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Abstract For a class of cubic systems, the authors give a representation of the nth order
Liapunov constant through a chain of pseudo-divisions. As an application, the center
problem and the isochronous center problem of a particular system are considered. They
show that the system has a center at the origin if and only if the first seven Liapunov
constants vanish, and cannot have an isochronous center at the origin.
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1 Introduction

Consider a two-dimensional system of differential equations of the form

dx

dt
= y + Pn(x, y),

dy

dt
= −x + Qn(x, y), (1.1)

where Pn, Qn are real polynomials of degree n without constant and linear terms. The singu-
larity at the origin is a weak focus (surrounded by spirals) or a center (surrounded by closed
trajectories). The Poincaré center-focus problem (see [1]) is to determine conditions on the
coefficients of Pn and Qn, under which an open neighborhood of the origin is covered by closed
trajectories of system (1.1).

Although the center-focus problem of system (1.1) has attracted intensive attentions, the
characterization of centers for cubic systems is far from complete. Malkin [2] found necessary
and sufficient conditions for a cubic vector field with no quadratic terms to have a center. For
a cubic system of the form:

⎧⎪⎨
⎪⎩

dx

dt
= −λ y + X2(x, y) + X3(x, y),

dy

dt
= λx + Y2(x, y) + Y3(x, y),

where Xs(x, y) and Ys(x, y), s = 2, 3, are homogeneous polynomials of degree s, satisfying
xY3(x, y) − y X3(x, y) ≡ 0, Chavarriga and Giné [3] gave a complete center characterization.
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For a cubic system of the form:
⎧⎪⎨
⎪⎩

dx

dt
= y(1 + D x + P x2),

dy

dt
= −x + Ax2 + 3B xy + C y2 + K x3 + 3L x2y + M xy2 + N y3,

Sadovskii and Shcheglova [4] presented a complete solution to the center-focus problem. For
a special case of the above system with P = 0, Hill, Lloyd and Pearson [5–7] obtained the
necessary and sufficient conditions for the origin to be a center and an isochronous center,
respectively.

A center of (1.1) is called to be isochronous if all cycles near it have the same period. It
is well known that isochronous centers are non-degenerate. The problem to determine whether
the center is isochronous or not is called the isochronicity problem. Although this problem has
attracted the attentions of many authors, the characterization of isochronous centers even for
cubic systems is far from complete. Recently, the isochronous center problem of time-reversible
cubic systems was completely solved by Chen and Romanovski [8]. For other developments of
some polynomial differential systems, we refer to [9–15] and the references therein.

In the case n = 3, system (1.1) can be written as
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dx

dt
= y + a2,0x

2 + a2,1xy + a2,2y
2 + a3,0x

3 + a3,1x
2y + a3,2xy2 + a3,3y

3

= y + P2(x, y) + P3(x, y),
dy

dt
= −x + b2,0x

2 + b2,1xy + b2,2y
2 + b3,0x

3 + b3,1x
2y + b3,2xy2 + b3,3y

3

= −x + Q2(x, y) + Q3(x, y),

(1.2)

where Pk(x, y), Qk(x, y) are homogeneous polynomials of degree k.
By the method of [16], there exists a unique formal power series of the form:

H(x, y) = x2 + y2 +
∞∑

k=3

( k∑
j=0

Bk,jx
k−jyj

)
= x2 + y2 + H3(x, y) + H4(x, y) + · · · , (1.3)

where Bk,k = 0 with k even and Hk(x, y) is a homogeneous polynomial of degree k, so that

dH

dt

∣∣∣
(1.2)

=
∞∑

n=1

Wny2 (n+1), (1.4)

where Wn is called the nth Liapunov constant of system (1.2).
The classical Poincaré-Liapunov method gives the usual version of definition. There exists

a unique formal power series of the form:

G(x, y) = x2 + y2 +
∞∑

k=3

( k∑
j=0

Ck,jx
k−jyj

)
= x2 + y2 + G3(x, y) + G4(x, y) + · · · ,

where Ck,k = 0 with k even and Gk(x, y) is a homogeneous polynomial of degree k, so that

dG

dt

∣∣∣
(1.2)

=
∞∑

n=1

Vn(x2 + y2)
(n+1)

,
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where Vn is also called the nth Liapunov constant of system (1.2).
In a general setting, the computational problems which appear in the computation of the

Liapunov constants were discussed (see [16–18]).

