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1 Introduction

The kinematic formulas are the most beautiful and also useful formulas in integral geometry.
At the beginning of his classical paper [4] Chern said: “One of the basic problems in integral
geometry is to find explicit formulas for the integrals of geometric quantities over the kinematic
density in terms of known integral invariants.”

For instance, Chern proved in [3] the fundamental kinematic formula in the n-dimensional
Euclidean space E

n. Let D0 and D1 be two domains with smooth boundaries ∂D0 and ∂D1,
respectively, in E

n. If we denote by G the group of rigid motions of E
n with density dg, and

by On−1 the volume of the unit sphere Sn−1 in E
n, then the fundamental kinematic formula is

∫
{g∈G|D0∩gD1 �=∅}

χ(D0 ∩ gD1)dg

= On−2 · · ·O1

[
On−1χ(D0)σ(D1) +On−1χ(D1)σ(D0)

+
1
n

n−2∑
h=0

(
n

h+ 1

)
H̃h(∂D0)H̃n−2−h(∂D1)

]
,

where χ(·) denotes the Euler characteristic, σ(·) the volume and H̃i the ith total mean curvature.

In [4], Chern gave the integral formulas of the quantities which appear in Weyl’s formula
for the volume of tubes. Let M0 and M1 be two closed smooth submanifolds of dimension p
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and q respectively in E
n, and then∫

{g∈G|M0∩gM1 �=∅}
μe(M0 ∩ gM1)dg =

e∑
i=0

iis even

ciμi(M0)μe−i(M1), (1.1)

where the quantities μe appear in Weyl’s formula for the volume of tubes (see [14]), 0 ≤ e ≤
p+ q − n and e is even. The coefficients ci are constants depending on n, p, q and e.

These formulas can also be found in books [11–12].
In his paper [18], Zhou obtained the kinematic formulas for mean curvature power integrals

in the n-dimensional Euclidean space, which are the generalization of the formulas of the 3-
dimensional case in [1, 16] and are of the extrinsic type. Let Si (i = 0, 1) be two closed smooth
hypersurfaces in E

n. Denote by H the mean curvature of S0 ∩ gS1, and 0 ≤ 2k ≤ n− 1. Then
(see [18]) ∫

{g∈G|S0∩gS1 �=∅}

( ∫
S0∩gS1

H2kdσ
)
dg =

∑
p,q,l

p+q+l=k
l is even

cpqklnκ̃
l+2q
n (S0)κ̃l+2p

n (S1),

where cpqkln are constants depending on the indices, κ̃l+2q
n (Si) is a kind of total curvature of

Si, i = 0, 1. This is a remarkable work in which the moving frame method is effectively used
and a successful application of the kinematic formulas is given.

The novel approach to study the containment problem and geometric inequalities by using
kinematic formulas has been systematically developed. For the recent developments, interested
readers can refer to [8–10, 15–23]. We also recommend the books [11–12] for the classical results
of integral geometry and its applications.

In fact, integral geometry can be set up within the framework of the theory of homogeneous
spaces.

Let G be a unimodular Lie group with kinematic density dg and H a closed subgroup of G.
Let M and N be two compact submanifolds in the homogeneous space G/H , M fixed and gN
the image of N under a motion g ∈ G. Let I(M ∩ gN) denote some kind of global geometric
invariants of M ∩ gN which may be volume, curvature integral, etc. Then the goal of the
kinematic formulas related to the invariant I(M ∩ gN) is to evaluate the following integral∫

G

I(M ∩ gN)dg

by the known integral invariants of M and N .
Howard proved in [7] a theorem of kinematic formulas in arbitrary homogeneous spaces. It

indicates the computability of kinematic formulas with which the related invariants are of the
following type

I(M ∩ gN) =
∫

M∩gN

P(h)(x)dσ(x),

where h is the second fundamental form of M ∩ gN in G/H , P is an invariant polynomial in
the components of h with value P(h)(x) at x ∈M ∩ gN , and dσ(x) is the volume element.

This theorem is general and implicit. However, it still requires concrete calculation to obtain
explicit formulas, particularly when the kinematic formula is of the extrinsic type.
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We prefer the formulas in the Euclidean case. First, because they are important from the
point of view of their applications, and second, because they lead to more computable results.

