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1 Introduction and Main Results

The Hill lunar problem deals with the motions of two small masses under the mutual inter-
actions perturbed by a massive body, and it covers some interesting astrodynamical systems,
which include a satellite orbiting the planet and perturbed by the Sun. Stemming from the cir-
cular restricted three-body problem, Hill’s approximation is achieved by translating the origin
of the rotating reference frame to the planet and the unit of the length is scaled by l

1
3 , where l

is the mass parameter of the circular restricted three-body problem. For the planar circular Hill
lunar problem, [5, 10] showed its rich dynamics by computing Poincaré surfaces of the section.
In [9], Hénon discovered the main families of periodic orbits and computed the width of the
stability regions. For the planar elliptic Hill lunar case, [18] established its dynamics about the
periodic solutions and stability regions.

Similar Hill’s approximation can be applied to the spatial Hill lunar problem (see [11] for
reference). In [17], Villac derived the following normalized equation for the spatial Hill lunar
problem by selecting proper length and time scales:

ẍ − 2ẏ = − x

r3
+ 3x, (1.1)

ÿ + 2ẋ = − y

r3
, (1.2)

z̈ = − z

r3
− z, (1.3)

where r =
√

x2 + y2 + z2 denotes the magnitude of the relative position vector between the
small masses. Moreover, he used this model in the space mission orbit design. In [7], accurate
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numerical procedures were developed to compute homoclinic and heteroclinic orbits in the spa-
tial Hill lunar problem, while [6] computed the scattering map between the normally hyperbolic
invariant manifolds associated to the equilibrium points in the spatial Hill lunar problem. [16]
studied a single averaged model for the spatial Hill lunar problem and found some particular
solutions.

Our purpose in this paper is to investigate the existence of invariant tori for the spatial Hill
lunar problem. We rewrite the above spatial Hill lunar equation as a Hamiltonian system, and
then its Hamiltonian takes the form

H =
1
2
[(px + y)2 + (py − x)2 + p2

z] −
1
2
(3x2 − z2) − 1

r
, (1.4)

and the corresponding 2-form is

ω = dx ∧ dpx + dy ∧ dpy + dz ∧ dpz.

It is natural to note that this Hamiltonian has two collinear equilibrium points along the x-axis,
and we can obtain three pairs of eigenvalues of the linearized equation around the equilibrium
solutions, which read

λ±
1 = ±2i, λ±

2 = ±
√

2
√

7 − 1i, λ±
3 = ±

√
2
√

7 + 1 .

Thus we can put the quadratic term into the normal form

H0 = 2I1 +
√

2
√

7 − 1I2 +
√

2
√

7 + 1p3q3 .

By the Birkhoff normal form lemma (see [3]), we can put this Hamiltonian into the partial
Birkhoff normal form (that is, (2.5)), and then by making use of Moser’s theorem (see [14,
Theorem 5.2]), we can derive the hyperbolic invariant tori for the spatial Hill lunar problem.
Moreover, the above Hamiltonian has 4-dimensional central manifold, and the standard KAM
theorem guarantees the reduced Hamiltonian on its central manifold has 2-dimensional elliptic
invariant tori, the motions on which are quasi-periodic. Thus our main results in this paper
can be summarized as follows.

Theorem 1.1 For the spatial Hill lunar problem (1.4), there are hyperbolic invariant tori in
the neighbourhood of the equilibrium, and the corresponding reduced Hamiltonian on the center
manifold around the equilibrium has 2-dimensional elliptic invariant tori with quasi-periodic
solutions along them.

Let us make some comparisons with earlier papers. Villac [17] had never considered the
reduced Hamiltonian on the central manifold, while Gómez, Marcote and Mondelo [7] proceeded
with the analysis of the dynamics in the central manifold in a semi-analytical way, and provided
accurate numerical procedures to compute homoclinic and heteroclinic orbits. However, in
our work, we manage to check the non-degenerate condition of the standard KAM theorem
analytically, and establish the existence of invariant tori in a neighbourhood of the collinear
equilibrium points for the spatial Hill lunar problem.

