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Abstract In this paper, the authors construct a class of unitary invariant strongly
pseudoconvex complex Finsler metrics which are of the form F =

√
rf(s − t), where

r = ‖v‖2, s = |〈z,v〉|2
r

, t = ‖z‖2, f(w) is a real-valued smooth positive function of w ∈ R,
and z is in a unitary invariant domain M ⊂ C

n. Complex Finsler metrics of this form are
unitary invariant. We prove that F is a class of weakly complex Berwald metrics whose
holomorphic curvature and Ricci scalar curvature vanish identically and are independent
of the choice of the function f . Under initial value conditions on f and its derivative f ′, we
prove that all the real geodesics of F =

√
rf(s − t) on every Euclidean sphere S2n−1 ⊂ M

are great circles.
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1 Introduction and Main Results

As is well known, complex Finsler metrics have become a very useful tool in geometric
function theory of holomorphic mappings (see [2]). Two most important such metrics are the
Carathéodory and Kobayashi metrics, which share in higher dimensions the properties of the
Poincaré metric in the unit disc in C. In general, however, these two metrics do not have enough
smoothness to allow a differential geometric study. In [8], Lempert proved a fundamental
result which states that in smoothly bounded strictly convex domains in Cn the Kobayashi
and Carathéodory metrics agree, and are strongly pseudoconvex complex Finsler metrics in
the sense of Abate and Patrizio (see [2]). This fundamental result motivated several authors to
investigate the Kobayashi metrics in strictly convex domains from a differential geometric point
of view (see [2, 11]). Even in strictly convex domains, however, we do not have the explicit
formulae of the Kobayashi and Carathéodory metrics. As was pointed out in [1], “the lack of
consideration of explicit examples made the choice of the ‘right’ notions in the complex setting
difficult and sometimes rather artificial · · · , the lack of examples raised the doubt that perhaps
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metrics satisfying such strong conditions occur very infrequently.” So we need more explicit
examples of complex Finsler metrics.

In the study of differential geometry of complex Finsler metrics, an important class of
complex Finsler metrics comes from complex Berwald metrics, which includes Hermitian metrics
and complex Minkowski metrics (see [3]). There are also lots of complex Berwald metrics which
are neither Hermitian metrics nor complex Minkowski metrics (see [4]).

Let 〈·, ·〉 be the canonical complex Euclidean inner product in Cn, and ‖ · ‖ be the norm

induced by 〈·, ·〉, that is, for z = (z1, · · · , zn), v = (v1, · · · , vn) ∈ Cn, 〈z, v〉 =
n∑

i=1

zivi, ‖z‖ =√〈z, z〉, where in the following, bars and overlines denote conjugations of complex numbers.
In [14], the author introduced the notion of weakly complex Berwald metrics and proved

that the complex Wrona metric (see [6, 14] for more details)

F (z, v) =
‖v‖2√‖z‖2‖v‖2 − |〈z, v〉|2 , (z, v) ∈ Ω (1.1)

in Cn is a weakly complex Berwald metric, but not a complex Berwald metric. It was proved
in [13] that the conformal change of a weakly complex Berwald metric is also a weakly complex
Berwald metric. More precisely, if σ(z) : M → R is a real smooth function on M and F :
T 1,0M → [0, +∞) is a weakly complex Berwald metric in the sense of [14], then F̃ = eσ(z)F is
called a conformal change of F , and F̃ is still a weakly complex Berwald metric.

Note that the complex Wrona metric (1.1) is only smooth on a subset Ω of the slit holo-
morphic tangent bundle T 1,0Cn − {zero section} of the holomorphic tangent bundle T 1,0Cn ∼=
Cn × Cn of Cn. More precisely (see [14]),

Ω = {(z, v) ∈ C
n × C

n : z 	= λv, λ ∈ C} ⊂ T 1,0
C

n − {zero section} ⊂ T 1,0
C

n.

Our purpose in this paper is to construct a class of weakly complex Berwald metrics which
are smooth on the whole slit holomorphic tangent bundle T 1,0M -{zero section} for a unitary
invariant domain M ⊂ Cn. More precisely, we shall introduce a class of unitary invariant
complex Finsler metrics of the form

F =
√

rf(s − t), (1.2)

where r =: ‖v‖2, s =: |〈z,v〉|2
r , t =: ‖z‖2, f(w) is a smooth positive function of w ∈ R, and z is

in a domain M ⊂ Cn, which is unitary invariant. Note that by Cauchy-Schwarz inequality we
always have s ≤ t.

