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Abstract This paper deals with an attraction-repulsion chemotaxis model (ARC) in
multi-dimensions. By Duhamel’s principle, the implicit expression of the solution to (ARC)
is given. With the method of Green’s function, the authors obtain the pointwise estimates
of solutions to the Cauchy problem (ARC) for small initial data, which yield the W s,p (1 ≤
p ≤ ∞) decay properties of solutions.

Keywords Chemotaxis model, Pointwise estimates, Green’s function, Decay rates
2000 MR Subject Classification 35B40, 35Q80

1 Introduction

Chemotaxis is a phenomenon describing the movements of bacteria or cells in response to
some chemical substances. According to the orientation of the movements, we can describe
the phenomenon by attractive chemotaxis and repulsive chemotaxis, respectively. The former
occurs when the movement is toward a higher concentration of the chemical, and conversely, the
latter occurs when the movement is in the opposite direction. One famous attractive chemotaxis
model named Keller-Segel model was proposed by Keller and Segel [3] in the 1970s describing
the aggregation process of amoebae by chemoattraction. In [9], Luca proposed a more general
attraction-repulsion chemotaxis model to describe the aggregation of microglia and formation
of local accumulations of chemicals observed in AD senile plaques. In this paper, we consider
the following attraction-repulsion chemotaxis system (ARC):

⎧⎪⎪⎨
⎪⎪⎩

∂tu − Δu = β1∇ · (um1∇w) − β2∇ · (um2∇v), x ∈ R
n, t > 0,

λ1w − Δw = u, x ∈ R
n, t > 0,

λ2v − Δv = u, x ∈ R
n, t > 0,

u(x, 0) = u0(x), x ∈ R
n,

(ARC)

where the spatial dimension n ≥ 1, u(x, t) denotes the density of cells, w(x, t) denotes the
concentration of chemorepellents, and v(x, t) denotes the concentration of chemoattractants;
the parameters β1 and β2 represent the sensitivities of cells to the chemorepellents and the
chemoattractants respectively; λi (i = 1, 2) are positive parameters and mi ≥ 1 (i = 1, 2) are
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positive integers. The aim of this paper is to show the pointwise estimates of solutions to the
system for small initial data and to obtain the decay rates of solutions in W s,p(Rn) space.

When β1 = 0, this model is just the well-known simplified Keller-Segel (KS) model, for
which a number of works were carried out from various viewpoints. For these background
knowledge and more information, we refer to [2, 10–11] and their references. We mention
here some related works for the (KS) model with small initial data. In [14], Y. Sugiyama
and H. Kunii proved that a global solution exists for the (KS) model with small initial data
and obtained the Lp(Rn) (1 ≤ p < ∞) decay rates of the solution. For n ≥ 3 and m2 = 1,
H. Kozono and Y. Sugiyama [4] considered local and global existence for the (KS) model with
initial data u0 ∈ L

n
2
w (Rn) and proved the existence of strong solution with u0 ∈ L1(Rn)∩Lq(Rn)

for n < q ≤ ∞.

When β1, β2 > 0, because of the interaction of the two attraction and repulsion effects,
the (ARC) model can represent much richer phenomena. When the repulsion prevails over the
attraction, that is, when β1 > β2, one can expect the global existence of solutions for large
initial data, while when β1 < β2, the finite time blow-up may occur. Such results can be seen
in [15] where the authors considered the system (ARC) for m1 = m2 = 1 in a bounded domain.
For other results of the attraction-repulsion chemotaxis model, we can refer to [6, 12] and the
references therein. In this paper, we are interested in the Cauchy problem of the system (ARC)
with small initial data. We prove that no matter in what parameter regime, the system (ARC) is
always globally solvable for small initial data. More precisely, we study the pointwise estimates
of solutions to the system, which is very helpful for us to better understand the behaviors of
solutions to the system in both time and space. And we also derive the W s,p(Rn) decay rates
of solutions to (ARC).