In this paper, we give another kind of explicit kinematic formulas about two closed orientable
hypersurfaces in E

n, n ≥ 3. The manifolds that appear are assumed to be smooth.
We will denote the group of rigid motions of E

n by G. The isotropic subgroup of G is
denoted by G0. Indeed G0 is the special orthogonal group SO(n). The groups G and G0 are
unimodular with canonical densities dg and dg0 respectively. Let dσ be the Lebesgue measure
of E

n, and then we have dg = dσ ∧ dg0. Moreover, the total volume of G0 denoted by Jn is
finite and given by

Jn = On−1On−2 · · ·O1,

where Oi−1 is the volume of the i− 1 dimensional unit sphere in E
i with the value

Oi−1 =
2π

i
2

Γ
( i

2

) . (1.2)

Our motivation comes from the following formulas in [6, 12–13]. For example, let M be a
closed hypersurface in E

n, and then∫
M∩L �=∅

H̃L
i (M ∩ L)dL =

On−2On−i

On−1−i
H̃i(M). (1.3)

In this formula, the integer i satisfies 0 ≤ i ≤ n−2, L is a random oriented hyperplane, and dL
is the canonical invariant measure at L. H̃L

i (M ∩ L) denotes the ith mean curvature integral
of M ∩L which is considered as a hypersurface in L. Similarly, H̃i(M) is H̃E

n

i (M) for the sake
of simplicity.

Taking an arbitrary orientable closed hypersurface in place of L, we obtain the following
kinematic formula. It is not of Howard’s type.

Theorem 1.1 Let S0 and S1 be two closed oriented hypersurfaces in the n-dimensional
Euclidean space E

n. For any integer i satisfying 0 ≤ i ≤ n − 2, we have an asymmetric
kinematic formula

∫
{g∈G|S0∩gS1 �=∅}

H̃gS1
i (S0 ∩ gS1)dg =

i∑
p=0

p is even

c(p, i, n)H̃i−p(S0)H̃p(S1), (1.4)

where the coefficients c(p, i, n) depend only on p, i and n with value

c(p, i, n) = Jn−1

(
i

p

)
On−2On−i+pO0

OpOn−1−i
.

Note that the formula (1.3) can be viewed as a limiting case of (1.4).

Remark 1.1 By direct observation, if i is even, then (1.4) is just a special case of (1.1) for
the hypersurfaces.

But the situation is different if i is odd. The simplest case is i = 1. Since H̃0(·) is actually
the volume σ(·), we have the following result.
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Corollary 1.1 Let S0 and S1 be two closed oriented hypersurfaces in the n-dimensional
Euclidean space E

n. Then∫
{g∈G|S0∩gS1 �=∅}

H̃gS1
1 (S0 ∩ gS1)dg = Jnσ(S1)H̃1(S0). (1.5)

More specifically, for n = 3, H̃gS1
1 (S0 ∩ gS1) is the total geodesic curvature of the curve

S0 ∩ gS1 in gS1, denoted as κgS1(S0 ∩ gS1). Then the above formula is∫
{g∈G|S0∩gS1 �=∅}

κgS1(S0 ∩ gS1)dg = 8π2σ(S1)H̃1(S0).

The formula (1.5) gives exactly an integral representation of the total mean curvature based on
any given closed hypersurface.

2 Preliminaries

In the papers [3–4], Chern associated each given Riemannian manifold certain fiber bundle
with canonical densities. These concepts and the moving frame method have been proved to
be effective in integral geometry. We would like to follow this way in this paper.

We agree in this section on the following indix ranges:

1 ≤ A,B,C ≤ n, 1 ≤ i, j, k ≤ m, m+ 1 ≤ α, β, γ ≤ n, 1 ≤ a, b, c ≤ k.

2.1 Fundamental equations of submanifolds

Let M be an m-dimensional submanifold in an oriented n-dimensional Riemannian manifold
N with Riemannian metric 〈 , 〉, and x : M → N be the identity map.