The following paper is organized as follows. In Section 2, we derive the normal form for the
spatial Hill lunar problem. In Section 3, we present the proof the our main theorem with the
aid of the KAM theorem.
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2 Normal Forms

In order to apply the KAM theorem to the spatial Hill lunar problem, we will derive the
normal form of its Hamiltonian at the equilibrium points in this section.

2.1 The normal form for the quadratic term

Consider the spatial Hill lunar problem (1.4), and it is not hard to derive its equilibrium
points

L1 : (3−
1
3 , 0, 0, 3−

1
3 , 0),

L2 : (−3−
1
3 , 0, 0,−3−

1
3 , 0).

From now on we only take L1 into consideration for convenience. After expanding H into Taylor
series at L1, we have

H = C +
1
2
[(px + y)2 + (py − x)2 + p2

z] −
1
2
(3x2 − z2)

+
1
2
(−6x2 + 3y2 + 3z2)

− 3
4
3

(
− x3 +

3
2
xy2 +

3
2
xz2

)
− 3

5
3

(
x4 − 3x2y2 − 3x2z2 +

3
4
y2z2 +

3
8
y4 +

3
8
z4

)
+ · · · , (2.1)

where C is a dynamically irrelated constant, and we omit the terms with order higher than 4.
Consider the quadratic term

Q =
1
2
(p2

x + p2
y + p2

z + 2pxy − 2xpy − 8x2 + 4y2 + 4z2)

=
1
2
(x, y, z, px, py, pz)S(x, y, z, px, py, pz)T,

where

S =

⎡
⎢⎢⎢⎢⎢⎢⎣

−8 0 0 0 −1 0
0 4 0 1 0 0
0 0 4 0 0 0
0 1 0 1 0 0
−1 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

,

and the corresponding Hamiltonian matrix takes

A = JS =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 1 0 0
−1 0 0 0 1 0
0 0 0 0 0 1
8 0 0 0 1 0
0 −4 0 −1 0 0
0 0 −4 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

After simple computations, we derive the eigenvalues of A

λ±
1 = ±2i, λ±

2 = ±
√

2
√

7 − 1i, λ±
3 = ±

√
2
√

7 + 1,
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and λ+
1 , λ+

2 , λ+
3 , λ−

3 correspond to eigenvectors:

ξ1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
−i
0
0
2

⎞
⎟⎟⎟⎟⎟⎟⎠

, ξ2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
7 − 3
2

√
2
√

7 − 1

(
√

7 − 5)i
2
0

(11 − 4
√

7)i√
2
√

7 − 1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

ξ3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− (
√

7 + 3)
√

2
√

7 + 1
2√

7 + 5
2
0

−4
√

7 − 11√
2
√

7 + 1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, ξ4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− (
√

7 + 3)
√

2
√

7 + 1
2

−
√

7 + 5
2

0
11 + 4

√
7√

2
√

7 + 1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

By making use of discussions about the canonical forms for Hamiltonian matrices in [12, 19],
we seek a real symplectic matrix T to put A into the canonical form, such that

T−1AT = B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 2 0 0
0 0 0 0

√
2
√

7 − 1 0
0 0

√
2
√

7 + 1 0 0 0
−2 0 0 0 0 0
0 −

√
2
√

7 − 1 0 0 0 0
0 0 0 0 0 −

√
2
√

7 + 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Denote T = (P+
1 , P+

2 , P+
3 , P −

1 , P −
2 , P −

3 ), and since T TJT = J, we have

{P+
i , P −

j } = δj
i , i, j = 1, 2, 3,

where

δj
i =

{
1, i = j,
0, i �= j.

From the fact T−1AT = B and AT = TB, we have

{
AP+

1 = 2P −
1 ,

AP −
1 = 2p+

1 ,

{
AP+

2 = −
√

2
√

7 − 1P −
2 ,

AP −
2 =

√
2
√

7 − 1P+
2 ,

{
AP+

3 =
√

2
√

7 + 1P+
3 ,

AP −
3 = −

√
2
√

7 + 1P −
3 .