For getting the precise pointwise estimates, to the authors’ best knowledge, Green’s
function is one of the most effective tools to describe the pointwise estimates. In [8], Liu
and Zeng investigated the pointwise estimates of solutions to general hyperbolic-parabolic
systems in one space dimension. D. Hoff and K. Zumbrun [1] considered pointwise decay es-
timates for multidimensional Navier-Stokes equations with an artificial viscosity term. Then
Liu and Wang [7] used the Green’s function method in odd multi-dimensional Navier-Stokes
equations, obtained long time behavior of solutions under small perturbation and proved the
generalized Huygen’s principle. After that more work involved in this field was done.

Most of the papers mentioned above are about hyperbolic-parabolic systems. For the
hyperbolic-parabolic-elliptic coupled type, there are also some results recently (see [5, 16]).
However, after the transformation of their systems, the elliptic effect is reflected in the nonlocal
linear term, while for the system (ARC), the nonlocal term is nonlinear, which is a difficult
point to deal with in this paper. Actually, we can solve the second and the third equations in
(ARC) with the help of Bessel potentials 1

λi−Δ (i = 1, 2). Then we can easily get the bounded-
ness estimates of w and v in the norms of u by the knowledge of pseudo-differential operators,
while for the more precise estimates, such as pointwise estimates, we cannot obtain them so
easily. Thus we must make more delicate calculations in our study. We shall show them later.

Before we show our results, we give some notations that are frequently used in the paper.

Notations Throughout the paper we denote generic constants by C which may vary line
by line according to the context. W s,p(Rn) and Lp(Rn) represent the usual Sobolev spaces
and the Lp(Rn) norm of a function is denoted by ‖ · ‖Lp(Rn). For any multi-indexes α =
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(α1, α2, · · · , αn) ∈ Z
n, we denote ∂α1

x1
∂α2

x2
· · · ∂αn

xn
by ∂α

x . We also denote 1
λ−Δu = Kλ ∗ u with

Kλ(x) = (4π)−
n
2

∫ ∞

0

e−λs− |x|2
4s s−

n
2 ds =

∫ ∞

0

e−λsG(x, s)ds, (1.1)

where

G(x, t) = (4πt)−
n
2 e−

|x|2
4t (1.2)

is the fundamental solution to the heat equation. The expression (1.1) of the kernel of Bessel
potential can be seen in [13, Chapter V, Section 3.1]. We also denote

Bm(|x|, t) �
(
1 +

|x|2
1 + t

)−m

(1.3)

for any m > n
2 which can be seen as some substitution of the function e

−|x|2
t .

The main results of this paper are stated in the following.

Theorem 1.1 Let (u, w, v) be the solutions to the Cauchy problem (ARC). Then there
exists ε > 0, such that if u0(x) satisfies

|∂α
x u0(x)| ≤ ε(1 + |x|2)−r, (1.4)

where r > n
2 , |α| ≤ h, and h is a given positive integer, then we have the estimate

|∂α
x u(x, t)| ≤ a(ε)(1 + t)−

n+|α|
2 Br(|x|, t) (1.5)

for all t ≥ 0, |α| ≤ h. a(ε) depends on n, h, r, ε and the parameters in the equations. w(x, t)
and v(x, t) satisfy the same estimates as (1.5).

Corollary 1.1 Let (u, w, v) be the solutions to the Cauchy problem (ARC), and u0 ∈
W s,p(Rn), where s > 0 is an integer, p ∈ [1,∞]. Then there exists ε > 0, such that if u0(x)
satisfies

|∂α
x u0(x)| ≤ ε(1 + |x|2)−r, (1.6)

where r > n
2 , |α| ≤ s, then we have the estimate

‖∂α
x u‖Lp(Rn) ≤ a(ε)(1 + t)−

n
2 (1− 1

p )− |α|
2 (1.7)

for all t ≥ 0, |α| ≤ s. a(ε) depends on n, s, r, ε and the parameters in the equations. w(x, t)
and v(x, t) satisfy the same estimates as (1.7).

From Theorem 1.1 and Corollary 1.1, we can conclude that both the attraction and repulsion
effects can be dominated by the diffusion term under the smallness condition, and therefore the
behavior of solutions is similar to the heat equation. We also state that our global existence
result and decay rates of solutions are independent of the parameters mi and βi (i = 1, 2) and
the signs of βi (i = 1, 2).