First of all, we mention the local structure of M (see [5]). Locally M can be attached
to a Darboux frame e1, · · · , em, em+1, · · · , en, which is a smooth orthonormal frame field and
satisfies that e1, · · · , em is tangent to M . In the rest of this article, when we mention frames
tangent to an oriented manifold, it is always assumed that the orientation of the frames has
been chosen to be compatible with the orientation of the given manifold. So here the orientation
of e1, · · · , em and e1, · · · , em, em+1, · · · , en is the same as that of M and N respectively.

Let ωA, ωA
B respectively be the canonical forms and the Levi-Civita connection forms on

the orthogonal group SO(n) principle bundle SO(N) under arbitrary extension of the given
Darboux frame. These forms can be pulled back on M by the Darboux frame. The images are
still denoted by ωA, ωA

B.
Let ∇ be the Levi-Civita connection on the tangent bundle TN , and then we have

dx = ωiei, ωα = 0,

∇ei = ωj
i ej + ωα

i eα,

∇eα = ωj
αej + ωβ

αeβ

and

ωα
i ∧ ωi = 0.
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From the above equation, we obtain

ωα
i = hα

ijω
j , hα

ij = hα
ji.

The quantities hα
ji are the components of the second fundamental form of M .

We review the definition of the mean curvature integrals of a hypersurfaces as follows. Let
m = n− 1, and then M is an oriented hypersurface in N , which has a chosen orientation. The
ith mean curvature is related to the following characteristic polynomial of (hn

ij), or (hij) for
simplicity in the hypersurface cases. Let

det(δij + λhij) = 1 + ψ1λ+ ψ2λ
2 + · · · + ψn−1λ

n−1,

and then the ith mean curvature is defined as

Hi =
(
n− 1
i

)−1

ψi,

and the ith total mean curvature, if it exists, is denoted by

H̃i(M) =
∫

M

Hidσ.

In this paper, we write H̃N
i (M) instead of H̃i(M) to emphasize that the calculation is done in

N , since M may be simultaneously a submanifold of other ambient spaces. Notation HN
i is

used for the same purpose.

2.2 Associated fiber bundles of M

For a fixed nonnegative integer k, we define a space Ek associated with M by the set

{(x; e1, · · · , ek) | x ∈M, e1, · · · , ek ∈ TxM, 〈ea, eb〉 = δab}.

Ek is a fiber bundle with the base space M and the fiber SO(m)/SO(m − k). Ek is called the
tangent k-bundle of M here. In fact, Ek is an orientable differentiable manifold of dimension
1
2 (k + 1)(2m− k). At any point where (x; e1, · · · , ek) ∈ Ek, one extends (x; e1, · · · , ek) to be a
Darboux frame e1, · · · , en beside x, and then defines the following form:

Θ =
∧
i

ωi
∧
a<j

ωj
a = dσ ∧ dV m

k ,

where dσ = ω1∧· · ·∧ωm is the volume element of M , and the restriction of dV m
k =

∧
a<j ω

j
a on

the fibers is indeed the density of SO(m)/SO(m− k). It is proved in [3], that Θ is independent
of the choice of extension and is well defined on Ek. It gives rise to a density of Ek.

3 Proof of Theorem 1.1

Let S0 and S1 be two closed oriented hypersurfaces in the n-dimensional Euclidean space
E

n. The tangent (n− 2)-bundles of S0 and S1 are denoted by En−2,0 and En−2,1, respectively.
For each g ∈ G such that dim(S0 ∩ gS1) = n − 2, En−2,0 ∩ gEn−2,1 is the tangent (n − 2)-

bundle of S0 ∩ gS1 with density Φg. Then Φg ∧ dg is a density of the set D = {(X,Y, g) ∈
En−2,0 × En−2,1 ×G | X = gY }.
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For any point (x; e1, · · · , en−2) of En−2,0 ∩ gEn−2,1, we complement it into an orthonormal
frame (x; e1, · · · , en−2, en−1, en) such that en is orthogonal to S0 and also into an orthonormal
frame (x; e1, · · · , en−2, e

′
n−1, e

′
n) such that e′n is orthogonal to gS1. Let θ ∈ (0, π) be the angle

between en and e′n, and then the following differential formula (see [3–4, 11–12]) is well known
for the density of D :

Φg ∧ dg = sinn−1 θdθ ∧ Θ0 ∧ Θ1, (3.1)

where Θ0 and Θ1 are the densities of En−2,0 and En−2,1, respectively. Indeed the right side of
(3.1) is a density of D̃ = (0, π) × En−2,0 × En−2,1.