Denote ξ1 = u1 + iv1. Then we have

Au1 = −2v1, Av1 = 2u1, {u1, v1} = 2,

and thus
P+

1 =
1√
2
u1, P −

1 =
1√
2
v1.
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We can construct P+
2 , P −

2 , P+
3 , P −

3 similarly, so T takes the following form:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 (
√

7−3)(2
√

7−1)
1
4

2
√

11
√

7−28
− (

√
7+3)

√
2
√

7+1

2
0 0

√
7+3

4(28+11
√

7)

0 0
√

7+5
2

0 (
√

7−5)(2
√

7−1)
− 1

4

2
√

11
√

7−28

√
7+5

4(28+11
√

7)
√

2
√

7+1

0 0 0 − 1√
2

0 0

0 0 −4
√

7 − 11 0 (11−4
√

7)(2
√

7−1)
− 1

4√
11

√
7−28

− 4
√

7+11

2(28+11
√

7)
√

2
√

7+1

0 (2
√

7−1)
1
4√

11
√

7−28

√
2
√

7 + 1 0 0 − 1

2(28+11
√

7)√
2 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

So we can derive the normal form for the quadratic part of H ,

Q =
1
2
uTSu

u=Tw=
1
2
wT(T TST )w

=
1
2
wT(JTT−1AT )w

=
1
2
wT(JTB)w

= 2 · q2
1 + p2

1

2
+

√
2
√

7 − 1 · q2
2 + p2

2

2
+

√
2
√

7 + 1p3q3,

where
u = (x, y, z, px, py, pz)T, w = (p1, p2, p3, q1, q2, q3)T.

Next, we introduce a symplectic transformation

(p1, p2, p3, q1, q2, q3) �−→ (I1, I2, p3, ϕ1, ϕ2, q3),

where
pk =

√
Ikeiϕk , qk = i

√
Ike−iϕk , k = 1, 2.

Then Q takes the form

Q = 2I1 +
√

2
√

7 − 1I2 +
√

2
√

7 + 1p3q3.

2.2 The partial Birkhoff normal form

To derive the partial Birkhoff normal form, we introduce the symplectic coordinates

pk =
1√
2
(uk − ivk), qk =

1√
2
(−iuk + vk), p3 = p3, q3 = q3, k = 1, 2.

Then
I1 = −iu1v1, I2 = −iu2v2.

Under these variables, we have⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x =
(
√

7 − 3)(2
√

7 − 1)
1
4

2
√

22
√

7 − 56
(u2 − iv2) − (

√
7 + 3)

√
2
√

7 + 1
2

p3 +
√

7 + 3
4(28 + 11

√
7)

q3,

y =
√

7 + 5
2

p3 +
(
√

7 − 5)(2
√

7 − 1)−
1
4

2
√

22
√

7 − 56
(v2 − iu2) +

√
7 + 5

4(28 + 11
√

7)
√

2
√

7 + 1
q3,

z = − 1√
2
q1 = −1

2
(v1 − iu1).
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It is not difficult to note the fact that there are no integers k1, k2, k3 satisfying

0 < |k1| + |k2| + |k3| ≤ 4,

such that

2k1 +
√

2
√

7 − 1k2 +
√

2
√

7 + 1k3 = 0.

So by the Birkhoff normal form lemma (see [3]), we can put H into the partial Birkhoff normal
form. As a result, we can find Hamiltonian W = W1 +W2, where Wi denotes the homogeneous
polynomial of order i + 2 about u1, v1, u2, v2, p3, q3, such that H ◦X1

W is in the partial Birkhoff
normal form, where X1

W denotes the time-1 map of Hamiltonian vector field XW .
To proceed, we introduce some notations. Denote

A =
(
√

7 − 3)(2
√

7 − 1)
1
4

2
√

22
√

7 − 56
, B = −

√
7 + 3
2

, C =
√

7 + 3
428 + 11

√
7
, D =

√
7 + 5
2

,

E =
(
√

7 − 5)(2
√

7 − 1)−
1
4

2
√

22
√

7 − 56
, F =

√
7 + 5

4(28 + 11
√

7)
√

2
√

7 + 1
,

H =
∞∑

i=0

1
i!