Our consideration of complex Finsler metrics of the form (1.2) is based on the following
observation: The complex Wrona metric (1.1) can be rewritten as

F (z, v) =

√
‖v‖4

‖z‖2‖v‖2 − |〈z, v〉|2 =
√

rg(s − t), (1.3)

where
g(s − t) = − 1

s − t

is only smooth on the subset

{(t, s) ∈ (0, +∞) × [0, +∞) : s < t} ⊂ {(t, s) ∈ [0, +∞) × [0, +∞) : s ≤ t},
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while the later is equivalent to the whole slit holomorphic tangent bundle T 1,0Cn-{zero section}.
Thus in order to construct a weakly complex Berwald metric which is smooth on the whole slit
holomorphic tangent bundle T 1,0M -{zero section} for some domain M ⊂ Cn, it is natural to
consider the class of complex Finsler metrics of the form (1.2), which is obtained by replacing
the function g(s − t) = − 1

s−t with smooth positive functions f(s − t) defined on the whole set
{(t, s) ∈ [0, +∞) × [0, +∞) : s ≤ t}.

We shall prove that whenever F =
√

rf(s − t) is a strongly pseudoconvex complex Finsler
metric, F =

√
rf(s − t) is necessarily a weakly complex Berwald metric with vanishing holo-

morphic curvature and Ricci scalar curvature, which are independent of the concrete choice of
the function f . We also prove that there are lots of functions f such that F =

√
rf(s − t) is

strongly pseudoconvex complex Finsler metrics (see Proposition 3.2 and Corollary 3.1). Under
some initial-value conditions on f and its derivative f ′, we prove a surprising result, that is,
the real geodesics of the weakly complex Berwald metric F =

√
rf(s − t) on every Euclidean

sphere S2n−1 ⊂ M are great circles.
Our main results are as follows (see Theorems 4.1–4.3).

Theorem 1.1 Let F =
√

rf(s − t) be a strongly pseudoconvex complex Finsler metric
on a unitary invariant domain M ⊂ Cn. Then F is a weakly complex Berwald metric with
vanishing holomorphic curvature and Ricci scalar curvature, i.e.,

K̆F (z, v) ≡ 0, R̆icF (z, v) ≡ 0 (1.4)

for any f .

Theorem 1.2 Let F =
√

rf(s − t) be a function defined on the slit holomorphic tangent
bundle T 1,0M -{zero section} of a unitary invariant domain M ⊂ Cn. Then F is a complex
Berwald metric if and only if

f(s − t) = a(s − t) + b (1.5)

for constants a, b ∈ R satisfying b > 0 and b − at > 0.

Theorem 1.3 Let F =
√

rf(s − t) be a strongly pseudoconvex complex Finsler metric
on a unitary invariant domain M ⊂ Cn such that the Euclidean sphere S2n−1(R) ⊂ M , and
let σ(τ) = (σ1(τ), · · · , σn(τ)) be a real geodesic of F . Then σ satisfies the following system of
equations:

σ̈α =
1
c0

[
G;α − 1

k
(s − t)f ′(〈σ, σ̇〉, ‖σ̇‖2)Y

(
sα

t;α

)]
, α = 1, · · · , n, (1.6)

where c0 and k are given by (3.5), the 2 × 2 matrix Y is given by (3.6), and G;α,sα, t;α are
given by (2.1).

If moreover, f(w) satisfies f(−R2) = 1, and f ′(−R2) = 1
R2 , then for any given points p, q ∈

S2n−1(R) with 〈p, q〉 = 0, there exists a unique closed geodesic

σ(τ) =
1
2
[(p −√−1q)e

√−1τ + (p +
√−1q)e−

√−1τ ], τ ∈ R, (1.7)

on S2n−1(R) such that σ(0) = p, σ̇(0) = q and σ, σ̇ ∈ S2n−1(R) with 〈σ, σ̇〉 = 0; furthermore,
the arc length L(σ) of σ satisfies

L(σ) = 2πR. (1.8)
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2 Preliminaries

In this section, we shall recall some necessary notations and definitions, which can be found
in [2].