Proposition 1.1 For system (1.2) and any natural number n, V1 = V2 = · · · = Vn = 0 if
and only if W1 = W2 = · · · = Wn = 0.

Proof Suppose that V1 = V2 = · · · = Vn = 0, and then according to the work of Zhang et
al. [17], we can uniquely determine G3(x, y), G4(x, y), · · · , G2n+2(x, y) such that

x
∂Gk

∂y
− y

∂Gk

∂x
= Ψk−1(P2, P3, Q2, Q3, G3, G4, · · · , Gk−1), 3 ≤ k ≤ 2n + 2,

where

Ψk−1 = 2(xPk−1 + yQk−1) +
k−1∑
s=3

(
Pk−s+1

∂Gs

∂x
+ Qk−s+1

∂Gs

∂y

)

and Pk−1 = Qk−1 = 0 when k ≥ 5.
For any positive integer m satisfying 1 ≤ m ≤ n, we set Hk(x, y) = Gk(x, y), 3 ≤ k ≤

2m + 2. From [16], it is known that the quantity Wm is determined by the equation

x
∂H2m+2

∂y
− y

∂H2m+2

∂x
+ Wmy2m+2

= Ψ2m+1(P2, P3, Q2, Q3, H3, H4, · · · , H2m+1), 1 ≤ m ≤ n,

and thus Wm = 0, 1 ≤ m ≤ n.
The converse direction can be proved in the same way. Suppose that W1 = W2 = · · · = Wn =

0, and then according to [16], we can uniquely determine H3(x, y), H4(x, y), · · · , H2n+2(x, y)
such that

x
∂Hk

∂y
− y

∂Hk

∂x
= Ψk−1(P2, P3, Q2, Q3, H3, H4, · · · , Hk−1), 3 ≤ k ≤ 2n + 2.

For any positive integer m satisfying 1 ≤ m ≤ n, we set Gk(x, y) = Hk(x, y), 3 ≤ k ≤
2m + 2. From [17], it is known that the quantity Vm is determined by the equation

x
∂G2m+2

∂y
− y

∂G2m+2

∂x
+ Vm(x2 + y2)(m+1)

= Ψ2m+1(P2, P3, Q2, Q3, G3, G4, · · · , G2m+1), 1 ≤ m ≤ n,

and thus Vm = 0, 1 ≤ m ≤ n.

Corollary 1.1 For system (1.2), the center varieties obtained from the polynomial ideals
〈Wk : k ≥ 1〉 and 〈Vk : k ≥ 1〉 are the same.

Proposition 1.2 The nth Liapunov constant of system (1.2) is given by the formula

Wn = (2n + 1)B2n+1,2n+1b2,2 + B2n,2n−1a3,3 + B2n+1,2na2,2 + B2n+2,2n+1, (1.5)

where B2,0 = B2,2 = 1 and B2,1 = 0.
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Proof Let

U(x, y) =
dH

dt

∣∣∣
(1.2)

=
∂H

∂x
(y + P2 + P3) +

∂H

∂y
(−x + Q2 + Q3).

Then the nth Liapunov constant of system (1.2) is

Wn =
1

(2n + 2)!
∂2n+2U

∂y2n+2
(0, 0).

So by the general Leibniz rule, we get the formula (1.5).
We remark that each Bi,j on the right hand side of (1.5) is a polynomial in the coefficients

of system (1.2), and can be uniquely determined by using the identity (1.4).
In the case a2,2 = a3,3 = b2,2 = b3,3 = 0, system (1.2) becomes

⎧⎪⎨
⎪⎩

dx

dt
= y + a2,0x

2 + a2,1xy + a3,0x
3 + a3,1x

2y + a3,2xy2,

dy

dt
= −x + b2,0x

2 + b2,1xy + b3,0x
3 + b3,1x

2y + b3,2xy2.

