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Abstract For a class of cubic systems, the authors give a representation of the nth order
Liapunov constant through a chain of pseudo-divisions. As an application, the center
problem and the isochronous center problem of a particular system are considered. They
show that the system has a center at the origin if and only if the first seven Liapunov
constants vanish, and cannot have an isochronous center at the origin.
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1 Introduction

Consider a two-dimensional system of differential equations of the form

dx

_ dy
E—y+Pn(x,y), i z+ Qn(z,y), (1.1)

where P,,,Q,, are real polynomials of degree n without constant and linear terms. The singu-
larity at the origin is a weak focus (surrounded by spirals) or a center (surrounded by closed
trajectories). The Poincaré center-focus problem (see [1]) is to determine conditions on the
coefficients of P, and @Q,,, under which an open neighborhood of the origin is covered by closed
trajectories of system (1.1).

Although the center-focus problem of system (1.1) has attracted intensive attentions, the
characterization of centers for cubic systems is far from complete. Malkin [2] found necessary
and sufficient conditions for a cubic vector field with no quadratic terms to have a center. For
a cubic system of the form:

dx
= Ay + Xo(z,y) + Xs(z,y),
d

where X, (z,y) and Yi(x,y), s = 2,3, are homogeneous polynomials of degree s, satisfying
xYs(z,y) — y X3(x,y) = 0, Chavarriga and Giné [3] gave a complete center characterization.
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For a cubic system of the form:

d

d—f:y(l—l—Dm—l—PmQ),

d
d—zz:—x+Am2+33xy+Cy2+Kx3+3Lx2y+Mxy2+Ny3,

Sadovskii and Shcheglova [4] presented a complete solution to the center-focus problem. For
a special case of the above system with P = 0, Hill, Lloyd and Pearson [5-7] obtained the
necessary and sufficient conditions for the origin to be a center and an isochronous center,
respectively.

A center of (1.1) is called to be isochronous if all cycles near it have the same period. It
is well known that isochronous centers are non-degenerate. The problem to determine whether
the center is isochronous or not is called the isochronicity problem. Although this problem has
attracted the attentions of many authors, the characterization of isochronous centers even for
cubic systems is far from complete. Recently, the isochronous center problem of time-reversible
cubic systems was completely solved by Chen and Romanovski [8]. For other developments of
some polynomial differential systems, we refer to [9-15] and the references therein.

In the case n = 3, system (1.1) can be written as

d_x — 2 2 3 2 2 3
qf YT 2,077 F G212y + ag,9Y" + 3,077 + 43127y + a327Y" + a3,3Y
4 .
d—i{ = — + boo2? + b 12y + b 2y® + b3 07 + b3 127y + b3 27y? + b3 3y°
= —x+ Q2(x7y) + Q&(xa y)v
where Py (x,y), Qr(z,y) are homogeneous polynomials of degree k.
By the method of [16], there exists a unique formal power series of the form:
'S k
H(z,y)=2"+y"+ (ZBk,jfc’“’Jyj) =a® +y° + Ha(w,y) + Ha(z,y) +---,  (L1.3)
k=3  j=0

where By, = 0 with k even and Hy(z,y) is a homogeneous polynomial of degree k, so that

dH

— =Y Wyt 1.4
dt‘(m) nz::l 4 ’ (1.4)

where W, is called the nth Liapunov constant of system (1.2).
The classical Poincaré-Liapunov method gives the usual version of definition. There exists
a unique formal power series of the form:

0o k
Glay) = +y* + 3 (3 Crga"Iy7) = +9” + Galwy) + Galwy) + -
k=3 =0

where Cf j; = 0 with k even and Gj(z,y) is a homogeneous polynomial of degree k, so that

dG

[ee]
- _ Vi, 2 2 (n""l)’
dt ‘(1.2) nz::l (" +v7)
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where V;, is also called the nth Liapunov constant of system (1.2).
In a general setting, the computational problems which appear in the computation of the
Liapunov constants were discussed (see [16-18]).