Let M be a complex manifold of complex dimension n. Let z = (z1, · · · , zn) be a local
coordinate system in M , and v = (v1, · · · , vn) be the local fibre coordinate system defined by the
local holomorphic frame field

{
∂

∂z1 , · · · , ∂
∂zn

}
on the holomorphic tangent bundle T 1,0M of M .

Then (z, v) = (z1, · · · , zn, v1, · · · , vn) is a local coordinate system for T 1,0M . In the following
we denote by M̃ the complement of the zero section in T 1,0M , i.e., M̃ = T 1,0M -{zero section}.

Definition 2.1 (see [2]) A complex Finsler metric on a complex manifold M is a continuous
function F : T 1,0M → [0, +∞) satisfying

(i) G = F 2 is smooth on M̃ ;
(ii) F (z, v) > 0 for all (z, v) ∈ M̃ ;
(iii) F (z, λv) = |λ|F (z, v) for all (z, v) ∈ T 1,0M and λ ∈ C.

Definition 2.2 (see [2]) A complex Finsler metric F is called strongly pseudoconvex if the
Levi matrix (Gαβ) =

(
∂2G

∂vα∂vβ

)
is positive definite on M̃ .

Denote by U(n) the set of all n × n unitary matrices over the complex number field C.

Definition 2.3 A complex Finsler metric F on a domain M ⊂ Cn is called unitary
invariant, if locally F (zA, vA) = F (z, v) for every z ∈ M, v ∈ T 1,0

z M and A ∈ U(n).

Note that if F is a unitary invariant complex Finsler metric on M , then locally M is
necessarily unitary invariant in the sense that Az ∈ M whenever z ∈ M and A ∈ U(n).

Let (Gβγ) be the inverse matrix of (Gαβ). In the following, for functions G, r, t and s defined

on M̃ , we denote by indexes like α, β and so on the derivatives with respect to the v-coordinates;
the derivative with respect to the z-coordinates will be indexed after a semicolon; for instance,

Gαβ = ∂̇β ∂̇αG, Gα;μ = ∂μ∂̇αG, G;α = ∂αG, sα = ∂̇αs, sβ;μ = ∂μ∂̇βs, t;α = ∂αt, (2.1)

where we set
∂α =

∂

∂zα
, ∂α =

∂

∂zα
, ∂̇α =

∂

∂vα
, ∂̇α =

∂

∂vα
.

In this paper, we also denote the first and second orders of the derivatives of f(w) by f ′ and
f ′′, respectively.

It is easy to check that

rα = vα, rα = vα, r;α = r;α = 0, (2.2)

t;α = zα, t;α = zα, tα = tα = 0, (2.3)

sα =
1
r
[〈z, v〉t;α − srα], sα =

1
r
[〈z, v〉t;α − srα], (2.4)

s;α =
1
r
〈z, v〉rα, s;α =

1
r
〈z, v〉rα, (2.5)

sαβ =
1
r
[t;αt;β − (sαrβ + sβrα) − sδαβ ], (2.6)

sβ;μ =
1
r
[〈z, v〉δβμ − s;μrβ ], (2.7)

n∑
α=1

sαsα =
1
r
s(t − s), sαzα =

1
r
(t − s)〈z, v〉, sαzα =

1
r
(t − s)〈z, v〉 (2.8)
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and

sαvα = sαvα = 0, s;αzα = s;αzα = s, t;αzα = t;αzα = t. (2.9)

In complex Finsler geometry, there are several well-known complex Finsler connections, for
example, the Chern-Finsler connection (see [2]), the complex Rund connection (see [12]) and the
complex Berwald connection (see [10]). These connections are suitable for considering different
problems in complex Finsler geometry. As we know, given a real Finsler metric F , there is only
one nonlinear connection associated to F (see [9]). Given a strongly pseudoconvex complex
Finsler metric F , there are two complex nonlinear connections associated to F : The Chern-
Finsler nonlinear connection (see [2]) and the complex Berwald nonlinear connection which
is also called the Cartan complex nonlinear connection in [10]. Their corresponding complex
nonlinear connection coefficients are denoted by Γ γ

;μ and G
γ
μ, respectively.