(1.6)

Applying Proposition 1.2 to system (1.6), we have the following corollary.

Corollary 1.2 The nth Liapunov constant of system (1.6) is given by the formula

Wn = B2n+2,2n+1. (1.7)

In Section 2, the computation of the nth Liapunov constants in the coefficients of cubic
system (1.6) is considered. In Section 3, the solutions to the center-focus problem and the
isochronous center problem for a particular case of system (1.6) are given.

2 The nth Liapunov Constant for System (1.6) and the Main Results

Let the time derivative of H along the orbits of system (1.6) be

dH

dt

∣∣∣
(1.6)

=
∞∑

j=3

( j∑
k=0

fj,kxj−kyk
)
, (2.1)

where fj,k are polynomials in the coefficients of system (1.6) and the function H(x, y) in (1.3).
As a consequence of Corollary 1.2, for each s we have

f2s+2,2s+2 = B2s+2,2s+1. (2.2)

Suppose that (1.6) has a weak focus of order n at the origin, and then the following conditions
hold: ⎧⎪⎨

⎪⎩
fj,k = 0, 0 ≤ k ≤ j, 3 ≤ j ≤ 2n + 1,

f2n+2,k = 0, 0 ≤ k ≤ 2n + 1,
B2n+2,2n+1 �= 0.

(2.3)

Inspired by the algorithm of Wang [16, 19] and the corresponding Maple procedure licon [20]
in Epsilon[miscel]package, we can represent the nth Liapunov constant Wn, that is, B2n+2,2n+1,
in the coefficients of system (1.6) by succesive pseudo-divisions.
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Let A = {A1, A2, · · · , Ar} be a polynomial set in the variables x1, x2, · · · , xn, for which
the main variable of Aj is xpj . The pseudo-remainder of a polynomial P (in the variables
x1, x2, · · · , xn) with respect to A is

prem(P,A,X ) =
{

0, if r = 1 and p1 = 0,
prem(· · · prem(P, Ar , xpr ), · · · , A1, xp1), otherwise,

where X ={xpr , xpr−1 , · · · , xp1} and prem(P, Ar , xpr ) denotes the pseudo-remainder of P mod-
ulo Ar with respect to the variable xpr .

Let

A2 n+2 = {f2n+2,2 n, f2n+2,2 n−2, · · · , f2n+2,0},
C2 k+1 = {f2 k+1,2 k, f2k+1,2 k−2, · · · , f2k+1,0, f2k+1,1, f2k+1,3, · · · , f2k+1,2k+1}, 1 ≤ k ≤ n,

C2 k = {f2k,1, f2k,3, · · · , f2k,2k−1, f2k,2k−4, f2k,2k−6, · · · , f2k,0}, 2 ≤ k ≤ n,

and

X2 n+2 = {B2n+2,2n+1, B2n+2,2n−1, · · · , B2n+1,1},
Y2 k+1 = {B2k+1,2k+1, B2k+1,2k−1, · · · , B2k+1,1, B2k+1,0, B2k+1,2, · · · , B2k+1,2k}, 1 ≤ k ≤ n,

Y2 k = {B2k,0, B2k,2, · · · , B2k,2k−2, B2k,2k−3, B2k,2k−5, · · · , B2k,1}, 2 ≤ k ≤ n.

Set the first (n − 1) Liapunov constants to be all zero, i.e., Wk = B2k+2,2k+1 = 0 for all
1 ≤ k ≤ n − 1 and let Vn = B2n+2,2n+1 + v, where v is a dummy variable, so then the nth
Liapunov constant can be obtained through a chain of pseudo-divisions:

S
(2n+2)
2n+2 : = prem(Vn,A2n+2,X2n+2),

S
(2n+1)
2n+2 : = prem(S(2n+2)

2n+2 , C2n+1,Y2n+1),

S
(2n)
2n+2 : = prem(S(2n+1)

2n+2 , C2n,Y2n),

S
(2n−1)
2n+2 : = prem(S(2n)

2n+2, C2n−1,Y2n−1),
...