Proposition 1.1 For system (1.2) and any natural number n, Vi = Vo = - =V, =0 if
and only if Wy =Wy =... =W, =0.
Proof Suppose that V; =V, =--- =V,, = 0, and then according to the work of Zhang et
al. [17], we can uniquely determine Gs(x,y), G4(z,y), - , Ganta(x,y) such that
oG oG
oty = Wy (Py, P, Q2,Q3,G3,Ga, -+ ,Gro1), 3<k<2n+2,
dy ox
where
- oG oG
U1 =2(xPy—1 + yQr—1) + Sz:; (Pk—s-i-lW + Qk—s+1a—y>

and P,_1 = Qr_1 = 0 when k > 5.
For any positive integer m satisfying 1 < m < n, we set Hi(z,y) = Gi(x,y), 3 < k <
2m + 2. From [16], it is known that the quantity W,, is determined by the equation

x8H2m+2 y8H2m+2
dy ox
:\:[12m+1(P2aP37Q27Q37H3aH47'" aHQerl)v ]-Smgnv

+ me2m+2

and thus W,, =0, 1 <m < n.

The converse direction can be proved in the same way. Suppose that W, =Wy = =W, =
0, and then according to [16], we can uniquely determine Hs(z,y), Ha(x,y), - , Hopnto(z,y)
such that
OH, 0H,
xa—yk - y8—xk =Wy 1(P, P3,Q2,Q3, H3, Hy, - -+ \Hg—1), 3<k<2n+2.

For any positive integer m satisfying 1 < m < n, we set Gg(z,y) = Hi(z,y), 3 < k <
2m + 2. From [17], it is known that the quantity V, is determined by the equation

x8G2m+2 y8G2m+2
dy ox
:\I/2m+1(P27P37Q27Q35G3;G47"' 7G2m+1)7 1 Sm§n7

4 Vm(xQ 4 y2)(m+1)

and thus V,,, =0, 1 <m < n.

Corollary 1.1 For system (1.2), the center varieties obtained from the polynomial ideals
Wyt k> 1) and (Vi : k > 1) are the same.

Proposition 1.2 The nth Liapunov constant of system (1.2) is given by the formula
Wy = (2n+ 1)Bapt1,2n41b2,2 + Bop2n—1a33 + Bapt1,2n02,2 + Bopi2.2n+1, (1.5)

where BQ’O = B2’2 =1 and Bgyl = 0.
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Proof Let

dH OH OH
Uz, y) = e %(ZJ+P2+P3)+8—y(—$+Q2+Q3)~

Then the nth Liapunov constant of system (1.2) is

1 82n+2U
Wn = (2n + 2)! Jy?nt2 (0.0)

So by the general Leibniz rule, we get the formula (1.5).

We remark that each B; ; on the right hand side of (1.5) is a polynomial in the coefficients
of system (1.2), and can be uniquely determined by using the identity (1.4).

In the case as 2 = ag,3 = ba o = b3 3 = 0, system (1.2) becomes

d_x — 2 3 2 2
T Y+ ago0r” + a2 172y + azor” + a3 17y + az 2xy°,
(1.6)
dy 2 3 2 2
TR + bo,0x” + ba 12y + b3 0x” + b3 127y + b3 27y”.
Applying Proposition 1.2 to system (1.6), we have the following corollary.
Corollary 1.2 The nth Liapunov constant of system (1.6) is given by the formula
Wy = Bant2,2n+1- (1.7)

In Section 2, the computation of the nth Liapunov constants in the coefficients of cubic
system (1.6) is considered. In Section 3, the solutions to the center-focus problem and the
isochronous center problem for a particular case of system (1.6) are given.

2 The nth Liapunov Constant for System (1.6) and the Main Results

Let the time derivative of H along the orbits of system (1.6) be

=2 (D) =)
dt (1.6)_].:3 P sk ) '

where f; ; are polynomials in the coefficients of system (1.6) and the function H(x,y) in (1.3).
As a consequence of Corollary 1.2, for each s we have

fast2,2s42 = Bast2.2541- (2.2)

Suppose that (1.6) has a weak focus of order n at the origin, and then the following conditions
hold:

fik =0, 0<k<j, 3<j<2n+1,
f2n+27k = 07 0< k <2n+ 17 (23)
Bopioons1 # 0.

Inspired by the algorithm of Wang [16, 19] and the corresponding Maple procedure licon [20]

in Epsilon|miscel|package, we can represent the nth Liapunov constant W, that is, Bayu12 2541,
in the coefficients of system (1.6) by succesive pseudo-divisions.
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Let A = {A41,A2,---, A} be a polynomial set in the variables z1, 2, - ,x,, for which
the main variable of A; is x,,. The pseudo-remainder of a polynomial P (in the variables
X1,Ta, -+ ,Ty) with respect to A is

0 ifr=1and p; =0
P X) = ’ ) )
prem(P, A, X) {prem(- --prem(P, A, xzp, ), -+ , A1, xp, ), otherwise,
where X ={zp,,2p._,, -+ ,xp, } and prem(P, A,, z, ) denotes the pseudo-remainder of P mod-
ulo A, with respect to the variable z,, .