Let F be a strongly pseudoconvex complex Finsler metric. Then (see [2, 10])

Γ γ
;μ = GβγGβ;μ, G

γ
μ = ∂̇μ(Gγ), (2.10)

where Gγ = 1
2Γ γ

;μvμ and these coefficients satisfy

Γ γ
;μ(z, λv) = λΓ γ

;μ(z, v), G
γ
μ(z, λv) = λG

γ
μ(z, v), G

γ(z, λv) = λ2
G

γ(z, v) (2.11)

for every nonzero complex number λ ∈ C. Differentiating Γ γ
;μ and Gγ

μ respectively with respect
to vν , we get the horizontal Chern-Finsler connection coefficients Γ γ

ν;μ and the complex Berwald
connection coefficients Gγ

νμ, respectively, that is,

Γ γ
ν;μ = ∂̇ν(Γ γ

;μ), G
γ
νμ = ∂̇ν(Gγ

μ). (2.12)

As we know (see [2, 10]),

Γ γ
;μ = Γ γ

ν;μvν , G
γ
μ = G

γ
νμvν . (2.13)

Therefore, if Γ γ
ν;μ or G

γ
νμ are independent of fibre coordinates v, then G

γ are quadratic with
respect to the fibre coordinates v = (v1, · · · , vn). It is clear that Gγ

νμ = Gγ
μν in general.

However, Γ γ
ν;μ 	= Γ γ

μ;ν . In [2], F is called a Kähler Finsler metric if (Γ γ
μ;ν − Γ γ

ν;μ)vμ = 0, which
is equivalent to the condition Γ γ

μ;ν − Γ γ
ν;μ = 0 because of Chen-Shen’s observation (see [5]).

In [3], F is called a complex Berwald metric if Γ γ
ν;μ are independent of the fibre coordinates

v = (v1, · · · , vn). In [14], F is called a weakly complex Berwald metric if Gγ
νμ are independent

of the fibre coordinates v = (v1, · · · , vn). Since

G
γ
νμ =

1
2
[Γ γ

ν;μ + Γ γ
μ;ν + ∂̇ν(Γ γ

μ;ε)v
ε],

it follows that a complex Berwald metric is necessarily a weakly complex Berwald metric, while
the converse is not true (see [14]).

3 Fundamental Tensor and Nonlinear Connection

In this section, we shall derive the fundamental tensor Gαβ , the Chern-Finsler nonlinear
connection coefficients Γ γ

;μ and the complex Berwald nonlinear connection coefficients Gγ
μ that

are associated to a strongly pseudoconvex complex Finsler metric F =
√

rf(s − t), respectively.
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Put

B =

⎛⎜⎝ s1 t;1
...

...
sn t;n

⎞⎟⎠ , B∗ =
(

s1 · · · sn

t;1 · · · t;n

)
. (3.1)

Then by (2.8) we have

B∗B =

⎛⎜⎜⎝
1
r
s(t − s)

1
r
(t − s)〈z, v〉

1
r
(t − s)〈z, v〉 t

⎞⎟⎟⎠. (3.2)

Proposition 3.1 Suppose that F =
√

rf(s − t) is a strongly pseudoconvex complex Finsler
metric on a domain M ⊂ Cn. Then the fundamental tensor matrix H = (Gαβ) associated to
F and its inverse H−1 are given respectively by

H = c0In + BXB∗, (3.3)

H−1 =
1
c0

(
In − 1

k
BY B∗

)
, (3.4)

where

c0 = f − sf ′, k = c0(c0 + tf ′) + s(t − s)ff ′′, (3.5)

X =
(

rf ′′ 0
0 f ′

)
, Y =

(
r(c0 + tf ′)f ′′ −〈z, v〉(t − s)f ′f ′′

−〈z, v〉(t − s)f ′f ′′ c0f
′ + s(t − s)f ′f ′′

)
. (3.6)

Proof Differentiating G = rf(s − t) with respect to vα and vβ successively, we get

Gα = rαf + rf ′sα,

Gαβ = fδαβ + f ′rαsβ + f ′sαrβ + rf ′′sαsβ + rf ′sαβ . (3.7)

Substituting (2.6) into (3.7), we have

Gαβ = (f − sf ′)δαβ + rf ′′sαsβ + f ′t;αt;β .