For simplicity and convenience to carry on in this paper, we transform the system (ARC)
into the following form:⎧⎨

⎩∂tu − Δu = β1∇ ·
(
um1

∇
λ1 − Δ

u
)
− β2∇ ·

(
um2

∇
λ2 − Δ

u
)
, x ∈ R

n, t > 0,

u(x, 0) = u0(x), x ∈ R
n.

(1.8)
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We investigate the pointwise estimates and W s,p(Rn) decay rates of solution u(x, t) to the
problem (1.8), and we can prove that the solutions to the original system (ARC) satisfy the
same estimates. In deriving these results, we also omit the proof of some lemmas to make this
paper brief.

The rest of the paper is arranged as follows. In Section 2, we shall give some lemmas which
are very useful for the proof of the main theorem. The pointwise estimates of solutions will be
carried out by Duhamel’s principle in Section 3.

2 Some Lemmas

In this section, we shall give some lemmas which will be used in proving the main theorem
in the next section.

Lemma 2.1 If n1, n2 > n
2 , and n3 = min{n1, n2}, then

∫
Rn

(
1 +

|x − y|2
1 + t

)−n1

(1 + |y|2)−n2dy ≤ C
(
1 +

|x|2
1 + t

)−n3

, (2.1)

where C depends only on n1, n2 and n.

The proof of Lemma 2.1 can be seen in [17].

Lemma 2.2 Assume that G is the heat kernel given by (1.2), and f(x) satisfies

f(x) ≤ (1 + |x|2)−m (2.2)

and

|∂α
x f(x)| ≤ (1 + |x|2)−m (2.3)

for some multi-indexes α ∈ Z
n and m > n

2 . Then we have

|∂α
x (G ∗ f)(x, t)| ≤ C(1 + t)−

n+|α|
2 Bm(|x|, t), (2.4)

where C depends only on n, m and α, and Bm(|x|, t) is defined by (1.3).

Proof When t ≥ 1, we can easily deduce

|∂α
x G(x, t)| ≤ C(1 + t)−

n+|α|
2 B2m(|x|, t). (2.5)

Then by (2.2) and Lemma 2.1, it holds that

|∂α
x (G ∗ f)| = |(∂α

x G) ∗ f | ≤ C(1 + t)−
n+|α|

2 Bm(|x|, t) for t ≥ 1. (2.6)

When t ≤ 1, it follows from (2.3) that

|∂α
x (G ∗ f)| = |G ∗ ∂α

x f | ≤ C

∫
Rn

t−
n
2 e−

|x−y|2
4t (1 + |y|2)−mdy. (2.7)

Now denote

I :=
{

y ∈ R
n

∣∣∣ |y| ≥ |x|
2

or |x − y| ≤ 1
}
. (2.8)
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If |y| ≥ |x|
2 , it holds that

1 + |y|2 >
1
4
(1 + |x|2), (2.9)

and if |x − y| ≤ 1, it holds that

1 + |x|2 = 1 + |x − y + y|2 ≤ 1 + 2|x − y|2 + 2|y|2 ≤ 3(1 + |y|2). (2.10)

Therefore, when y ∈ I, we always have

(1 + |y|2)−m ≤ C(1 + |x|2)−m, (2.11)

hence ∫
I

t−
n
2 e−

|x−y|2
4t (1 + |y|2)−mdy ≤ C(1 + |x|2)−m. (2.12)

Else if y ∈ R
n\I, then we have

|x − y| >
|x|
2

, |x − y| > 1. (2.13)

Therefore, we can deduce

t−
n
2 e−

|x−y|2
4t ≤ t−

n
2 e−

1
8t e−

|x−y|2
8t

≤ Ce−
|x−y|2

8t

≤ C
(
1 +

|x − y|2
t

)−m

≤ C(1 + |x − y|2)−m

≤ C(1 + |x|2)−m, (2.14)

where we have also used the fact of t ≤ 1. The corresponding integral satisfies∫
Rn\I

t−
n
2 e−

|x−y|2
4t (1 + |y|2)−mdy ≤ C(1 + |x|2)−m, (2.15)

where m > n
2 . From (2.7), (2.12) and (2.15), we can bound the whole integral:

|∂α
x (G ∗ f)| ≤ C(1 + |x|2)−m ≤ C(1 + t)−

n+|α|
2 Bm(|x|, t) for t ≤ 1. (2.16)

By (2.6) and (2.16), we complete the proof.