Observe that the subset of D is En−2,0 ∩ gEn−2,1 for fixed g ∈ G, and the left side of (1.4)
writes as

1
Jn−2

∫
D
HgS1

i Φg ∧ dg.

By (3.1), we see that the above integration is

1
Jn−2

∫
D̃
HgS1

i sinn−1 θdθ ∧ Θ0 ∧ Θ1. (3.2)

We turn our attention to the computation of HgS1
i . The problem is to give HgS1

i a repre-
sentation by the curvatures of S0 and gS1 at x ∈ S0 ∩ gS1, when the motion g is fixed.

From now on, the indexes i, j, k are agreed to range from 1 to (n− 2), and A,B from 1 to
(n− 1).

The induced Levi-Civita connection of gS1 is actually d of E
n projected on the tangent

space of gS1. Hence the curvature of S0 ∩ gS1 with respect to gS1 is given by

hijω
j = 〈dei, e

′
n−1〉.

We here denote by ω1, · · · , ωn−2, ω′n−1, ω′n the dual basis with respect to the frame e1, · · · , en−2,

e′n−1, e
′
n, and by ω1, · · · , ωn with respect to e1, · · · , en.

From the relation
en = sin θ e′n−1 + cos θ e′n,

e′n−1 can be represented as
e′n−1 = sin−1 θen − tan−1 θe′n.

Then

hijω
j = sin−1 θ〈dei, en〉 − tan−1 θ〈dei, e

′
n〉. (3.3)

If we attach an orthonormal frame field v1, · · · , vn−1 on S0 and v′1, · · · , v′n−1 on gS1 near x,
the correspondent dual orthonormal frame fields are η1, · · · , ηn−1 and η′1, · · · , η′n−1, and then
there exist orthogonal matrices (cBA) and (c′BA) such that

ei = cBi vB = c′Bi v
′
B, en−1 = cBn−1vB, e′n−1 = c′Bn−1v

′
B.

Now we assume that vA and v′A are the principle tangent vectors of S0 and gS1, respectively,
and then

〈dvA, en〉 = κAη
A, 〈dv′A, e′n〉 = κ′Aη

′A,
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where κA and κ′A are the principle curvatures of S0 and gS1 at x, respectively.
With the aid of these notions, we reformulate the right side of (3.3) into

sin−1 θ〈dei, en〉 − tan−1 θ〈dei, e
′
n〉

= sin−1 θcAi 〈dvA, en〉 − tan−1 θc′Ai 〈dv′A, e′n〉
= sin−1 θ

∑
A

cAi κAη
A − tan−1 θ

∑
A

c′Ai κ
′
Aη

′A

= sin−1 θ
∑
A

cAi κAc
A
j ω

j − tan−1 θ
∑
A

c′Ai κ
′
Ac

′A
j ω

j .

The reason of the last equality is that we calculate in S0 ∩ gS1 and ωn−1 = ω′n−1 = 0.
By the linear independence of ωi, we represent the curvature of S0 ∩ gS1 as

hij = sin−1 θ
∑
A

cAi κAc
A
j − tan−1 θ

∑
A

c′Ai κ
′
Ac

′A
j .

Following Chern [3], we are going to expand the determinant of (hij) as the polynomial of
κA and κ′A. By the multilinearity of the determinant, one has

det(hij)

= det
(

sin−1 θ
∑
A

cAi κAc
A
j − tan−1 θ

∑
A

c′Ai κ
′
Ac

′A
j

)

=
∑

p+q=n−2

∑
1≤A1,··· ,Aq≤n−1
1≤B1,··· ,Bp≤n−1

ΨA1A2···Aq,B1B2···Bp sin−q θ(− tan θ)−pκA1κA2 · · ·κAqκ
′
B1
κ′B2

· · ·κ′Bp
,

where ΨA1A2···Aq,B1B2···Bp is the sum of some (n− 2) × (n− 2)-determinants, and one term in
the summation is∣∣∣∣∣∣∣∣∣∣

cA1
1 cA1

1 cA2
1 cA2

2 · · · c
Aq

1 c
Aq
q c′B1

1 c′B1
q+1 c′B2

1 c′B2
q+2 · · · c′Bp

1 c′Bp

n−2

cA1
2 cA1

1 cA2
2 cA2

2 · · · c
Aq

2 c
Aq
q c′B1

2 c′B1
q+1 c′B2

2 c′B2
q+2 · · · c′Bp

2 c′Bp

n−2
...