Putting c0 and X as in the first equalities of (3.5)–(3.6), respectively, we obtain

Gαβ = c0δαβ + (sα, t;α)X
(

sβ

t;β

)
,

and (3.3) follows. Note that the fundamental matrix H is a nonsingular matrix since F is
strongly pseudoconvex, so by the formula of the inverse of a small-rank adjustment (see [7] p.
19), we can safely suppose that

H−1 =
1
c0

In − BZB∗ (3.8)

for some 2 × 2 matrix Z to be determined. Then

In = H−1H

=
( 1

c0
In − BZB∗

)
(c0In + BXB∗)

= In − B
(
ZB∗BX + c0Z − 1

c0
X
)
B∗.
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Thus in order to determine the 2 × 2-matrix Z, it suffices to take

ZB∗BX + c0Z − 1
c0

X = 0,

or equivalently

Z =
1
c0

X(B∗BX + c0I2)−1, (3.9)

where (B∗BX + c0I2)−1 denotes the inverse matrix of the 2 × 2-matrix B∗BX + c0I2. Note
that by (3.2) and (3.6), we have

B∗BX + c0I2 =

⎛⎜⎜⎝
1
r
s(t − s)

1
r
(t − s)〈z, v〉

1
r
(t − s)〈z, v〉 t

⎞⎟⎟⎠( rf ′′ 0
0 f ′

)
+
(

c0 0
0 c0

)

=

(
s(t − s)f ′′ + c0

1
r
(t − s)〈z, v〉f ′

(t − s)〈z, v〉f ′′ tf ′ + c0

)
.

Thus

[s(t − s)f ′′ + c0] · (tf ′ + c0) − [(t − s)〈z, v〉f ′′] ·
[1
r
(t − s)〈z, v〉f ′

]
= st(t − s)f ′f ′′ + c0s(t − s)f ′′ + c0tf

′ + c2
0 − s(t − s)2f ′f ′′

= s2(t − s)f ′f ′′ + (f − sf ′)s(t − s)f ′′ + c0tf
′ + c2

0

= s2(t − s)f ′f ′′ + s(t − s)ff ′′ − s2(t − s)f ′f ′′ + c0tf
′ + c2

0

= k,

where k is given by the second equality of (3.5). So

(B∗BX + c0I2)−1 =
1
k

(
tf ′ + c0 −1

r
(t − s)〈z, v〉f ′

−(t − s)〈z, v〉f ′′ s(t − s)f ′′ + c0

)
.

Consequently,

Z =
1
c0

X(B∗BX + c0I2)−1

=
1

c0k

(
rf ′′ 0
0 f ′

)(
tf ′ + c0 −1

r
(t − s)〈z, v〉f ′

−(t − s)〈z, v〉f ′′ s(t − s)f ′′ + c0

)

=
1

c0k

(
r(tf ′ + c0)f ′′ −(t − s)〈z, v〉f ′f ′′

−(t − s)〈z, v〉f ′f ′′ [s(t − s)f ′′ + c0]f ′

)
.

Thus

Z =
1

c0k
Y, (3.10)

where Y is given by the second equality of (3.6). Substituting (3.10) into (3.8), we get (3.4).
Denote by Mn×m(C) the set of all n × m matrices over the complex number field C.
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Lemma 3.1 Let C ∈ Mn×m(C), D ∈ Mm×n(C) and λ ∈ C. Then

λm|λIn − CD| = λn|λIm − DC|. (3.11)

Proof Consider the following blocked matrices:

A :=
(

λIn C
λD λIm

)
, P :=

(
In 0
−D Im

)
. (3.12)

Using the blocked elementary matrix P acting on A from the right-hand side and the left-hand
side, respectively, we get(

λIn C
λD λIm

)(
In 0
−D Im

)
=
(

λIn − CD C
0 λIm

)
(3.13)

and (
In 0
−D Im

)(
λIn C
λD λIm

)
=
(

λIn C
0 λIm − DC

)
. (3.14)

Taking determinants in both sides of (3.13)–(3.14) yields (3.11).

Proposition 3.2 F =
√

rf(s − t) is a strongly pseudoconvex complex Finsler metric on
a domain M ⊂ Cn (n ≥ 3) if and only if

f − sf ′ > 0, (3.15)

c0(c0 + tf ′) + s(t − s)ff ′′ > 0 (3.16)

for every nonzero vector v ∈ T 1,0
z M and z ∈ M .