H0
i ,

where H0
i denotes the homogeneous polynomial of order i + 2. Then we have

H0
0 = −2iu1v1 −

√
2
√

7 − 1iu2v2 +
√

2
√

7 + 1p3q3,

H0
1 = 3

4
3

[(
A3 +

3
2
AE2

)
u3

2 +
(
− 3iA3 +

3
2
iAE2

)
u2

2v2 +
(
− 3A3 +

3
2
AE2

)
u2v

2
2

+
(
iA3 +

3
2
iAE2

)
v3
2 +

(
3A2C + 3iAEF +

3
2
CE2

)
u2

2q3 +
3
8
Bp3u

2
1

+
(
− 3A2C − 3

2
CE2 + 3iAEF

)
v2
2q3 +

(
3A2B +

3
2
BE2 + 3iADE

)
u2

2p3

+ (−6iA2B + 3iBE2)u2v2p3 +
(
− 3A2B + 3iADE − 3

2
BE2

)
v2
2p3

+
(
3AC2 − 3

2
AF 2 + 3iCEF

)
u2q

2
3 +

(
C3 − 3

2
CF 2

)
q3
3 +

3
4
iCu1v1q3

+ (6ABC − 3ADF + 3iBEF + 3iCDE)u2p3q3 + (−6iA2C + 3iCE2)u2v2q3

+
3
4
iBu1v1p3 +

3
8
Cu2

1q3 + (−6iABC + 3iADF − 3BEF − 3CDE)v2p3q3

+
3
4
Aiu1u2v1 − 3

8
Aiu2

1v2 +
(
3BC2 − 3

2
BF 2 − 3CDF

)
p3q

2
3 +

3
8
Au2

1u2

+
(
3B2C − 3BDF − 3

2
CD2

)
p2
3q3 − 3

8
Au2v

2
1 +

(
B3 − 3

2
BD2

)
p3
3 +

3
8
Aiv2

1v2

+
(
− 3iAC2 +

3
2
iAF 2 − 3CEF

)
v2q

2
3 +

(
− 3iAB2 +

3
2
iAD2 − 3BDE

)
v2p

2
3

+
(
3AB2 − 3

2
AD2 + 3iBDE

)
u2p

2
3 −

3
8
Cv2

1q3 − 3
8
Bp3v

2
1 +

3
4
Au1v1v2

]
,

H0
2 = 2 · 3 5

3

[
(24iA2BC9iDE2F − 12iA2DF − 12iBCE2)u2v2p3q3

−
(
6B2C2 +

9
4
D2F 2 − 3B2F 2 − 12BCDF

)
p2
3q

2
3 +

9
64

u2
1v

2
1
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+
(
6A4 +

9
4
E4 − 6A2E2

)
u2

2v
2
2 −

(
3A2 − 3

4
E2

)
u1v1u2v2

−
(
3iBC − 3

4
iDF

)
u1v1p3q3 + · · ·

]
.

From

H ◦ X1
W = H0

0 ◦ X1
W + H0

1 ◦ X1
W +

1
2
H0

2 ◦ X1
W + · · ·

= H0
0 + {H0

0 , W} +
1
2
{{H0

0 , W}, W} + H0
1 + {H0

1 , W} +
1
2
H0

2 + · · ·

= H0
0 + {H0

0 , W1} + H0
1 +

1
2
[H0

2 + {{H0
0 , W1}, W1} + 2{H0

1 , W1} + 2{H0
0 , W2}] + · · · ,

we have

H1
0 = {H0

0 , W1} + H0
1 = 0, (2.2)

H2
0 = H0

2 + {{H0
0 , W1}, W1} + 2{H0

1 , W1} + 2{H0
0 , W2}. (2.3)

Assume
W1 =

∑
a1+a2+a3
+b1+b2+b3=3

γa1a2a3
b1b2b3

ua1
1 ua2

2 pa3
3 vb1

1 vb2
2 qb3

3 .

Then

{W1, H
0
0} =

∑
a1+a2+a3
+b1+b2+b3=3

γa1a2a3
b1b2b3

ua1
1 ua2

2 pa3
3 vb1

1 vb2
2 qb3

3

2i(b1 − a1) +
√

2
√

7 − 1i(b2 − a2) +
√

2
√

7 + 1(a3 − b3)

= H0
1 .

