ·13, a contradiction. Moreover, 13 | (2a−1 ·7−22 ·3k3),
implying 13 | (2a−3 · 7 − 3k3). It follows that either a = 5, k3 = 5 or a = 6, k3 = 10 as
a ≤ 6. However, in these two cases, no integer k2 satisfies (3.4). Hence k1 = 27. Then (3.3) is
equivalent to

3 · 13k2 + 22 · 3 · 7k3 = 2a−1 · 3b−3 · 72 − 3 · 132. (3.5)

Thus 7 | (k2 + 13), implying k2 = 1 or k2 = 8. If the latter holds, then k3 = 0. However,
k1 = 27, k2 = 8, k3 = 0 is not a solution of (3.2). Hence k2 = 1. However, in this case, (3.5) is
equivalent to

22 · 3 · 7 · k3 = 2a−1 · 3b−3 · 72 − 2 · 3 · 7 · 13.

This shows that 2k3 = 2a−2 ·3b−4−13, and thus a = 2. Moreover, 2k3 = 3b−4−13, contradicting
the fact b ≤ 6. Therefore, b = 1 or 2. The similar argument as above will also deduce a
contradiction.

The remaining case is π(G) ⊆ {2, 3}. As G is not a 2-group, we see that |πe(G)| ≤ 4 ·5 = 20.
Moreover,

|G| = 2a3b = 7722 + 728k1 + 2106k2 + 4536k3, (3.6)

where a, b, k1, k2 and k3 are non-negative integers such that
3∑

i=1

ki ≤ 20 − 5 = 15, 1 ≤ a ≤ 6

and 5 ≤ b ≤ 6. That is,

23 · 7 · 13k1 + 2 · 34 · 13k2 + 23 · 34 · 7k3 = 2a · 3b − 2 · 33 · 11 · 13. (3.7)
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Easily, 5 ≤ b ≤ 6 implies that k1 = 0 and thus (3.7) is equivalent to

3 · 13k2 + 22 · 3 · 7k3 = 2a−1 · 3b−3 − 11 · 13, (3.8)

leading to 3 | 11 · 13, again a contradiction. As a result, π(G) = {2, 3, 7, 13}, as required.
Recall that |P13| = 13. We claim that 13s �∈ πe(G) for each s ∈ π(G) distinct from 13.

Otherwise, Lemma 2.3 indicates that s = 2 and m26 = m13. But 26 � (1 + m2 + m13 + m26), a
contradiction to Lemma 2.2. Hence t(G) ≥ 2. Assume first that G is a Frobenius group. Then
t(G) = 2 with π1 = {2, 3, 7} and π2 = {13}. Write G = K � H . Suppose first that 13 | |K|.
Since K is nilpotent, we obtain that m13 = |K13| − 1 = |P13| − 1 = 12, where K13 is the Sylow
13-subgroup of K, a contradiction. Hence 13 | |H | and thus 2, 3, 7 ∈ π(K). Let K7 be a Sylow
7-subgroup of K. Then K7 � H is also a Frobenius group with a kernel K7 and a complement
H . This implies that 13 | (|K7| − 1), contrary to the fact that |K7| = |P7| ≤ 72. Suppose
further that G is a 2-Frobenius group. Then by Lemma 2.5 we see that G has a normal series
1 � H � K � G with |K/H | = 13 and |G/K| | 12, leading to 7 | |H |. Since H is nilpotent, we
get m7 = 6 or 48, again a contradiction.

Consequently, by Lemma 2.6 we see that G has a normal series 1 � H � K � G, where
K/H is either a simple K3 or K4-group and 13 | |K/H |. Assume first that K/H is a simple
K3-group. Then K/H ∼= L3(3) by [14, Lemma 2]. Note that |G/K| | |Out(K/H)| = 2. Then
we obtain that 7 | |H |. Since H is nilpotent, we get m7 = 6 or 48, a contradiction. Hence K/H