Proof By Proposition 3.1, H = c0In + BXB∗. Using (3.2), we have

B∗BX =

(
s(t − s)f ′′ 1

r
(t − s)f ′〈z, v〉

〈z, v〉(t − s)f ′′ tf ′

)
.

By Lemma 3.1, we have

|λIn − H |
= |(λ − c0)In − BXB∗|
= (λ − c0)n−2|(λ − c0)I2 − B∗BX |

= (λ − c0)n−2

∣∣∣∣∣ (λ − c0) − s(t − s)f ′′ −1
r
(t − s)f ′〈z, v〉

−〈z, v〉(t − s)f ′′ (λ − c0) − tf ′

∣∣∣∣∣
= (λ − c0)n−2{(λ − c0)2 − [s(t − s)f ′′ + tf ′](λ − c0) + st(t − s)f ′f ′′ − s(t − s)2f ′f ′′}
= (λ − c0)n−2{λ2 − [c0 + (c0 + tf ′) + s(t − s)f ′′]λ + c0(c0 + tf ′) + s(t − s)ff ′′}.

Since an n × n Hermitian matrix H has exactly n real eigenvalues, counting multiplicities, we
immediately obtain that F is a strongly pseudoconvex complex Finsler metric if and only if H

is a positive definite matrix on M̃ ; if and only if

c0 > 0, c0 + (c0 + tf ′) + s(t − s)f ′′ > 0, c0(c0 + tf ′) + s(t − s)ff ′′ > 0. (3.17)
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Note that since c0 = f − sf ′, it is easy to check that

f
[
c0 + (c0 + tf ′) + s(t − s)f ′′] = f2 + s(t − s)(f ′)2 + c0(c0 + tf ′) + s(t − s)ff ′′,

by which the third inequality of (3.17) implies the second one, so F is strongly pseudoconvex
if and only if (3.15)–(3.16) hold.

Remark 3.1 It follows from the proof of Proposition 3.2 that if n = 2, then F is a strongly
pseudoconvex complex Finsler metric if and only if (3.16) holds.

Corollary 3.1 Suppose that f(w) is a real-valued smooth positive function of w = s−t ∈ R

satisfying

f − sf ′ > 0, f ′ ≥ 0, f ′′ ≥ 0 (3.18)

on the slit holomorphic tangent bundle T 1,0M -{zero section} of a domain M ⊂ Cn. Then
F =

√
rf(s − t) is a strongly pseudoconvex complex Finsler metric on M .

In the following, we denote by Bn(R) = {‖z‖2 < R2} the ball in Cn with center 0 and radius
R > 0, and its boundary is denoted by S2n−1(R), i.e., the sphere in Cn with center 0 and radius
R > 0.

Example 3.1 Let f(w) = e
w

R2 with w = s− t and R ∈ (0, +∞). Then f ′ > 0, f ′′ > 0 and

f − sf ′ =
(
1 − s

R2

)
f > 0 if and only if s < R2. (3.19)

Since s = |〈z,v〉|2
‖v‖2 ≤ ‖z‖2 = t, F =

√
re

s−t

R2 is a strongly pseudoconvex complex Finsler metric
on the ball Bn(R).

Proposition 3.3 The complex nonlinear connection coefficients Γ γ
;μ and Gγ

μ associated
to F =

√
rf(s − t) are given respectively by

Γ γ
;μ =

1
c0

[
Gγ;μ − 1

k
(gμ, hμ)Y

(
sγ

t;γ

)]
, (3.20)

G
γ
μ = 0, (3.21)

where

Gγ;μ = (f ′rγ + rf ′′sγ)(s;μ − t;μ) + rf ′sγ;μ, (3.22)

gμ = [s(t − s)f ′′ − sf ′](s;μ − t;μ), (3.23)

hμ = (t − s)f ′′〈z, v〉(s;μ − t;μ) (3.24)

and Y is given by (3.6).

Proof The complex nonlinear connection coefficients Γ γ
;μ and Gγ

μ associated to F are given
respectively by

Γ γ
;μ = GβγGβ;μ, G

γ
μ =

∂Gγ

∂vμ
, (3.25)

where Gγ = 1
2Γ γ

;μvμ. By (3.4),

Gβγ =
1
c0

[
δβγ − 1

k
(sβ , t;β)Y

( sγ

t;γ

)]
. (3.26)
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Differentiating G = rf(s − t) with respect to vβ and zμ in turn gives

Gβ = rβf + rf ′sβ ,

Gβ;μ = (f ′rβ + rf ′′sβ)(s;μ − t;μ) + rf ′sβ;μ. (3.27)

Then by (2.7)–(2.9), we have

n∑
β=1

Gβ;μsβ = [s(t − s)f ′′ − sf ′](s;μ − t;μ), (3.28)

where we used 〈z, v〉sμ = −s(s;μ − t;μ) in the above equality.