Let

Aant2 = {font2,2n, font2.2n-2," ", fan+2,0},

Cotks1 = {fort1,2k fort1,2k—2, 5 fort1,0, fort1,1, fort1,3, +, fongrons1), 1<k <n,

Cor = {for1, for3, , fon2k—1, ok 2k—a, for 2k—6s ", fono}, 2 <k <m,
and

Xont2 = {Bant2.2n+1, Bant2,2n—1, s Bant1,1}s
Vo1 = {Bokt1,26+1, Boky1,26—1, - s Bok1,1, Bort1,0, Baky1,2,- -+, Bogg1,26), 1<k <n,
YVor, = {Bak,0,Bak2, - , Bak,ok—2, Bok 2k—3, Bok,2k—5, -, Bog1}, 2 <k <n.

Set the first (n — 1) Liapunov constants to be all zero, i.e., Wi, = Bajyoop+1 = 0 for all
1 <k<n-—1andletV, = Byi22n4+1 + v, where v is a dummy variable, so then the nth
Liapunov constant can be obtained through a chain of pseudo-divisions:

Séi’lf) = prem(V},, Azpq2, Xoni2),
SO = prem (S5 b, Conet Vont1),
Séi’—l‘r)Z L= prem(séi’r-:gl)) CQTM an))
S(anl) . S(2n) c
onto = prem(Ss, Vo, Con 1, Von—1),

Séi)+2 P prem(S§2)+2,C4,y4),
SéfL)J,-Q P= prem(séi)+27637 y3)7

Wiz o4 — itz
coeff(Sy, 5, v)

The last equation gives the nth Liapunov constant in the coefficients of system (1.6), where
Coeff(Séi)JrQ, v) stands for the coefficient of v in the polynomial Séi)JrQ.

Although the basic idea of the previous formulae and the ones implicit in the Maple proce-
dure licon (see [20]) are the same, there are two differences: First, our formulae are designed
just for system (1.6), while the Maple procedure licon is designed for the general polynomial
differential systems; secondly, we find that it takes 2n? + 4n times of pseudo-divisions to com-
pute the nth order Liapunov constant by using our formulae, while in licon it takes 2n% 4 6n
times.
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Since the solution of the center-focus problem for system (1.6) is very difficult, we restrict

our attention to a special system:

dz 2 3
T Y+ c2,0T” + c3027,
(2.4)
@ _ 2 3 2 2
eyl +doox” 4 doxy + d3ox” + d3 27y + d3 27y

with C3.0 7é 0.
If c3,0 > 0, then using the scaling: © — £, y — #, system (2.4) can be transformed into

da 2 .3
O =y +agoxr” + a7,
(2.5)

d )
d_ZZ = —x + bogx? + by 12y + b3 02> + bz 122y + bz 2wy?,
in which
co0=as0k, c30=Fk? doo=Dbaok, (2.6)
doi =boik, dzo=bsok? ds1=0b31k’ dso=nb3ok” (2.7)

If c3,0 < 0, then using the scaling:  — £, y — ¥, system (2.4) can be transformed into

d .
d_f =y+ 612,05162 — 3,
(2.8)

d
d_:lz{ = —x + bog2? + by 12y + b3 02° + b3 127y + b3 27y,
in which
co0=a20k, cs0=—k" dro=baok, (2.9)
dy1=bork, dso=bsok® dz1=>bs1k”, dza=Dbsak’ (2.10)

Considering the coefficient conditions (2.6)—(2.7) and (2.9)—(2.10), a discussion of (2.5) and
(2.8) in the next section gives the following results.