Thus we can solve the above equation and get

W1 = 3
4
3

[ (A3 + 3
2AE2)u3

2

−3
√

2
√

7 − 1i
+

(−3iA3 + 3
2 iAE2)u2

2v2

−
√

2
√

7 − 1i
+

(−3A3 + 3
2AE2)u2v

2
2√

2
√

7 − 1i

+
(iA3 + 3

2 iAE2)v3
2

3
√

2
√

7 − 1i
+

(3A2C + 3iAEF + 3
2CE2)u2

2q3

−2
√

2
√

7 − 1i −
√

2
√

7 + 1
+

(−6iA2C + 3iCE2)u2v2q3

−
√

2
√

7 + 1

+
(−3A2C − 3

2CE2 + 3iAEF )v2
2q3

2
√

2
√

7 − 1i −
√

2
√

7 + 1
+

(3A2B + 3
2BE2 + 3iADE)u2

2p3

−2
√

2
√

7 − 1i +
√

2
√

7 + 1

+
(−3A2B + 3iADE − 3

2BE2)v2
2p3

2
√

2
√

7 − 1i +
√

2
√

7 + 1
+

(3A2C − 3
2AF 2 + 3iCEF )u2q

2
3

−
√

2
√

7 − 1i − 2
√

2
√

7 + 1

+
(6ABC − 3ADF + 3iBEF + 3iCDE)u2p3q3

−
√

2
√

7 − 1i
+

(−6iA2B + 3iBE2)u2v2p3√
2
√

7 + 1

+
(−6iABC + 3iADF − 3BEF − 3CDE)v2p3q3√

2
√

7 − 1i
+

(−3iAC2 + 3
2 iAF 2 − 3CEF )v2q

2
3√

2
√

7 − 1i − 2
√

2
√

7 + 1

+
(3AB2 − 3

2AD2 + 3iBDE)u2p
2
3

−
√

2
√

7 − 1i + 2
√

2
√

7 + 1
+

(−3iAB2 + 3
2 iAD2 − 3BDE)v2p

2
3√

2
√

7 − 1i + 2
√

2
√

7 + 1

+
(C3 − 3

2CF 2)q3
3

−3
√

2
√

7 + 1
+

(3BC2 − 3
2BF 2 − 3CDF )p3q

2
3

−
√

2
√

7 + 1
+

(3B2C − 3BDF − 3
2CD2)p2

3q3√
2
√

7 + 1
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+
(B3 − 3

2BD2)p3
3

3
√

2
√

7 + 1
−

3
8Au2v

2
1

4i −
√

2
√

7 − 1i
+

3
8Au2

1u2

−4i −
√

2
√

7 − 1i
+

3
4Aiu1u2v1

−
√

2
√

7 − 1i

−
3
8Aiu2

1v2√
2
√

7i − 4i
+

3
4Au1v1v2√
2
√

7 − 1i
−

3
8Bv2

1p3√
2
√

7 + 4i
+

3
8Bu2

1p3√
2
√

7 + 1 − 4i
+

3
4 iBu1v1p3√

2
√

7 + 1

−
3
8Cv2

1q3

4i −
√

2
√

7 + 1
+

3
8Cu2

1q3

−4i −
√

2
√

7 + 1
+

3
4Ciu1v1q3

−
√

2
√

7 + 1
+

3
8Aiv2

1v2√
2
√

7 − 1i + 4i

]
.

Meanwhile, (2.3) turns into

H2
0 = H0

2 + {H0
1 , W1} + 2{H0

0 , W2}, (2.4)

and then by the Birkhoff normal form lemma (see [3]), we can derive W2 similarly such that
there are only homogeneous monomials about u1v1, u2v2, p3q3 in H2

0 . Thus we have

H2
0 = a11u

2
1v

2
1 + a12u1v1u2v2 + a22u

2
2v

2
2 + αiu1v1p3q3 + βiu2v2p3q3 + γp2

3q
2
3 ,

where

a11 = 3
8
3

( 3
32

+
9
16A2

√
2
√

7 − 1

2
√

7 − 17
+

9
16BC

√
2
√

7 + 1

2
√

7 + 17
+

9
8A2√

2
√

7 − 1
+

9
8BC√
2
√

7 + 1

)