Gβ;μt;β = [f ′〈z, v〉 + f ′′〈z, v〉(t − s)](s;μ − t;μ) + f ′[〈z, v〉zμ − 〈z, v〉s;μ]

= f ′′〈z, v〉(t − s)(s;μ − t;μ). (3.29)

Substituting (3.26)–(3.29) into the first equality of (3.25) yields (3.20).
On the other hand, an easy computation gives

(s;μ − t;μ)vμ = sβ;μvμ = 0.

So

2G
γ = Γ γ

;μvμ = GβγGβ;μvμ = 0. (3.30)

Substituting (3.30) into the second equality of (3.25) yields (3.21).

4 Proofs of Main Results

Note that the holomorphic curvature (see [2]) and the Ricci scalar curvature (see [10]) of a
strongly pseudoconvex complex Finsler metric F with respect to the Chern-Finsler connection
are defined respectively by

KF (z, v) = − 2
G2

Gαδν(Γ α
;μ)vμvν , RicF (z, v) = −vαδα(Γ μ

;μ), (4.1)

where δα = ∂α−Γ μ
;α∂̇μ. The holomorphic curvature and the Ricci scalar curvature of a strongly

pseudoconvex complex Finsler metric F with respect to the complex Berwald connection are
defined respectively by [14]:

K̆F (z, v) = − 2
G2

Gαδ̆ν(Gα
μ)vμvν , R̆icF (z, v) = −vαδ̆α(Gμ

μ), (4.2)

where δ̆α = ∂α−Gμ
α∂̇μ. It was proved in [13] that the holomorphic curvature of F is independent

of the choice of the Chern-Finsler connection, or the complex Rund connection or the complex
Berwald connection. Actually we have vαδα = vαδ̆α since vαΓ μ

;α = vαGμ
α.

Theorem 4.1 Let F =
√

rf(s − t) be a strongly pseudoconvex complex Finsler metric
on a unitary invariant domain M ⊂ Cn. Then F is a weakly complex Berwald metric with
vanishing holomorphic curvature and Ricci scalar curvature, i.e.,

K̆F (z, v) ≡ 0, R̆icF (z, v) ≡ 0 (4.3)

for any f .
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Proof By Proposition 3.3,

G
γ
μ = 0, (4.4)

which implies Gγ
νμ = 0. Thus F =

√
rf(s − t) is a weakly complex Berwald metric. The

holomorphic curvature of F is given by

K̆F (z, v) = − 2
G2

Gαδ̆ν(Gα
μvμ)vν = − 2

G2
Gαδ̆ν(2G

α)vν = 0.

Again by Proposition 3.3, we get Gμ
μ = 0, which implies that

R̆icF (z, v) = −vαδ̆α(Gμ
;μ) = 0.

Remark 4.1 Since the Chern-Finsler connection coefficients satisfy Γ α
β;μ = ∂̇β(Γ α

;μ), it fol-
lows from Proposition 3.3 that in general, Γ α

;μ are not linear with respect to the fibre coordinates
v = (v1, · · · , vn), so F =

√
rf(s − t) is in general not a complex Berwald metric.

More precisely, we have the following theorem.

Theorem 4.2 Let F =
√

rf(s − t) be a function defined on the slit holomorphic tangent
bundle T 1,0M -{zero section} of a unitary invariant domain M ⊂ Cn. Then F is a complex
Berwald metric if and only if

f(s − t) = a(s − t) + b (4.5)

for constants a, b ∈ R satisfying b > 0 and b − at > 0.