Theorem 2.1 For system (2.4) with c3 9 # 0, the origin is a center if and only if one of
the following conditions holds:

(1) 2,0 = azok, c30 = k>, dag = baok, do1 = —2as0k, d3o = bsok?, ds1 =—3k?,
ds2 = 0;

(2) ca0 = asok, c30=Kk? doo=0, do1 = 3asok, d3o=bsok?, ds1 = —3k? dso=0;

_ 3k _ 1.2 _ _ _baak _ _ 2 —_0-
(3) c20 =—52=, c30 =Fk", dop =baok, do1 =—3F=, d30=0, d31 =0b31k* d32=0;
2b2 0 b20
5+bs.0b21)k 2 (6+5b2,0b2,14b3 ;1 b2,0%) k>
(4) co0 = — (34b2.0b2.1)k IS Lk c3,0 = k%, doo = ba ok, doj1 = ba1k, d3o = — SOV )

d31 = 2k? d3z =0;
(5) c20 = —w, 3.0 = k2, dag = baok, daq =bark, d3o=0, d31 = 3k,
d _ 3(3+ba,oba 1)K
3,2 — b2,02 ’
(6) c2,0 = azok, c30=—k?, dag =baok, do1 = —2a20k, d3o = bsok?, ds; = 3k?
d32 = 0;

(7) 2,0 = azok, c30=—k?, da =0, do1 = 3az ok, dso=bsok?, ds; =3k? d32=0;
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(8) c2,0 = %, 30 =—k?, dao = baok, dog =—7 lok, dzo =0, d31 =b3.1k?, d3 o =0;
(9) c20 = Wv 30 = —k?, dao = baok, da1 =Dbak, d3o =0, dz1 = —3k?
2
d3,2 - ( 3+:22;b2 SBLay ;
(10) c2,0 = —W, 30 = —k?, dao = baok, day = b2k,
dso = — (6—5b2,ob2,1+b§,léz,02)k27 dsq = _2]{:27 ds0 =0,

2b2,0°
where k is a non-zero real parameter.

Theorem 2.2 System (2.4) with c30 # 0 cannot have an isochronous center at the origin.

3 Proof of Main Results

According to the recursive formulae in Section 2, we obtain the first seven Liapunov con-
stants of system (2.5):

2 2 4
Wi =2b31+2+ 5baoba1 + < az,0b2,0,

37 3 7 3
6 4 6 4
Wy = 5 bso—2b30+ — 15 ba,1b3,102,0 + 5 az,0b2,1 — b%,l 5 bs,la%o
4 2
-z b3 2a2,0b2,0 + 5 (—bs,2 — 5b3,0)b3,1,
12 4 2
W3 = - +— 15 92 053 1b20+ —— o5 b3,203, 1a2 0o+ —= 5 b3,2b3, 152 o+ 15 b3,253,1b3.0
46 46 4
175 —— b32a2,0b2,1 — B b3,2b2,1b3 1a2,0 + 5 b3,1a2,0b2,0 + 5 b3,ob3,2 525 b3 ob3.1
8 6 2
+ = 175 bs, 252 11— b3 QG;O T b3,zb§7o — 5 a2,0b2,0 + 5 6371
34
+ 10 b3+ = b3 1,
3124 25454 3784 . 136
by b b2 .b by b3 b2 b3 1b:
Wy = 2625 021 3,102,0 + —o—= 53605 031021020 — Soon b2b5 1820 — 7o b3 503,103,0
21913 44 22 1012
~ I b%g az0b21 — = bs.2b3 1a 30 135 b3.2b3 1 %,0+ Eor by 00} ob21
55 253 35282 88
b b2 | — == b ob3 b2 b3 103 ) — ——= b3 obs 23
+ gp b205.0050 — goeba 23000 + Joame Bhabsa3o — Tog baobs 2B,
4 564 6644 be b 9658 u + 19316 be a2 528 o2 2332 o2
1575 30032030 — 875 2071 T9ga5 U170 T gy 31030 2625 31050
1892 , , 1892 . 166 592,
7875 31051 + 23625 2781 T 551a5 Y3291 T Fpygp Y202
5266, , _ 44 264 6364 22 ,
b b b b —b; b
Ti025 232%5.0 ~ 1gg 3.2 35 032020 + 7gzs a2 3,075,2
1276 ., 1208, 374 404 3014
i N : b3 1b b3 2b b b
t a5 2001 T 575 P800 F gop 081080+ 7pp 32081 e 08
1892 253 13507
i b3 gb3.2bo 1b b ba 1b
+ 1725 3.1 3,0 — 675 3,003,202,103 1020 — 55125 3.2 2,103,102 0
352 4301 2866 96
—— b3 ob3.2b b3 ob b 3, ——b
™ 595 U3.003,2 31a20+1575 3,003,202 0021 — 55195 V32 T a5 32
418 374
+
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and W5, Ws, Wy have 66, 105, 64 terms, respectively. We would not present them here due
to their lengthy expressions, but one can easily calculate them by using our formulae with the
Maple computer algebra system.