S
(4)
2n+2 : = prem(S(5)

2n+2, C4,Y4),

S
(3)
2n+2 : = prem(S(4)

2n+2, C3,Y3),

Wn : = −v +
S

(3)
2n+2

coeff(S(3)
2n+2, v)

.

The last equation gives the nth Liapunov constant in the coefficients of system (1.6), where
coeff(S(3)

2n+2, v) stands for the coefficient of v in the polynomial S
(3)
2n+2.

Although the basic idea of the previous formulae and the ones implicit in the Maple proce-
dure licon (see [20]) are the same, there are two differences: First, our formulae are designed
just for system (1.6), while the Maple procedure licon is designed for the general polynomial
differential systems; secondly, we find that it takes 2n2 + 4n times of pseudo-divisions to com-
pute the nth order Liapunov constant by using our formulae, while in licon it takes 2n2 + 6n

times.
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Since the solution of the center-focus problem for system (1.6) is very difficult, we restrict
our attention to a special system:

⎧⎪⎨
⎪⎩

dx

dt
= y + c2,0x

2 + c3,0x
3,

dy

dt
= −x + d2,0x

2 + d2,1xy + d3,0x
3 + d3,1x

2y + d3,2xy2

(2.4)

with c3,0 �= 0.
If c3,0 > 0, then using the scaling: x → x

k , y → y
k , system (2.4) can be transformed into

⎧⎪⎨
⎪⎩

dx

dt
= y + a2,0x

2 + x3,

dy

dt
= −x + b2,0x

2 + b2,1xy + b3,0x
3 + b3,1x

2y + b3,2xy2,

(2.5)

in which

c2,0 = a2,0 k, c3,0 = k2, d2,0 = b2,0 k, (2.6)

d2,1 = b2,1 k, d3,0 = b3,0 k2, d3,1 = b3,1 k2, d3,2 = b3,2 k2. (2.7)

If c3,0 < 0, then using the scaling: x → x
k , y → y

k , system (2.4) can be transformed into

⎧⎪⎨
⎪⎩

dx

dt
= y + a2,0x

2 − x3,

dy

dt
= −x + b2,0x

2 + b2,1xy + b3,0x
3 + b3,1x

2y + b3,2xy2,

(2.8)

in which

c2,0 = a2,0 k, c3,0 = −k2, d2,0 = b2,0 k, (2.9)

d2,1 = b2,1 k, d3,0 = b3,0 k2, d3,1 = b3,1 k2, d3,2 = b3,2 k2. (2.10)

Considering the coefficient conditions (2.6)–(2.7) and (2.9)–(2.10), a discussion of (2.5) and
(2.8) in the next section gives the following results.

Theorem 2.1 For system (2.4) with c3,0 �= 0, the origin is a center if and only if one of
the following conditions holds:

(1) c2,0 = a2,0k, c3,0 = k2, d2,0 = b2,0k, d2,1 = −2a2,0k, d3,0 = b3,0k
2, d3,1 = −3k2,

d3,2 = 0;
(2) c2,0 = a2,0k, c3,0 = k2, d2,0 = 0, d2,1 = 3a2,0k, d3,0 = b3,0k

2, d3,1 = −3k2, d3,2 = 0;
(3) c2,0 = − 3k

2b2,0
, c3,0 = k2, d2,0 = b2,0k, d2,1 = − b3,1k

b2,0
, d3,0 = 0, d3,1 = b3,1k

2, d3,2 = 0;

(4) c2,0 = − (5+b2,0b2,1)k
2b2,0

, c3,0 = k2, d2,0 = b2,0k, d2,1 = b2,1k, d3,0 = − (6+5b2,0b2,1+b22,1b2,0
2)k2

2b2,0
2 ,

d3,1 = 2k2, d3,2 = 0;
(5) c2,0 = − (6+b2,0b2,1)k

2b2,0
, c3,0 = k2, d2,0 = b2,0k, d2,1 = b2,1k, d3,0 = 0, d3,1 = 3k2,

d3,2 = 3(3+b2,0b2,1)k2

b2,0
2 ;