To obtain the precise estimates of the nonlocal terms of equation (1.8), we next give a very
useful lemma which plays an important role in our proof of the theorem.

Lemma 2.3 If

|f(x, t)| ≤ (1 + t)−bBm(|x|, t) (2.17)

for some nonnegative constant b and m > n
2 , then

|∇Kλ ∗ f | ≤ C(1 + t)−bBm(|x|, t), (2.18)

where C depends only on n, m and λ, Kλ is given by (1.1) and Bm(|x|, t) is defined by (1.3).
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Proof Without loss of generality, we take b = 0.

|∇Kλ ∗ f(x, t)| =
∣∣∣ ∫

Rn

∇Kλ(x − y)f(y, t)dy
∣∣∣

=
∣∣∣ ∫

Rn

(∫ ∞

0

e−λs∇G(x − y, s)ds
)
f(y, t)dy

∣∣∣
≤

∫ ∞

0

e−λs(|∇G(·, s)| ∗ Bm(·, t))ds

≤ C

∫ ∞

1

e−λss−
1
2

∫
Rn

s−
n
2 e−

|x−y|2
8s

(
1 +

|y|2
1 + t

)−m

dyds

+ C

∫ 1

0

e−λss−
1
2

∫
|y−x|≤1

s−
n
2 e−

|x−y|2
8s

(
1 +

|y|2
1 + t

)−m

dyds

+ C

∫ 1

0

e−λss−
1
2

∫
|y−x|≥1

s−
n
2 e−

|x−y|2
8s

(
1 +

|y|2
1 + t

)−m

dyds

: = I1 + I2,1 + I2,2. (2.19)

We first make estimates for I1. Since s > 1, we have

s−
n
2 e−

|x−y|2
8s ≤ C

(
1 +

|x − y|2
s

)−2m

= Cs2m(s + |x − y|2)−2m

≤ Cs2m(1 + |x − y|2)−2m. (2.20)

Then it follows from Lemma 2.1 that

I1 ≤ C

∫ ∞

1

e−λss2m− 1
2

∫
Rn

(1 + |x − y|2)−2m
(
1 +

|y|2
1 + t

)−m

dyds

≤ C

∫ ∞

1

e−λss2m− 1
2 Bm(|x|, t)ds

≤ CBm(|x|, t). (2.21)

For I2,1, since |y − x| ≤ 1, it naturally holds that

1 +
|x|2
1 + t

= 1 +
|x − y + y|2

1 + t

≤ 1 +
2|x − y|2

1 + t
+

2|y|2
1 + t

≤ 3
(
1 +

|y|2
1 + t

)
, (2.22)

so (
1 +

|y|2
1 + t

)−m

≤ C
(
1 +

|x|2
1 + t

)−m

, if |y − x| ≤ 1, (2.23)

which implies

I2,1 ≤ C

∫ 1

0

e−λss−
1
2

∫
|y−x|≤1

s−
n
2 e−

|x−y|2
8s Bm(|x|, t)dyds

≤ CBm(|x|, t). (2.24)
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And for I2,2, noticing that s ∈ [0, 1] and |y − x| ≥ 1, we have

s−
n
2 e−

|x−y|2
8s (1 + |x − y|2)2m ≤ s−

n
2 e−

|x−y|2
8s

(
1 +

|x − y|2
s

)2m

≤
(
1 +

|x − y|2
s

)2m

e−
|x−y|2

8s

( |x − y|2
s

) n
2 |x − y|−n

≤
(
1 +

|x − y|2
s

)2m

e−
|x−y|2

8s

( |x − y|2
s

) n
2

≤ C, (2.25)

that is

s−
n
2 e−

|x−y|2
8s ≤ C(1 + |x − y|2)−2m, if s ≤ 1, |y − x| ≥ 1. (2.26)

Then by Lemma 2.1, we can get

I2,2 ≤ C

∫ 1

0

e−λss−
1
2

∫
|y−x|≥1

(1 + |x − y|2)−2m
(
1 +

|y|2
1 + t

)−m

dyds

≤ C

∫ 1

0

e−λss−
1
2 Bm(|x|, t)ds

≤ CBm(|x|, t). (2.27)

Combining all the estimates of above, we complete the proof.