Let J = (W1, Wa,---), and then the ideal J is called the Bautin ideal of system (2.5). And
let J, = (Wi, Wa, -, W) be the polynomial ideal generated by Wy, Wa, .-+, Wj. The affine
variety V(J) is called the center variety for the singular point at the origin of system (2.5).
Computing a Grobner basis G of the ideal J7 with respect to the graded reverse lexicographical
order with

bao = b3,0 = ba1 > ago > ba1 > b3,

we obtain a list of polynomials:

J1 = b3 2b31 — 3032,
Jo = b3 0b3,2,
J3 =031+ 3+ baoba1 +2a2,0b2y,
Jy=2 b2,0b§72 —3b2.1b3.2 + 6 b3 2020,
Js5 = bs2b3 | — 4bs a3+ 403,
Js = b3,ob§71 + b3,1b3,0 — 6 03,0,
J7 = 2by1b3 1020 — 653,1(1%,0 — 10b3,2a2,0b2,0 — 353,1 +9as,0b2,1
— 5bg1b30 — 15b3,0 — 12b3 9,
Js =2az0b3 | — 3b21b3 1 + 2a2,0b3 1 — 3b21bs1 — 12ag,0bs,1 + 12bgobs2 + 18 b2 1,
Jo =2a,b3 1b2,0 — 18 + 2b3 1a2,0b2,0 + 2b3 2b5 g — 12a2,0b2,0 + 363, + 3b3 1,
Jio = 10b2,0a3 gbs,1 + 10 b3 gaz,0bs,2 + 30 ba,0a3 o + 5 ba,0bs 0bs,1 + 2 az,0b3 1 + 15 ba obs o
—3b2,1b3,1 +21az b1 + 1202 0b3 2 — 9 b2 1 + 45 ag o,
Ji1 = 2b3 b3 1b5 | — 18 b3 0bs 103 o — 7bs b3 1 + 13 b3 0az,0ba,1 + 24b3,0a3 o — 5b3,1b5 ¢
— 1503 .
Ji2 = 3b30b3 1 — Tbs b3 1az,0 — 14b30ba,103 o + 24 b3 0a3 o + 503 gb2,1b3.1
+ 1063 gaz,0b3,1 + 1565 gba1 + 3063 gaz,o.

Before proving the main results, we start with four lemmas.

Lemma 3.1 The center variety of system (2.5) is the variety of the ideal J7 generated by
the first seven Liapunov constants, and is composed of the following five components:
(1) Vi = V(Il), where I; = <b3’2,b271 + 20,2}0,[)371 + 3>,

(2) ‘/2 = V(IQ), where .[2 = <b2’0, b372, 30,2’0 — b271, b3’1 -+ 3>,
(3) V3 =V (I3), where I3 = (2az,0b2,0 + 3,b3,0, b3 2, 2a2,0b3,1 — 3b2.1);
(4) V4 =V (1), where

Iy = <5 + b2,0b2,1 + 2a2,0b2,0, 1204370 — 13a2,0b2,1 + 3b§71 + 25b3,0,b3,2,031 — 2>;

(5) Vs = V(I5), where I5 = <6 + b2 oba,1 + 2a2,0b2,0, b3,0, _b%,l + 404370 —4b3 2,031 — 3>

Proof Using the radical ideal membership test, we can verify that

Wo & /(Wh), Wi & (Wi, Wa), -, Wré (Wi, Wa, - W),
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Ws € / (Wi, Wa, -+, Wr).

Thus we expect that V(J) = V(J7). To verify it, first we find that
5
V(F) =V(@) = V),
k=1

and then prove that every system from Vj, 1 < j <5 has a center at the origin.
Any system from the component V; has the form

dx 9 3
- =Yy tazoer” + a7,
dt 1
i —x + b270m2 —2az 07y + b370m3 —32%y.
Since (3.1) is a Hamiltonian system, it has a center at the origin.
Any system from the component Vo has the form
d
&L zy—l—agomQ—l—mB,
dt '
dy (3.2)
i + 3 ag0ry + by ox® — 322y,
By the transformation
X =uz, Y=y+a2,0$2+3?3a
system (3.2) becomes a time reversible system, and hence it has a center at the origin.
Any system from the component V3 has the form
dx 9 3
E_y_%z,om e (3.3)
%:—x—i—b xz—b?’—’lx + by q2” '
ar 2,0 b2.o Y 3,12°Y,
which admits an integrating factor
ba2.0
wz,y) = 5 5 5 :
(=2b59 —6b20y + (=3b3,1 +9)2? + (2b3,1b2,0 — 6b2,0)2) (b2,0 + b3,1Y)
so it has a center at the origin.
Any system from the component Vy has the form
d ba b 5
o, (b2,0b2,1 + )x2+x37
dt 2by
dy 5 (b3 052.12 +5b20b21 +6) 4 5 (3.4)
— = —x + by ox* + by Yy — ——— R x® + 22y,
dt ’ ’ 2b2.0

which admits an integrating factor

?