...
cA1
n−2c

A1
1 cA2

n−2c
A2
2 · · · c

Aq

n−2c
Aq
q c′B1

n−2c
′B1
q+1 c′B2

n−2c
′B2
q+2 · · · c′Bp

n−2c
′Bp

n−2

∣∣∣∣∣∣∣∣∣∣
, (3.4)

while others can be obtained by permuting some upscript A’s with some upscript B’s in (3.4),
but preserving the orders of A1A2 · · ·Aq and B1B2 · · ·Bp to themselves. If some elements of
A1A2 · · ·Aq or B1B2 · · ·Bp appear twice, then clearly

ΨA1A2···Aq,B1B2···Bp = 0. (3.5)

By this observation, one has

det(hij)

= sin2−n θ
∑

p+q=n−2

(−1)p cosp θ
∑

1≤A1<···<Aq≤n−1
1≤B1<···<Bp≤n−1

Ψ̃A1A2···Aq,B1B2···BpκA1κA2 · · ·κAqκ
′
B1
κ′B2

· · ·κ′Bp
,

where

Ψ̃A1A2···Aq,B1B2···Bp =
∑
σ,τ

ΨAσ(1)Aσ(2)···Aσ(q) ,Bτ(1)Bτ(2)···Bσ(p) ,
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with σ and τ running through the permutation groups of order q and p, respectively.
The equations (3.5) then imply that

Ψ̃A1A2···Aq,B1B2···Bp

=

∣∣∣∣∣∣∣∣∣

∑
cAs
1 cAs

1 +
∑
c′Bt

1 c′Bt

1

∑
cAs
1 cAs

2 +
∑
c′Bt

1 c′Bt

2 · · · ∑
cAs
1 cAs

n−2 +
∑
c′Bt

1 c′Bt

n−2∑
cAs
2 cAs

1 +
∑
c′Bt

2 c′Bt

1

∑
cAs
2 cAs

2 +
∑
c′Bt

2 c′Bt

2 · · · ∑
cAs
2 cAs

n−2 +
∑
c′Bt

2 c′Bt

n−2
...

...
...

...∑
cAs
n−2c

As
1 +

∑
c′Bt

n−2c
′Bt

1

∑
cAs
n−2c

As
2 +

∑
c′Bt

n−2c
′Bt

2 · · · ∑
cAs
n−2c

As
n−2 +

∑
c′Bt

n−2c
′Bt

n−2

∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣

cA1
1 cA2

1 · · · c
Aq

1 c′B1
1 c′B2

1 · · · c′Bp

1

cA1
2 cA2

2 · · · c
Aq

2 c′B1
2 c′B2

2 · · · c′Bp

2
...

...
cA1
n−2 cA2

n−2 · · · c
Aq

n−2 c′B1
n−2 c′B2

n−2 · · · c′Bp

n−2

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

cA1
1 cA1

2 · · · cA1
n−2

cA2
1 cA2

2 · · · cA2
n−2

...
c
Aq

1 c
Aq

2 · · · c
Aq

n−2

c′B1
1 c′B1

2 · · · c′B1
n−2

c′B2
1 c′B2

2 · · · c′B2
n−2

...
...

...
...

c′Bp

1 c′Bp

2 · · · c′Bp

n−2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣

cA1
1 cA2

1 · · · c
Aq

1 c′B1
1 c′B2

1 · · · c′Bp

1

cA1
2 cA2

2 · · · c
Aq

2 c′B1
2 c′B2

2 · · · c′Bp

2
...