is a simple K4-group. By Lemma 2.7, we have K/H ∼= L2(13) or L2(27). If K/H ∼= L2(13),
then n7(K/H)t = n7 by Lemma 2.8. Since n7 = 33 · 13 and n7(K/H) = 2 · 3 · 13 according
to [9, p. 8], this is a contradiction. Hence K/H ∼= L2(27). Again by applying Lemma 2.8, we
obtain that n13(K/H)t = n13 and |NH(P13)|t = |H |. Hence t = 1 since n13(K/H) = n13.
Moreover, H = NH(P13), leading to HP13 = H × P13 ≤ G. Note that 13r �∈ πe(G). This
implies that H = 1 and therefore, K ∼= L2(27), and |G/K| | |Out(K)| = 6. Assume |G/K| = 2,
and then G = L2(27) · 2. By [9], m2 = 729, a contradiction. Similarly, the cases |G/K| = 3 and
|G/K| = 6 also imply a contradiction. This shows G = K ∼= L2(27), as wanted.

Case 3 nse(G) = {1, 435, 2610, 812, 1624, 3248, 840}= nse(L2(29)).
Similar to the proof of Case 1, we obtain that 2 ∈ π(G) ⊆ {2, 3, 5, 7, 29} and m2 = 435.

Moreover, if 3, 5, 7, 29 ∈ π(G), then m3 ∈ {812, 3248}, m5 = 1624, m7 = 2610 and m29 = 840.
Suppose that exp(P2) = 2a. Since ϕ(2a) | m2a and m2a ∈ nse(G), along with Lemma 2.2, we
get a ≤ 5. Moreover, |P2| ≤ 27. By the same reasoning, if 3, 5, 7, 29 ∈ π(G), we obtain that
|P3| ≤ 33, exp(P3) ≤ 32, |P5| ≤ 53, exp(P5) = 5, |P7| = 7, |P29| ≤ 292 and exp(P29) = 29.

We prove that π(G) = {2, 3, 5, 7, 29}. Assume first 7 ∈ π(G). Then n7 = m7
6 = 3 · 5 · 29,

which implies that π(G) = {2, 3, 5, 7, 29}, and we are done. As a result, we may assume that
π(G) ⊆ {2, 3, 5, 29}.

We see that G is neither a 2-group nor a {2, 3}-group because |G| ≤ 27·32 <
∑

i∈nse(G)

i = 9120.

Suppose that π(G) = {2, 5}. Then πe(G) ⊆ {1, 2, 22, · · · , 25} ∪ {5, 5 · 2, 5 · 22}, which leads to

|G| = 2a5b = 9570 + 2610k1 + 812k2 + 1624k3 + 3248k4 + 840k5, (3.9)

where a, b, k1, k2, k3, k4 and k5 are non-negative integers such that 1 ≤ a ≤ 7, 1 ≤ b ≤ 2 and
5∑

i=1

ki ≤ 6 ·2−7 = 5. As 29 � 2a5b, we obtain that k5 �= 0 and thus the equation has no solutions.

Suppose that π(G) = {2, 29}. If |P29| = 292, then

|G| = 2a292 = 9570 + 2610k1 + 812k2 + 1624k3 + 3248k4 + 840k5, (3.10)



Characterization of Groups L2(q) by NSE Where q ∈ {17, 27, 29} 109

where a, k1, k2, k3, k4 and k5 are non-negative integers such that 1 ≤ a ≤ 7 and
5∑

i=1

ki ≤ 5.

Easily, k5 = 0. Then (3.10) becomes

2a−1 · 29 = 3 · 5 · 11 + 32 · 5k1 + 2 · 7k2 + 22 · 7k3 + 23 · 7k4. (3.11)

Then k1 must be odd. If k1 = 1, then

2a−1 · 29 = 2 · 3 · 5 · 7 + 2 · 7k2 + 22 · 7k3 + 23 · 7k4 (3.12)

has no solutions. If k1 = 3, then (3.11) becomes

2a−1 · 29 = 22 · 3 · 52 + 2 · 7k2 + 22 · 7k3 + 23 · 7k4, (3.13)

leading to a = 2, which also is impossible. Hence, |P29| = 29 yielding n29 = m29
28 = 2 · 3 · 5, a

contradiction.
Suppose that π(G) = {2, 3, 5}. If exp(P3) = 32 and P3 is cyclic, then |P3| = 32. If |P5| = 5,