= 3
8
3 · 1

58
,

a12 = 3
8
3

(9BCE2 − 18A2BC√
2
√

7 + 1
− 2A2 +

1
2
E2 +

9A2

17 − 2
√

7
+

9A2E2 − 18A4√
2
√

7 − 1

)

= 3
8
3 · (70 − 3

√
7)

√
2
√

7 − 1
3654

,

a22 = 3
8
3

[60A6 − 36A4E2 + 27A2E4√
2
√

7 − 1
+

72A4BC + 18BCE4 − 72A2BCE2√
2
√

7 + 1

+
18

3 − 10
√

7

(
− 2

√
2
√

7 + 1A4BC − 4
√

2
√

7 − 1A3BEF − 2
√

2
√

7 + 1A2BCE2

−
√

2
√

7 + 1BCE4

2
− 2

√
2
√

7 − 1ABE3F + 4
√

2
√

7 − 1A3CDE

− 2
√

2
√

7 + 1A2DE2F + 2
√

2
√

7 − 1ACDE3
)

+ 4A4 +
3E4

2
− 4A2E2

]

= 3
8
3
252218

√
7 − 246617

6500928
,

and α, β, γ are real numbers.
Hence, the partial Birkhoff normal form of the spatial Hill lunar problem is

Hnew = 2I1 +
√

2
√

7 − 1I2 +
√

2
√

7 + 1p3q3

+
1
2
(−a11I

2
1 − a12I1I2 − a22I

2
2 ) − αI1p3q3 − βI2p3q3 + γp2

3q
2
3

+ H+(I1, I2, ϕ1, ϕ2, p3, q3), (2.5)

where α, β, γ, a11, a12, a22 are real numbers.
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3 Proof of Theorem 1.1

To prove the first part of our main theorem, we investigate the Hamiltonian Hnew = H0+H+

in the neighbourhood of the equilibrium point L1, where

H0 = F (I1, I2) + G(I1, I2, p3, q3),

F (I1, I2) = 2I1 +
√

2
√

7 − 1I2 +
1
2
(−a11I

2
1 − a12I1I2 − a22I

2
2 ),

G(I1, I2, p3, q3) =
√

2
√

7 + 1p3q3 − αI1p3q3 − βI2p3q3 + γp2
3q

2
3 .

Treat H+ as a perturbation of H0, for the non-perturbed Hamiltonian H0, which has 2-
dimensional invariant tori

ϕ1 =
(
− 2 + a11I

0
1 +

1
2
a12I

0
2

)
t, I1 = I0

1 , p3 = 0,

ϕ2 =
(
−

√
2
√

7 − 1 +
1
2
a12I

0
1 + a22I

0
2

)
t, I2 = I0

2 , q3 = 0.

The Moser’s theorem (see [14, Theorem 5.2]) ensures the preservation of those invariant tori
with a slight deformation for the perturbed Hnew. Next we need to check the conditions of
Moser’s theorem:

(1) Hnew is 2π periodic in ϕi, i = 1, 2, and

G(I1, I2, 0, 0) = Gp3(I1, I2, 0, 0) = Gq3(I1, I2, 0, 0) = 0.

(2) (The non-degenerate condition) If p3 = q3 = 0, then

det
(∂2F

∂I2

)
= a11a22 − 1

4
a2
12 ≈ 0.496 �= 0.

(3) When p3 = q3 = 0, I = (I1, I2) belongs to some open set in R
2,(

Gq3p3 Gq3q3

−Gp3p3 −Gq3p3

)

is a diagonal matrix with real entries, so it does not have any pure imagine eigenvalue.
Hence all the conditions in Moser’s theorem are fulfilled, which makes sure that the Moser’s

theorem can be applied. To proceed with the proof of the second part in the main theorem, we
need the following KAM theorem.

Lemma 3.1 (see [2]) Consider a Hamiltonian system with n degrees of freedom in a neigh-
bourhood of an equilibrium point located at the origin, and ω1, · · · , ωn are its eigenfrequencies.
Suppose that the Hamiltonian function has the following Birkhoff normal form:

H = H0(τ) + h.o.t,

H0(τ) =
n∑

j=1

ωjτj +
1
2

n∑
i,j=1

ωijτiτj , τi =
1
2
(p2

i + q2
i ).