...
cA1
n−2 cA2

n−2 · · · c
Aq

n−2 c′B1
n−2 c′B2

n−2 · · · c′Bp

n−2

∣∣∣∣∣∣∣∣∣∣

2

,

where the summation index s runs from 1 to q, and t from 1 to p. So we obtain the following
formula about det(hij) :

det(hij) = sin2−n θ
n−2∑
p=0

(−1)p cosp θSp,

where

Sp =
∑

1≤A1<···<Aq≤n−1
1≤B1<···<Bp≤n−1

Ψ̃A1A2···Aq,B1B2···BpκA1 · · ·κAqκ
′
B1

· · ·κ′Bp

=
∑

1≤A1<···<Aq≤n−1
1≤B1<···<Bp≤n−1

∣∣∣∣∣∣∣
cA1
1 · · · c

Aq

1 c′B1
1 · · · c′Bp

1
...

...
cA1
n−2 · · · c

Aq

n−2 c′B1
n−2 · · · c′Bp

n−2

∣∣∣∣∣∣∣
2

κA1 · · ·κAqκ
′
B1

· · ·κ′Bp
,

and q = n− 2 − p.
More generally, we will discuss the coefficients of the characteristic polynomial

det(δij + λhij) = 1 + ψ1λ+ ψ2λ
2 + · · · + ψn−2λ

n−2.

It is clear that det(hij) = ψn−2. By a result in linear algebra, the ith coefficient is given by

ψi =
∑

1≤j1<···<ji≤n−2

∣∣∣∣∣∣∣
hj1j1 · · · hj1ji

...
...

...
hjij1 · · · hjiji

∣∣∣∣∣∣∣ .
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A similar discussion about det(hij) gives that

ψi = sin−i θ

i∑
p=0

(−1)p cosp θS (i)
p ,

where

S (i)
p =

∑
1≤A1<···<Ai−p≤n−1
1≤B1<···<Bp≤n−1
1≤j1<···<ji≤n−2

∣∣∣∣∣∣∣∣
cA1
j1

· · · c
Ai−p

j1
c′B1

j1 · · · c′Bp

j1
...

...
cA1
ji

· · · c
Ai−p

ji
c′B1

ji
· · · c′Bp

ji

∣∣∣∣∣∣∣∣

2

κA1 · · ·κAi−pκ
′
B1

· · ·κ′Bp

=:
∑

1≤A1<···<Ai−p≤n−1
1≤B1<···<Bp≤n−1

Ψ̃(i) A1A2···Ai−p,B1B2···BpκA1 · · ·κAi−pκ
′
B1

· · ·κ′Bp
.

One notes that the coefficients Ψ̃(i) A1A2···Ai−p,B1B2···Bp at x are only dependent on the relative
position of S0 and S1, and they are invariant if the frame e1, · · · , en−2 is acted by an element
of O(n − 2).

Then the integration (3.2) continues as follows:

1
Jn−2

(
n− 2
i

)−1 ∫
D̃
ψi sinn−1 θdθ ∧ Θ0 ∧ Θ1

=
1

Jn−2

(
n− 2
i

)−1 i∑
p=0

( ∫ π

0

(−1)p sinn−1−i θ cosp θdθ
)(∫

En−2,0×En−2,1

S (i)
p Θ0 ∧ Θ1

)

=
1

Jn−2

(
n− 2
i

)−1 i∑
p=0

p is even

Γ
(p+ 1

2

)
Γ
(n− i

2

)
Γ
(n− i+ p+ 1

2

) ( ∫
En−2,0×En−2,1

S (i)
p Θ0 ∧ Θ1

)

=
i∑

p=0
p is even

c(p, i, n)H̃i−p(S0)H̃p(S1).

The last equality deserves more explanations. Now we are going to discuss the integral of S
(i)
p

over En−2,0 × En−2,1. By fiber integration, we have∫
En−2,0×En−2,1

S (i)
p Θ0 ∧ Θ1

=
∫
En−2,0×En−2,1

(∑
Ψ̃(i) A1A2···Ai−p,B1B2···BpκA1 · · ·κAi−pκ

′
B1

· · ·κ′Bp

)
Θ0 ∧ Θ1

=
∑ ∫

En−2,0×En−2,1

(Ψ̃(i) A1A2···Ai−p,B1B2···BpκA1 · · ·κAi−pκ
′
B1

· · ·κ′Bp
)Θ0 ∧ Θ1

=
∑ ∫

S0×S1

(∫
P

Ψ̃(i) A1A2···Ai−p,B1B2···BpdV n−1
n−2,0 × dV n−1

n−2,1

)
· κA1 · · ·κAi−pκ

′
B1

· · ·κ′Bp
dσ0 ∧ dσ1.