then n5 = 2 ·7 ·29, a contradiction. Assume that |P5| = 52. By Lemma 2.3, we have 45 �∈ πe(G).
Hence P5 acts fixed-point-freely on Ω9 := {all elements of order 9 in G}. So we have 52 | |Ω9|,
which is contrary to |Ω9| = m9. The same argument implies that |P5| �= 53. Moreover, P3 is
non-cyclic. Note that m3 = 3248. Then 15 �∈ πe(G), since, otherwise, 15 � (1+m3 +m5 +m15),
contrary to Lemma 2.2. As a result, P3 acts fixed-point-freely on Ω5 := {all elements of order 5
in G}. Thus |P3| | |Ω5|, which is a contradiction since |Ω5| = m5 = 1624. Hence exp(P3)=3. If
P3 is cyclic, then n3 = m3

2 = 2 ·7 ·29 or 23 ·7 ·29 because m3 = 812 or 3248, also a contradiction.
As a consequence, |P3| = 32 and m3 = 3248. If 15 ∈ πe(G), then m15 = 1624, 3248 or 840. By
Lemma 2.2, we see that 15 � (1+m3 +m5 +m15), which is a contradiction. Then P5 acts fixed-
point-freely on Ω3 := {all elements of order 3 in G}. So we have that 52 | |Ω3|, contradicting
|Ω3| = m3. This indicates that |P5| = 53. By the same reasoning, there is also a contradiction,
leading to that π(G) �= {2, 3, 5}. Analogously, π(G) �= {2, 3, 29}, {2, 5, 29}, {2, 3, 5, 29} and
therefore, π(G) = {2, 3, 5, 7, 29}, as required.

Recall that |P7| = 7. Then n7 = m7
6 = 3·5·29. We prove that |P29| = 29. If not, |P29| = 292,

implying 29 | |NG(P7)|. Let N ∈ Syl29(NG(P7)). Then N � P7N by Sylow’s theorem. Hence
N ×P7 ≤ G and thus 7 ·29 ∈ πe(G). By Lemma 2.3, it follows that 28m7 | m7·29, contradicting
m7·29 ∈ nse(G). We prove that 29r �∈ πe(G) for each r ∈ π(G) distinct from 29. Otherwise,
ϕ(r)m29 | m29r by Lemma 2.3. This forces r = 2. However, 2 · 29 � (1 + m2 + m29 + m2·29),
contrary to Lemma 2.2. Consequently, n29 = m29

28 = 2 · 3 · 5. Assume that N ∈ Syl5(NG(P29))
and |N | > 1. Then N � P29N by Sylow’s theorem. So we have P29N = N × P29 and thus
5 · 29 ∈ πe(G), also a contradiction. Hence |P5| = 5.

Therefore, t(G) ≥ 2. Assume first that G is a Frobenius group. Thus t(G) = 2 with
π1 = {2, 3, 5, 7} and π2 = {29}. Write G = K � H . If 29 | |K|, then m29 = |P29| − 1 = 28,
contrary to our assumption. Thus |H | = 29 and 7 | |K|. Let K7 be a Sylow 7-subgroup of
K. As K is nilpotent, we see that m7 = |K7| − 1 = 6. This contradiction implies that G is a
2-Frobenius group. Moreover, Lemma 2.5 implies that G has a normal series 1 � H � K � G

such that |K/H | = 29 and |G/K| | 28, leading to 5 | |H |. Since H is nilpotent and |P5| = 5, we
obtain that m5 = |H5| = 4, which contradicts our assumption. Further, Lemma 2.5 indicates
that G is non-solvable and has a normal series 1 � H � K � G such that K/H is a simple
group, 29 | |K/H | and π(H) ∪ π(G/K) ⊆ π1. Because there is no simple K3-group whose
order is divisible by 29, we see that K/H is a simple K4 or K5-group. By Lemma 2.7, we
see that K/H ∼= L2(29). On the other hand, Lemma 2.8 implies that n29 = n29(K/H)t and
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|NH(P29)|t = |H |. Thus t = 1 and H = NH(P29), yielding to H × P29 ≤ G. Note that there
is no element of order 29r for r ∈ π(G). Then H = 1 and thus K ∼= L2(29). Moreover,
G = K · 2 or G = K. If the former holds, it follows by [9] that m2 = 841, a contradiction.
Hence G = K ∼= L2(29) and the theorem is established.
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