(6) c2,0 = a2,0k, c3,0 = −k2, d2,0 = b2,0k, d2,1 = −2a2,0k, d3,0 = b3,0k
2, d3,1 = 3k2,

d3,2 = 0;
(7) c2,0 = a2,0k, c3,0 = −k2, d2,0 = 0, d2,1 = 3a2,0k, d3,0 = b3,0k

2, d3,1 = 3k2, d3,2 = 0;
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(8) c2,0 = 3k
2b2,0

, c3,0 = −k2, d2,0 = b2,0k, d2,1 = − b3,1k
b2,0

, d3,0 = 0, d3,1 = b3,1k
2, d3,2 = 0;

(9) c2,0 = − (−6+b2,0b2,1)k
2b2,0

, c3,0 = −k2, d2,0 = b2,0k, d2,1 = b2,1k, d3,0 = 0, d3,1 = −3k2,

d3,2 = − 3(−3+b2,0b2,1)k2

b2,0
2 ;

(10) c2,0 = − (−5+b2,0b2,1)k
2b2,0

, c3,0 = −k2, d2,0 = b2,0k, d2,1 = b2,1k,

d3,0 = − (6−5b2,0b2,1+b22,1b2,0
2)k2

2b2,0
2 , d3,1 = −2k2, d3,2 = 0,

where k is a non-zero real parameter.

Theorem 2.2 System (2.4) with c3,0 �= 0 cannot have an isochronous center at the origin.

3 Proof of Main Results

According to the recursive formulae in Section 2, we obtain the first seven Liapunov con-
stants of system (2.5):