One notes that the densities dV n−1
n−2,0 and dV n−1

n−2,1 are SO(n − 1) invariant respectively.
One also remembers that cAi and c′Bi are coefficients of ei and e′i with respect to vA and v′B,
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respectively. For any combinations 1 ≤ j1 < · · · < ji ≤ n − 2, there exists a rotation in
SO(n− 1) by which e1, · · · , ei is rotated to the position of ej1 , · · · , eji . So the fiber integral is∫

P

Ψ̃(i) A1A2···Ai−p,B1B2···BpdV n−1
n−2,0 × dV n−1

n−2,1

=
∑

0≤j1<···<ji≤n−2

∫
P

∣∣∣∣∣∣∣∣
cA1
j1

· · · c
Ai−p

j1
c′B1

j1 · · · c′Bp

j1
...

...
cA1
ji

· · · c
Ai−p

ji
c′B1

ji
· · · c′Bp

ji

∣∣∣∣∣∣∣∣

2

dV n−1
n−2,0 × dV n−1

n−2,1

=
(
n− 2
i

) ∫
P

∣∣∣∣∣∣∣
cA1
1 · · · c

Ai−p

1 c′B1
1 · · · c′Bp

1
...

...
cA1
i · · · c

Ai−p

i c′B1
i · · · c′Bp

i

∣∣∣∣∣∣∣
2

dV n−1
n−2,0 × dV n−1

n−2,1.

On the hypersurface S0, for two sets of different indexes A1, · · · , Aq and Ã1, · · · , Ãq, there
exists a rotation g in SO(n − 1), such that 〈g(es), vÃt〉 = 〈es, v

At〉, s, t = 1, · · · , q. The same
statement is also valid for S1. Let

Ω(p, i, n) =
∫

P

∣∣∣∣∣∣∣∣
cA1
j1

· · · c
Ai−p

j1
c′B1

j1 · · · c′Bp

j1
...

...
cA1
ji

· · · c
Ai−p

ji
c′B1

ji
· · · c′Bp

ji

∣∣∣∣∣∣∣∣

2

dV n−1
n−2,0 × dV n−1

n−2,1,

and then Ω(p, i, n) are independent of the choices of A1, · · · , Ai−p and B1, · · · , Bp.
If we denote the ith elementary symmetric polynomial of the elements a1, a2, · · · , an−1 as

{aA1 · · ·aAi}, then the integration of S
(i)
p on En−2,0 × En−2,1 is∫

En−2,0×En−2,1

S (i)
p Θ0 ∧ Θ1

=
(
n− 2
i

)
Ω(p, i, n)

∫
S0×S1

{κA1 · · ·κAi−p}{κ′B1
· · ·κ′Bp

}dσ0 ∧ dσ1

=
(
n− 2
i

)(
n− 1
i− p

)(
n− 1
p

)
Ω(p, i, n)

∫
S0×S1

Hi−p(S0)Hp(S1)dσ0 ∧ dσ1.

Instead of direct calculation of Ω(p, i, n), we prefer to determine the universal constants
c(p, i, n) by taking S0 and S1 to be hyperspheres, and then evaluate Ω(p, i, n).

The constants will be determined in the last section. We complete the proof of Theorem
1.1.

4 Determination of the Constants

Let S0 = Sn−1(1) and S1 = Sn−1(R) be hyperspheres in E
n of radii 1 and R (0 < R < 1)

respectively. Let S0 be centered at the origin point O. For a fixed motion g, let y be the
distance from O to the center of gS1 = gSn−1(R).

When S0 ∩ gS1 �= ∅ which is equivalent to 1 − R ≤ y ≤ 1 + R, S0 ∩ gS1 is a hypersphere
Sn−2(r) in a hyperplane of radius

r =
[4y2 − (1 −R2 + y2)2]

1
2

2y
. (4.1)
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It can be proved that

HgS1
i =

(
1 − r2

R2

) i
2

ri
.