The next lemma is also very important for our proof, which deals with the nonlinear parts
in the equation.

Lemma 2.4 If

|∂α
x G̃(x, t)| ≤ C t−

n+|α|+1
2 e−

|x|2
8t , (2.28)

|∂α
x S(x, t)| ≤ C (1 + t)−

2n+|α|
2 Bm(|x|, t), (2.29)

where m > n
2 , n ≥ 1, then we have

Iα :=
∣∣∣∂α

x

(∫ t

0

G̃(·, t − s) ∗ S(·, s)ds
)∣∣∣

≤ C (1 + t)−
n+|α|

2 Bm(|x|, t). (2.30)

Proof Because of the singularity of the function G̃(x, t) at t = 0, we divide the integrating
range into several parts and study them respectively. We have

Iα ≤ C

∫ t
2

0

|∂α
x (G̃(·, t − s) ∗ S(·, s))|ds + C

∫ t

t
2

|G̃(·, t − s) ∗ ∂α
x S(·, s)|ds

:= P + Q. (2.31)
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From the conditions (2.28) and (2.29), we have

P = C

∫ t
2

0

|∂α
x G̃(·, t − s) ∗ S(·, s)|ds

≤ C

∫ t
2

0

∫
Rn

(t − s)−
n+|α|+1

2 (1 + s)−ne−
|x−y|2
8(t−s)

(
1 +

|y|2
1 + s

)−m

dyds, (2.32)

P = C

∫ t
2

0

|G̃(·, t − s) ∗ ∂α
x S(·, s)|ds

≤ C

∫ t
2

0

∫
Rn

(t − s)−
n+1

2 (1 + s)−
2n+|α|

2 e−
|x−y|2
8(t−s)

(
1 +

|y|2
1 + s

)−m

dyds (2.33)

and

Q ≤ C

∫ t

t
2

∫
Rn

(t − s)−
n+1

2 (1 + s)−
2n+|α|

2 e−
|x−y|2
8(t−s)

(
1 +

|y|2
1 + s

)−m

dyds. (2.34)

We consider P first and study it in two different cases: t ≥ 1 and t ≤ 1. When t ≥ 1, noticing
that s ∈ [0, t

2 ], the following holds:

(t − s)−
n+|α|+1

2 ≤ C(1 + t − s)−
n+|α|+1

2 . (2.35)

Therefore, it follows from (2.32) that

P ≤ C

∫ t
2

0

(1 + t − s)−
n+|α|+1

2 (1 + s)−n

∫
Rn

e−
|x−y|2
8(t−s)

(
1 +

|y|2
1 + s

)−m

dyds. (2.36)

If |x|2 ≤ t, it is easily shown that

1 ≤ 2m
(
1 +

|x|2
1 + t

)−m

= 2mBm(|x|, t), (2.37)

so

P ≤ C

∫ t
2

0

(1 + t − s)−
n+|α|+1

2 (1 + s)−n

∫
Rn

(
1 +

|y|2
1 + s

)−m

dyds

= C(1 + t)−
n+|α|+1

2

∫ t
2

0

(1 + s)−
n
2

∫
Rn

(1 + |z|2)−mdzds

≤ C(1 + t)−
n+|α|

2

≤ C(1 + t)−
n+|α|

2 Bm(|x|, t) for t ≥ 1, |x|2 ≤ t. (2.38)

Else if |x|2 ≥ t, we have estimates

(
1 +

|y|2
1 + s

)−m

≤ C
(
1 +

|x|2
1 + s

)−m

= C(1 + s)m(1 + s + |x|2)−m

≤ C(1 + s)m
(
1 +

t

2
+

|x|2
2

)−m

≤ C(1 + s)m(1 + t + |x|2)−m

≤ C
(1 + s

1 + t

)m(
1 +

|x|2
1 + t

)−m

, if |y| ≥ |x|
2

(2.39)
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and

e−
|x−y|2
8(t−s) ≤ C

(
1 +

|x − y|2
t − s

)−m

≤ C
(
1 +

|x|2
t − s

)−m

= C(t − s)m(t − s + |x|2)−m

≤ C(t − s)m
(1

3
+

t

3
+

|x|2
3

)−m

≤ C
( t − s

1 + t

)m(
1 +

|x|2
1 + t

)−m

, if |y| ≤ |x|
2

, (2.40)

where we have also used the fact of |x|2 ≥ t ≥ 1. (2.39)–(2.40) imply∫
Rn

e−
|x−y|2
8(t−s)