W1 =
2
3

b3,1 + 2 +
2
3

b2,0b2,1 +
4
3

a2,0b2,0,

W2 = −6
5

b3,2 − 2 b3,0 +
4
15

b2,1b3,1a2,0 +
6
5

a2,0b2,1 − 2
5

b2
2,1 −

4
5

b3,1a
2
2,0

− 4
3

b3,2a2,0b2,0 +
2
15

(−b3,2 − 5 b3,0)b3,1,

W3 = −12
5

+
4
15

a2,0b
2
3,1b2,0 +

118
525

b3,2b3,1a
2
2,0 +

2
15

b3,2b3,1b
2
2,0 +

2
15

b3,2b3,1b3,0

+
46
175

b3,2a2,0b2,1 − 46
525

b3,2b2,1b3,1a2,0 +
4
15

b3,1a2,0b2,0 +
6
5

b3,0b3,2 − 2
525

b2
3,2b3,1

+
8

175
b3,2b

2
2,1 −

6
7

b3,2a
2
2,0 −

2
15

b3,2b
2
2,0 −

8
5

a2,0b2,0 +
2
5

b2
3,1

+
34
175

b2
3,2 +

2
5

b3,1,

W4 =
3124
2625

b2,1b3,1a2,0 +
25454
23625

b2
3,1b2,1a2,0 − 3784

23625
b2,1b

3
3,1a2,0 − 136

4725
b2
3,2b3,1b3,0

− 21913
18375

b2
3,2a2,0b2,1 − 44

45
b3,2b3,1a

4
2,0 −

22
135

b3,2b3,1b
2
3,0 +

1012
525

b3,2a
3
2,0b2,1

+
55
21

b3,2a
2
2,0b

2
2,1 −

253
525

b3,2b
3
2,1a2,0 +

35282
18375

b2
3,2b3,1a

2
2,0 −

88
1575

b3,0b3,2b
2
2,1

+
6644
1575

b3,0b3,2a
2
2,0 −

9658
875

a2,0b2,1 +
19316
2625

b3,1a
2
2,0 −

528
875

b2
3,1a

2
2,0 −

2332
2625

b3
3,1a

2
2,0

+
1892
7875

b2
3,1b

2
3,1 +

1892
23625

b3,2b
3
3,1 +

166
55125

b3
3,2b3,1 − 592

55125
b2
3,2b

2
2,1

+
52466
11025

b2
3,2a

2
2,0 −

44
189

b2
3,2b

2
2,0 −

264
35

b3,2a
4
2,0 +

6364
7875

b3,2b
2
3,1 −

22
15

b2
3,0b3,2

+
1276
945

b3,0b
2
3,1 −

1208
1575

b3,0b
2
3,2 +

374
525

b3,1b3,0 +
404
1575

b3,2b3,1 +
3014
7875

b3,1b
2
2,1

+
1892
4725

b3
3,1b3,0 − 253

675
b3,0b3,2b2,1b3,1a2,0 − 13507

55125
b2
3,2b2,1b3,1a2,0

− 352
225

b3,0b3,2b3,1a
2
2,0 +

4301
1575

b3,0b3,2a2,0b2,1 − 2866
55125

b3
3,2 −

96
125

b3,2

+
418
525

b3,0 − 374
875

b2
2,1,
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and W5, W6, W7 have 66, 105, 64 terms, respectively. We would not present them here due
to their lengthy expressions, but one can easily calculate them by using our formulae with the
Maple computer algebra system.

Let J = 〈W1, W2, · · ·〉, and then the ideal J is called the Bautin ideal of system (2.5). And
let Jk = 〈W1, W2, · · · , Wk〉 be the polynomial ideal generated by W1, W2, · · · , Wk. The affine
variety V (J ) is called the center variety for the singular point at the origin of system (2.5).
Computing a Gröbner basis G of the ideal J7 with respect to the graded reverse lexicographical
order with

b2,0 
 b3,0 
 b2,1 
 a2,0 
 b3,1 
 b3,2,

we obtain a list of polynomials:

J1 = b3,2b3,1 − 3 b3,2,

J2 = b3,0b3,2,

J3 = b3,1 + 3 + b2,0b2,1 + 2 a2,0b2,0,

J4 = 2 b2,0b
2
3,2 − 3 b2,1b3,2 + 6 b3,2a2,0,

J5 = b3,2b
2
2,1 − 4 b3,2a

2
2,0 + 4 b2

3,2,

J6 = b3,0b
2
3,1 + b3,1b3,0 − 6 b3,0,

J7 = 2 b2,1b3,1a2,0 − 6 b3,1a
2
2,0 − 10 b3,2a2,0b2,0 − 3 b2

2,1 + 9 a2,0b2,1

− 5 b3,1b3,0 − 15 b3,0 − 12 b3,2,

J8 = 2 a2,0b
3
3,1 − 3 b2,1b

2
3,1 + 2 a2,0b

2
3,1 − 3 b2,1b3,1 − 12 a2,0b3,1 + 12 b2,0b3,2 + 18 b2,1,

J9 = 2 a2,0b
2
3,1b2,0 − 18 + 2 b3,1a2,0b2,0 + 2 b3,2b

2
2,0 − 12 a2,0b2,0 + 3 b2

3,1 + 3 b3,1,

J10 = 10 b2,0a
2
2,0b3,1 + 10 b2

2,0a2,0b3,2 + 30 b2,0a
2
2,0 + 5 b2,0b3,0b3,1 + 2 a2,0b

2
3,1 + 15 b2,0b3,0

− 3 b2,1b3,1 + 21 a2,0b3,1 + 12 b2,0b3,2 − 9 b2,1 + 45 a2,0,

J11 = 2 b3,0b3,1b
2
2,1 − 18 b3,0b3,1a

2
2,0 − 7 b3,0b

2
2,1 + 13 b3,0a2,0b2,1 + 24 b3,0a

2
2,0 − 5 b3,1b

2
3,0

− 15 b2
3,0,

J12 = 3 b3,0b
3
2,1 − 7 b3,0b

2
2,1a2,0 − 14 b3,0b2,1a

2
2,0 + 24 b3,0a

3
2,0 + 5 b2

3,0b2,1b3,1

+ 10 b2
3,0a2,0b3,1 + 15 b2

3,0b2,1 + 30 b2
3,0a2,0.

Before proving the main results, we start with four lemmas.