So we obtain

H̃gS1
i (S0 ∩ gS1) = On−2r

n−2−i
(
1 − r2

R2

) i
2
.

In this specific case, the left side of (1.4) reads

On−2

∫
G0

dg0
∫

En

rn−2−i
(
1 − r2

R2

) i
2
dσ. (4.2)

By the polar decomposition of Lebesgue measure dσ and using (4.1), the above integration is

On−1On−2Jn

∫ 1+R

1−R

rn−2−i
(
1 − r2

R2

) i
2
yn−1dy

=
On−1On−2Jn

2n−2Ri

∫ 1+R

1−R

y[4y2 − (1 −R2 + y2)2]
n−2−i

2 [4y2R2 − 4y2 + (1 −R2 + y2)2]
i
2 dy.

Putting 2Ru = y2 − 1 −R2, we reformulate the integration as

On−1On−2JnR
n−1−i

∫ 1

−1

(1 − u2)
n−2−i

2 (R + u)idu

= On−1On−2Jn

i∑
p=0

p is even

(
i

p

)
Rn−1−p

∫ 1

−1

up(1 − u2)
n−2−i

2 du

= On−1On−2Jn

i∑
p=0

p is even

(
i

p

)
Rn−1−p

Γ
(p+ 1

2

)
Γ
(n− i

2

)
Γ
(n− i+ p+ 1

2

) .

By the formula (1.2), the kinematic formula for the hyperspheres S0 = Sn−1(1) and S1 =
Sn−1(R) is proved to be

∫
{g|S0∩gS1 �=∅}

H̃gS1
i (S0 ∩ gS1)dg = Jn−1

i∑
p=0

p is even

(
i

p

)
On−2On−i+pO0

OpOn−1−i
H̃i−p(S0)H̃p(S1).

So the universal coefficients in (1.4) are given by

c(p, i, n) = Jn−1

(
i

p

)
On−2On−i+pO0

OpOn−1−i
.

As a consequence, one has

Ω(p, i, n) = (Jn−1)2
(
i

p

)(
n− 1
p

)−1(
n− 1
i− p

)−1

.

Acknowledgements The first author would like to thank Prof. Huitao Feng for his
consistent support and encouragement. The authors would like to thank the referees for their
helpful comments and suggestions.



148 M. Li and J. Z. Zhou

References

[1] Chen, C.-S., On the kinematic formula of square of mean curvature, Indiana Univ. Math., 22, 1972–1973,
1163–1169.

[2] Chern, S. S., On integral geometry in Klein spaces, Ann. of Math., 43(2), 1942, 178–189.

[3] Chern, S. S., On the kinematic formula in the Euclidean space of n dimensions, Amer. J. Math., 74, 1952,
227–236.

[4] Chern, S. S., On the kinematic formula in integral geometry, J. Math. and Mech., 16(1), 1966, 101–118.

[5] Chern, S. S., Chen, W. and Lam, K. S., Lectures on Differential Geometry, Series on Univ. Math., Vol. 1,
World Scientific, Singapore, 1999.

[6] Gallego, E., Naveira, A. M. and Solanes, G., Horospheres and convex bodies in n-dimensional hyperbolic
space, Geom. Dedicata, 103, 2004, 103–114.

[7] Howard, R., The kinematic formula in Riemannian homogeneous spaces, Mem. Amer. Math. Soc., 509,
1993, 1–69.

[8] Jiang, D., Zhou, J. and Chen, F., A kinematic formula for integral invariant of degree 4 in real space form,
Acta Math. Sin. (Engl. Ser.), 30(8), 2014, 1465–1476.

[9] Klain, D., Bonnesen-type inequalities for surfaces of constant curvature, Adv. Appl. Math., 39, 2007,
143–154.

[10] Li, M. and Zhou, J., An isoperimetric deficit upper bound of the convex domain in a surface of constant
curvature, Sci. China Math., 53(8), 2010, 1941–1946.

[11] Ren, D., Topics in Integral Geometry, World Scientific, Singapore, 1994.
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