(
1 +

|y|2
1 + s

)−m

dy

≤ C

∫
{|y|≥ |x|

2 }
e−

|x−y|2
8(t−s)

(1 + s

1 + t

)m(
1 +

|x|2
1 + t

)−m

dy

+ C

∫
{|y|≤ |x|

2 }

(t − s

1 + t

)m(
1 +

|x|2
1 + t

)−m(
1 +

|y|2
1 + s

)−m

dy

≤ C
[
(t − s)

n
2

(1 + s

1 + t

)m

+ (1 + s)
n
2

( t − s

1 + t

)m]
Bm(|x|, t) (2.41)

for |x|2 ≥ t ≥ 1. Substituting (2.41) into (2.36) and noticing that s ∈ [0, t
2 ], we get

P ≤ CBm(|x|, t)
∫ t

2

0

(1 + t − s)−
n+|α|+1

2 (1 + s)−n
[
(t − s)

n
2

(1 + s

1 + t

)m

+ (1 + s)
n
2

( t − s

1 + t

)m]
ds

≤ C(1 + t)−
n+|α|

2 Bm(|x|, t) for t ≥ 1, |x|2 ≥ t. (2.42)

Combining (2.38) and (2.42), we have

P ≤ C(1 + t)−
n+|α|

2 Bm(|x|, t) for t ≥ 1. (2.43)

Now let us consider the other case t ≤ 1 for P. In this case, the following estimates hold:(
1 +

|y|2
1 + s

)−m

≤ C
(
1 +

|x|2
1 + s

)−m

≤ C
(
1 +

|x|2
1 + t

)−m

, if |y − x| ≤ 1, (2.44)

e−
|x−y|2
8(t−s) (t − s)−

n+1
2 ≤ C

(
1 + |x − y|2

)−2m

, if t ≤ 1, |y − x| ≥ 1, (2.45)

where (2.44) and (2.45) can be proved in exactly the same way as (2.23) and (2.26), alternatively.
We mention that (2.44) always holds for any t ≥ s ≥ 0 if |y − x| ≤ 1. From (2.33) and (2.44)–
(2.45), we can obtain

P ≤ C

∫ t
2

0

∫
|y−x|≤1

(t − s)−
n+1
2 (1 + s)−

2n+|α|
2 e−

|x−y|2
8(t−s)

(
1 +

|x|2
1 + t

)−m

dyds

+ C

∫ t
2

0

∫
|y−x|≥1

(1 + s)−
2n+|α|

2

(
1 + |x − y|2

)−2m(
1 +

|y|2
1 + s

)−m

dyds

for t ≤ 1. (2.46)
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By using Lemma 2.1, we can get

P ≤ CBm(|x|, t)
∫ t

2

0

(t − s)−
1
2 (1 + s)−

2n+|α|
2 ds + CBm(|x|, t)

∫ t
2

0

(1 + s)−
2n+|α|

2 ds

≤ CBm(|x|, t)
≤ C(1 + t)−

n+|α|
2 Bm(|x|, t) for t ≤ 1. (2.47)

Combining (2.43) and (2.47), we have

P ≤ C(1 + t)−
n+|α|

2 Bm(|x|, t). (2.48)

Next we consider the other term Q. Obviously, from (2.34), we have

Q ≤ C

∫ t

t
2

∫
|y−x|≤1

(t − s)−
n+1

2 (1 + s)−
2n+|α|

2 e−
|x−y|2
8(t−s)

(
1 +

|y|2
1 + s

)−m

dyds

+ C

∫ t

t
2

∫
|y−x|≥1

(t − s)−
n+1
2 (1 + s)−

2n+|α|
2 e−

|x−y|2
8(t−s)