2 -3
(52,062,1—1— )xg)

1
wlx,y) = (5 b2o+y— T

so it has a center at the origin.
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Any system from the component V5 has the form

d baoba1 + 6

dv __ (Goobaa#6) s

W e (3.5)
d 3(ba.ob21 + 3 :
y:—$+b20x2+b21xy+3x2y+wxy2

dt | | R ’
which admits an integrating factor

9

M(xv y) = 4(13270 T 3y)2a

and hence it has a center at the origin.

With the same principle, we have the following result about system (2.8).

Lemma 3.2 The center variety of system (2.8) is the variety of the ideal K7 generated by
the first seven Liapunov constants, and is composed of the following five components:

(1) V1:V( ) where 11:<b32,b21+2a20,b31—3>'

(2) Vo =V (I3), where Iy = (b2,0,b3,2,3a20 — b21,b31 — 3);

(3) V3 =V (I3), where I3 = (2az,0b2,0 — 3,b3,0, b3,2, 2b3,102,0 + 3b2.1);

(4) Va =V (1y), where Iy = (—6 + b2 ob2,1 + 2a2,0b2.0, b3 0, —b2’1 + 4a2’0 —4bs 2,b3.1 + 3);
(5) Vs =V (I5), where

Is = <—5 + 6270()271 + 2&27()[)270, 12&;0 — 13@27()[)271 + 3()3}1 + 25[)3707 b372, b371 + 2>.

Lemma 3.3 System (2.5) cannot have an isochronous center at the origin.

Proof Using the general algorithm in paper [9], we obtain the first two isochronous

constants py, py for system (2.5):

1
12
1
Pi= 15" (=243 — 1563 a3 o + 1463 jaz,0 — 259 b3 b3 o — 304 by 143
+ 164 a3 ob3 o + 480 a3 obs,0 — 144 a3 obs.2 — 1980 b3 b3 o — 84 b3 gbs.2 — 423 1bs 0
—6 b;lbgyg + 738 b2’1b2’0 —90 b3’0b3’2 — 1836 agyobgyo + 342 b3’1 + b;l + 304 a;o
— 140 b%,o —99 53,1 — 459 bg}o — 27 6312 — 498 b271627obg71 + 426 b271a270b370

+ 150 b2,1a270b3,2 + 824 b2,1a2,0b§70 + 1260 a2’0b2’0b3’1).

P2 = — ( 5a20b21—|—4a20—|—10b 0+bg’1+9b370+3b372),

The simultaneous vanishing of polynomials in G U {pa, p4} gives rise to only one case

—81 + 564 (—81 + 56 b3 o)
20 = a2 T T T 1805y,
1 (6561 + 70308b3 o + 313665 )
b30 = i b,

, b31=-3, b32=0,
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where G is the Grébner basis of J7. For this case, (2.5) has the form

dz 1 (=81+56b50) ,
dy , 1 (=81+56bi,)
dy o, 1 (-B1456bh) 3.6
T e T R Y
1 (65614 70308b3, + 3136b5,) 5, ,
71442 b3 !

Again using the general algorithm in paper [9], we get the third-order isochronous constant of
system (3.6):
5(19683 + 140616 b3 ; + 18032 b5 )

1088640, ™

Pe =

which is positive for all real by o, and hence system (2.5) cannot have an isochronous center at
the origin.
By the same method as in the proof of Lemma 3.3, we get the next lemma.

Lemma 3.4 System (2.8) cannot have an isochronous center at the origin.

Proof of Theorem 2.1 By Lemmas 3.1-3.2 and the coefficient conditions (2.6)—(2.7)
and (2.9)-(2.10), we conclude that Theorem 2.1 holds.

Proof of Theorem 2.2 By Lemmas 3.3-3.4 and the coefficient conditions (2.6)—(2.7)
and (2.9)-(2.10), we conclude that Theorem 2.2 holds.
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