Then,
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(i) if the system fulfills the non-degenerate condition

det
(

∂2H0

∂τ2

)
= det(ωij) �= 0,

then, the Hamiltonian system has invariant tori close to the tori of the linearized system, and
these tori form a set whose relative measure tends to 1 as it tends to the origin.

(ii) if the iso-energetically non-degenerate condition

det

⎛
⎜⎜⎝

∂2H0

∂τ2

∂H0

∂τ

∂H0

∂τ

T

0

⎞
⎟⎟⎠

0

= det
(

ωij ωi

ωi 0

)
�= 0

holds, the Hamiltonian system also has invariant tori, and such tori occupy a larger part of
each energy level passing near the equilibrium position.

Remark 3.1 For the proof of this KAM theorem, see [1, 15].

The first step is to study the spatial Hill lunar problem on its central manifold. Under the
symplectic variables (I1, I2, ϕ1, ϕ2, p3, q3), the Hamiltonian for the spatial Hill lunar problem
takes the form

Hnew = H2(I1, I2, p3, q3) + H4(I1, I2, p3, q3) + H+(I1, I2, ϕ1, ϕ2, p3, q3),

where

H2(I1, I2, p3, q3) = 2I1 +
√

2
√

7 − 1I2 +
√

2
√

7 + 1p3q3,

H4(I1, I2, p3, q3) =
1
2
(−a11I

2
1 − a12I1I2 − a22I

2
2 ) − αI1p3q3 − βI2p3q3 + γp2

3q
2
3 ,

and H+(I1, I2, ϕ1, ϕ2, p3, q3) denotes the terms with order higher than 4.
From the discussions about the central manifold in [4, 8, 13], we know that the spatial

Hill lunar problem has the 4-dimensional central manifold at L1, and moreover, a Hamiltonian
reduced on its central manifold is still a Hamiltonian. Furthermore, if we take p3 = 0, and
q3 = 0, we will obtain the reduced Hamiltonian on this central manifold, that is,

Hc(I1, I2, ϕ1, ϕ2) = Hc0(I1, I2) + Hc1(I1, I2, ϕ1, ϕ2),

where

Hc0(I1, I2) = 2I1 +
√

2
√

7 − 1I2 +
1
2
(−a11I

2
1 − a12I1I2 − a22I

2
2 ).

For the integral part Hc0, it has 2-dimensional elliptic invariant tori

Π � {I1 = constant} × {I2 = constant}.

In the neighbourhood of the equilibrium point, we can treat Hc1(I1, I2, ϕ1, ϕ2) as a small per-
turbation of Hc0(I1, I2), and the above standard KAM theorem guarantees the preservation of
the elliptic invariant tori Π.

The second step is to check the non-degenerate conditions:
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(1) (the non-degenerate condition)

D1 = det
(∂2Hc0

∂I2

)
=

∣∣∣∣∣∣∣
−a11 −1

2
a12

−1
2
a12 −a22

∣∣∣∣∣∣∣ = a11a22 − 1
4
a2
12 ≈ 0.496 �= 0,

(2) (the iso-energetically non-degenerate condition)

D2 = det

⎛
⎜⎜⎝

∂2Hc0

∂τ2

∂Hc0

∂τ

∂Hc0

∂τ

T

0

⎞
⎟⎟⎠

0

.

Since D2 continously depends on I1, I2, we only need to check the condition at the equilibrium

D2 =
√

2
√

7 − 1a11 − (2
√

7 − 1)a12 + 4a22 �= 0.

Thus Lemma 3.1 holds true, which guarantees the existence of 2-dimensional elliptic invari-
ant tori for the reduced Hamiltonian of the spatial Hill lunar problem on its central manifold.
Moreover, along these tori, the motions are quasi-periodic

ϕ1(t) =
(
− 2 + a11I

0
1 +

1
2
a12I

0
2

)
t, (3.1)

ϕ2(t) =
(
−

√
2
√

7 − 1 +
1
2
a12I

0
1 + a22I

0
2

)
t. (3.2)

Finally, we finish the proof of Theorem 1.1.
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