(
1 +

|y|2
1 + s

)−m

dyds

:= Q1 + Q2. (2.49)

For Q1, it follows from (2.44) that

Q1 ≤ CBm(|x|, t)
∫ t

t
2

(t − s)−
1
2 (1 + s)−

2n+|α|
2

∫
|y−x|≤1

(t − s)−
n
2 e−

|x−y|2
4(t−s) dyds

≤ C(1 + t)−
n+|α|

2 Bm(|x|, t). (2.50)

For Q2, when t ≤ 1, it follows from (2.45) that

Q2 ≤ C

∫ t

t
2

∫
|y−x|≥1

(1 + s)−
2n+|α|

2 (1 + |x − y|2)−2m
(
1 +

|y|2
1 + s

)−m

dyds

≤ C(1 + t)−
n+|α|

2 Bm(|x|, t) for t ≤ 1, (2.51)

where we have also used Lemma 2.1. When t ≥ 1 and |x|2 ≤ t, by virtue of (2.37), we have

Q2 ≤ C

∫ t

t
2

∫
|y−x|≥1

(t − s)−
n+1

2 (1 + s)−
2n+|α|

2 e−
|x−y|2
4(t−s) dyds

≤ C(1 + t)−
n+|α|

2

≤ C(1 + t)−
n+|α|

2 Bm(|x|, t) for t ≥ 1, |x|2 ≤ t. (2.52)

And when |x|2 ≥ t ≥ 1, we follow (2.41) and Lemma 2.1 to derive

Q2 ≤ CBm(|x|, t)
∫ t

t
2

(t − s)−
n+1

2 (1 + s)−
2n+|α|

2

[
(t − s)

n
2

(1 + s

1 + t

)m

+ (1 + s)
n
2

( t − s

1 + t

)m]
ds

≤ C(1 + t)−
n+|α|

2 Bm(|x|, t) for t ≥ 1, |x|2 ≥ t. (2.53)

Then it follows from (2.51)–(2.53) that

Q2 ≤ C(1 + t)−
n+|α|

2 Bm(|x|, t). (2.54)
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Combining (2.49)–(2.50) and (2.54), we have

Q ≤ C(1 + t)−
n+|α|

2 Bm(|x|, t). (2.55)

Finally, from (2.48) and (2.55), we obtain

Iα ≤ C(1 + t)−
n+|α|

2 Bm(|x|, t). (2.56)

The proof is complete.

3 Proof of the Main Theorem

Now, we can prove Theorem 1.1 on the basis of the above lemmas.

Proof of Theorem 1.1 By (1.8) and Duhamel’s principle, the solution u can be expressed
by the formula

u(x, t) = G ∗ u0 +
∫ t

0

G(·, t − s) ∗ ∇ · [β1u
m1(∇Kλ1 ∗ u) − β2u

m2(∇Kλ2 ∗ u)](·, s)ds. (3.1)

Therefore, we consider the following successive approximation forms:

uj+1(x, t) = u1(x, t) +
∫ t

0

G(·, t − s) ∗ ∇ · [β1u
m1
j (∇Kλ1 ∗ uj)

− β2u
m2
j (∇Kλ2 ∗ uj)](·, s)ds, j = 1, 2, · · · , (3.2)

where

u1(x, t) = G ∗ u0.

Let

Mj(t) := sup
0≤τ≤t
|α|≤h
x∈R

n

|∂α
x uj(x, τ)|ϕ−1

α (x, τ), (3.3)

where

ϕα(x, t) = (1 + t)−
n+|α|

2 Br(|x|, t). (3.4)

From the assumption and Lemma 2.2, it holds that

|∂α
x u1| = |∂α

x G ∗ u0| ≤ Cε(1 + t)−
n+|α|

2 Br(|x|, t). (3.5)

By Lemma 2.3, we have

|∂α
x (umi

j (∇Kλi ∗ uj))(x, t)| =
∣∣∣ ∑

η1+···+ηmi
+γ=α

∂η1
x uj · · ·∂ηmi

x uj · (∇Kλi ∗ ∂γ
xuj)