Lemma 3.1 The center variety of system (2.5) is the variety of the ideal J7 generated by
the first seven Liapunov constants, and is composed of the following five components:

(1) V1 = V (I1), where I1 = 〈b3,2, b2,1 + 2a2,0, b3,1 + 3〉;
(2) V2 = V (I2), where I2 = 〈b2,0, b3,2, 3a2,0 − b2,1, b3,1 + 3〉;
(3) V3 = V (I3), where I3 = 〈2a2,0b2,0 + 3, b3,0, b3,2, 2a2,0b3,1 − 3b2,1〉;
(4) V4 = V (I4), where

I4 = 〈5 + b2,0b2,1 + 2a2,0b2,0, 12a2
2,0 − 13a2,0b2,1 + 3b2

2,1 + 25b3,0, b3,2, b3,1 − 2〉;
(5) V5 = V (I5), where I5 = 〈6 + b2,0b2,1 + 2a2,0b2,0, b3,0,−b2

2,1 + 4a2
2,0 − 4b3,2, b3,1 − 3〉.

Proof Using the radical ideal membership test, we can verify that

W2 /∈
√
〈W1〉, W3 /∈

√
〈W1, W2〉, · · · , W7 /∈

√
〈W1, W2, · · · , W6〉,
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W8 ∈
√
〈W1, W2, · · · , W7〉.

Thus we expect that V (J ) = V (J7). To verify it, first we find that

V (J7) = V (G) =
5⋃

k=1

V (Ik),

and then prove that every system from Vj , 1 ≤ j ≤ 5 has a center at the origin.
Any system from the component V1 has the form

⎧⎪⎨
⎪⎩

dx

dt
= y + a2,0x

2 + x3,

dy

dt
= −x + b2,0x

2 − 2 a2,0xy + b3,0x
3 − 3 x2y.

(3.1)

Since (3.1) is a Hamiltonian system, it has a center at the origin.
Any system from the component V2 has the form

⎧⎪⎨
⎪⎩

dx

dt
= y + a2,0x

2 + x3,

dy

dt
= −x + 3 a2,0xy + b3,0x

3 − 3 x2y.

(3.2)

By the transformation
X = x, Y = y + a2,0x

2 + x3,

system (3.2) becomes a time reversible system, and hence it has a center at the origin.
Any system from the component V3 has the form

⎧⎪⎪⎨
⎪⎪⎩

dx

dt
= y − 3

2b2,0
x2 + x3,

dy

dt
= −x + b2,0x

2 − b3,1

b2,0
xy + b3,1x

2y,

(3.3)

which admits an integrating factor

μ(x, y) =
b2,0

(−2 b2
2,0 − 6 b2,0y + (−3 b3,1 + 9)x2 + (2 b3,1b2,0 − 6 b2,0)x3)(b2,0 + b3,1y)

,

so it has a center at the origin.
Any system from the component V4 has the form

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dx

dt
= y − (b2,0b2,1 + 5)

2b2,0
x2 + x3,

dy

dt
= −x + b2,0x

2 + b2,1xy − (b2
2,0b2,1

2 + 5 b2,0b2,1 + 6)

2b2,0
2 x3 + 2 x2y,

(3.4)

which admits an integrating factor

μ(x, y) =
(1

2
b2,0 + y − (b2,0b2,1 + 2)

2b2,0
x2

)− 5
2
,

so it has a center at the origin.
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Any system from the component V5 has the form

⎧⎪⎪⎨
⎪⎪⎩

dx

dt
= y − (b2,0b2,1 + 6)

2b2,0
x2 + x3,

dy

dt
= −x + b2,0x

2 + b2,1xy + 3 x2y +
3(b2,0b2,1 + 3)

b2
2,0

xy2,
(3.5)

which admits an integrating factor

μ(x, y) =
9

(b2,0 + 3y)2
,

and hence it has a center at the origin.

With the same principle, we have the following result about system (2.8).