∣∣∣
≤ CMmi+1

j ϕη1(x, t) · · ·ϕηmi
(x, t)ϕγ(x, t)

= CMmi+1
j (1 + t)−

n
2 (mi+1)− |α|

2 B(mi+1)r(|x|, t), i = 1, 2, (3.6)
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and obviously,

|∂α
x (∇G)(x, t)| ≤ Ct−

n+|α|+1
2 e−

|x|2
8t . (3.7)

Then by Lemma 2.4, we have∣∣∣∂α
x

(∫ t

0

G(·, t − s) ∗ ∇ · (umi

j (∇Kλi ∗ uj))(·, s)ds
)∣∣∣

≤ CMmi+1
j (1 + t)−

n+|α|
2 Br(|x|, t), i = 1, 2 (3.8)

(3.2), (3.5) and (3.8) yield

|∂α
x uj+1(x, t)| ≤ C(ε + Mm1+1

j (t) + Mm2+1
j (t))(1 + t)−

n+|α|
2 Br(|x|, t). (3.9)

Recall the prior assumption (3.3), which holds that

Mj+1(t) ≤ C(ε + Mm1+1
j (t) + Mm2+1

j (t)). (3.10)

Now choose ε sufficiently small such that the equation x = C(ε+xm1+1 +xm2+1) has a positive
solution a(ε) satisfying Cε ≤ a(ε) < 1. Then we have the following uniform estimate:

Mj(t) ≤ a(ε), j = 1, 2, · · · . (3.11)

Therefore,

|∂α
x uj(x, t)| ≤ a(ε)(1 + t)−

n+|α|
2 Br(|x|, t). (3.12)

Next we show that {uj}∞j=1 is a Cauchy sequence in Lp(Rn) for 1 ≤ p ≤ +∞. Let

ωj+1(t) := uj+1(t) − uj(t) for j = 1, 2, · · ·
and

ω1(t) = u1(t).

By (3.2), we have

ωj+1(t)

=
∫ t

0

div G(·, t − s) ∗
(
ωj

m1∑
k=1

um1−k
j uk−1

j−1

(
∇Kλ1 ∗ uj

)
+ um1

j−1

(
∇Kλ1 ∗ ωj

))
(·, s)ds

−
∫ t

0

div G(·, t − s) ∗
(
ωj

m2∑
k=1

um2−k
j uk−1

j−1

(
∇Kλ2 ∗ uj

)
+ um2

j−1

(
∇Kλ2 ∗ ωj

))
(·, s)ds. (3.13)

Let
aj := sup

0≤t<∞
‖ωj(t)‖Lp(Rn).

Then from (3.12)–(3.13), we can deduce that

‖ ωj+1(t) ‖Lp(Rn) ≤ C a(ε)aj

∫ t

0

(t − s)−
1
2 (1 + s)−

n
2 ds

≤ C a(ε)aj

∫ t

0

(t − s)−
1
2 s−

1
2 ds

= CB
(1

2
,
1
2

)
a(ε)aj

= Cπa(ε)aj ,
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that is

aj+1 ≤ Cπa(ε)aj

with

a1 = sup
0≤t<∞

‖ω1(t)‖Lp(Rn) ≤ Cε.

Take ε sufficiently small, such that

Cπa(ε) ≤ 1
2
,

which yields that {uj}∞j=1 is a Cauchy sequence in Lp(Rn) (1 ≤ p ≤ +∞). Therefore, there
exists a limit u(t, ·) ∈ Lp(Rn) that satisfies

‖uj(t) − u(t)‖Lp(Rn) → 0 as j → +∞.

Now letting j → +∞ in (3.2), we see that u(t, x) satisfies (3.1). By induction and a similar
process, we can prove that {∂α

x uj}∞j=1 is also a Cauchy sequence in Lp(Rn) for every 1 ≤ p ≤ +∞
and |α| ≤ h and the limit is obviously the weak partial derivative of u(x, t). Finally, from (3.12)
we obtain

|∂α
x u(x, t)| ≤ a(ε)(1 + t)−

n+|α|
2 Br(|x|, t). (3.14)

By Lemma 2.3, the solutions w(x, t) and v(x, t) satisfy the same estimate as (3.14). The proof
is complete.
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