Lemma 3.2 The center variety of system (2.8) is the variety of the ideal K7 generated by
the first seven Liapunov constants, and is composed of the following five components:

(1) V1 = V (I1), where I1 = 〈b3,2, b2,1 + 2a2,0, b3,1 − 3〉;
(2) V2 = V (I2), where I2 = 〈b2,0, b3,2, 3a2,0 − b2,1, b3,1 − 3〉;
(3) V3 = V (I3), where I3 = 〈2a2,0b2,0 − 3, b3,0, b3,2, 2b3,1a2,0 + 3b2,1〉;
(4) V4 = V (I4), where I4 = 〈−6 + b2,0b2,1 + 2a2,0b2,0, b3,0,−b2

2,1 + 4a2
2,0 − 4b3,2, b3,1 + 3〉;

(5) V5 = V (I5), where

I5 = 〈−5 + b2,0b2,1 + 2a2,0b2,0, 12a2
2,0 − 13a2,0b2,1 + 3b2

2,1 + 25b3,0, b3,2, b3,1 + 2〉.

Lemma 3.3 System (2.5) cannot have an isochronous center at the origin.

Proof Using the general algorithm in paper [9], we obtain the first two isochronous
constants p2, p4 for system (2.5):

p2 =
1
12

π (−5 a2,0b2,1 + 4 a2
2,0 + 10 b2

2,0 + b2
2,1 + 9 b3,0 + 3 b3,2),

p4 = − 1
1152

π (−243 − 15 b2
2,1a

2
2,0 + 14 b3

2,1a2,0 − 259 b2
2,1b

2
2,0 − 304 b2,1a

3
2,0

+ 164 a2
2,0b

2
2,0 + 480 a2

2,0b3,0 − 144 a2
2,0b3,2 − 1980 b2

2,0b3,0 − 84 b2
2,0b3,2 − 42 b2

2,1b3,0

− 6 b2
2,1b3,2 + 738 b2,1b2,0 − 90 b3,0b3,2 − 1836 a2,0b2,0 + 342 b3,1 + b4

2,1 + 304 a4
2,0

− 140 b4
2,0 − 99 b2

3,1 − 459 b2
3,0 − 27 b2

3,2 − 498 b2,1b2,0b3,1 + 426 b2,1a2,0b3,0

+ 150 b2,1a2,0b3,2 + 824 b2,1a2,0b
2
2,0 + 1260 a2,0b2,0b3,1).

The simultaneous vanishing of polynomials in G ∪ {p2, p4} gives rise to only one case

a2,0 =
−81 + 56 b4

2,0

378 b2,0
, b2,1 = − (−81 + 56 b4

2,0)
189 b2,0

,

b3,0 = − 1
71442

(6561 + 70308 b4
2,0 + 3136 b8

2,0)
b2
2,0

, b3,1 = −3, b3,2 = 0,
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where G is the Gröbner basis of J7. For this case, (2.5) has the form
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dx

dt
= y +

1
378

(−81 + 56 b4
2,0)

b2,0
x2 + x3,

dy

dt
= −x + b2,0x

2 − 1
189

(−81 + 56 b4
2,0)

b2,0
xy

− 1
71442

(6561 + 70308 b4
2,0 + 3136 b8

2,0)
b2
2,0

x3 − 3 x2y.

(3.6)

Again using the general algorithm in paper [9], we get the third-order isochronous constant of
system (3.6):

p6 =
5(19683 + 140616 b4

2,0 + 18032 b8
2,0)

108864 b2
2,0

π,

which is positive for all real b2,0, and hence system (2.5) cannot have an isochronous center at
the origin.

By the same method as in the proof of Lemma 3.3, we get the next lemma.

Lemma 3.4 System (2.8) cannot have an isochronous center at the origin.

Proof of Theorem 2.1 By Lemmas 3.1–3.2 and the coefficient conditions (2.6)–(2.7)
and (2.9)–(2.10), we conclude that Theorem 2.1 holds.

Proof of Theorem 2.2 By Lemmas 3.3–3.4 and the coefficient conditions (2.6)–(2.7)
and (2.9)–(2.10), we conclude that Theorem 2.2 holds.
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188, 2007, 1870–1877.

[19] Wang D. M., Elimination Practice: Software Tools and Applications, Imperial College Press, London,
2004.

[20] Wang D. M., Epsilon functions. http://www-calfor.lip6.fr/ wang/epsilon.pdf