Proof By Proposition 3.3,

Γ γ
;μ =

1
c0

[
Gγ;μ − 1

k
(gμ, hμ)Y

( sγ

t;γ

)]
, (4.6)

where Gγ;μ, gμ and hμ are given by (3.22)–(3.24), and Y is given by (3.6). Using (2.2)–(2.9),
(4.6) can be written as

Γ γ
;μ =

1
c0

f ′〈z, v〉δγμ +
1

c0k
[sf2f ′′ − c0(c0 + tf ′)f ′]zμvγ − 1

c0k
f2f ′′〈z, v〉zμzγ

+
1

c0kr
f2f ′′(〈z, v〉)2vμzγ − 1

c0kr
s(c0 + tf ′)ff ′′〈z, v〉vμvγ . (4.7)

Suppose that F is a complex Berwald metric. Then Γ γ
;μ are linear with respect to v =

(v1, · · · , vn), i.e., Γ γ
;μ = Γ γ

ν;μ(z)vν . Thus it is necessary that

∂

∂s

(f ′

c0

)
= 0,

∂

∂s

( [sf2f ′′ − c0(c0 + tf ′)f ′]
c0k

)
= 0,

∂

∂s

(f2f ′′

c0k

)
= 0, (4.8)

f2f ′′

c0k
= 0,

s(c0 + tf ′)ff ′′

c0k
= 0. (4.9)

So by (4.9), it is necessary that f ′′ = 0, i.e., f(s− t) = a(s− t) + b for some constants a, b ∈ R.
By Proposition 3.2, it follows that b > 0 and b − at > 0. In this case, it is easy to check
that the equalities in (4.8) hold identically. Conversely, if f(s − t) = a(s − t) + b for some
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constants a, b ∈ R satisfying b > 0, b− at > 0, then by Proposition 3.1, the fundamental tensor
of F =

√
rf(s − t) is given by Gαβ = c0δαβ + f ′zαzβ. Since

∂c0

∂s
= −sf ′′ = 0,

∂f ′

∂s
= f ′′ = 0,

it follows that Gαβ depends only on z = (z1, · · · , zn) and f satisfies the condition in Proposition
3.2, so that F is actually a Hermitian metric.

In [14], the author investigated the real geodesics of the complex Wrona metric on the
Euclidean sphere

S2n−1(1) = {z ∈ C
n | ‖z‖2 = 1},

and proved that the geodesics on S2n−1(1) are great circles. In the following we shall prove a
surprising result, that is, under some initial value conditions on f and f ′, the real geodesics of
the weakly complex Berwald metrics of the form F =

√
rf(s − t) on the sphere S2n−1(R) are

great circles, which is independent of the choice of the function f .

Theorem 4.3 Let F =
√

rf(s − t) be a strongly pseudoconvex complex Finsler metric
on a unitary invariant domain M ⊂ C

n such that the Euclidean sphere S2n−1(R) ⊂ M , and
let σ(τ) = (σ1(τ), · · · , σn(τ)) be a real geodesic of F . Then σ satisfies the following system of
equations:

σ̈α =
2
c0

[
G;α − 1

k
(s − t)f ′(〈σ, σ̇〉, ‖σ̇‖2)Y

( sα

t;α

)]
, α = 1, · · · , n, (4.10)

where c0 and k are given by (3.5), the 2 × 2 matrix Y is given by (3.6), and G;α,sα, t;α are
given by (2.1).

If moreover, f(w) satisfies f(−R2) = 1 and f ′(−R2) = 1
R2 , then for any given points

p, q ∈ S2n−1(R) with 〈p, q〉 = 0, there exists a unique closed geodesic

σ(τ) =
1
2

[
(p −√−1q)e

√−1τ + (p +
√−1q)e−

√−1τ
]
, τ ∈ R (4.11)

on S2n−1(R) such that σ(0) = p, σ̇(0) = q and σ, σ̇ ∈ S2n−1(R) with 〈σ, σ̇〉 = 0; furthermore,
the arc length L(σ) of σ satisfies

L(σ) = 2πR. (4.12)

Proof Since σ is a geodesic of F , it follows that locally σ satisfies (see [2, p. 101])

σ̈α + Γ α
;μσ̇μ = GναGβγ(Γ γ

μ;ν − Γ γ
ν;μ)σ̇β σ̇μ. (4.13)

By Proposition 3.3, along the curve σ, we have

Γ α
;μσ̇μ = 2G

α = 0. (4.14)

Thus differentiating (4.14) with respect to σ̇ν and using (2.12)–(2.13), we get

Γ α
ν;μσ̇μ = −Γ α

;ν = −Γ α
μ;ν σ̇μ, (4.15)

from which we have

(Γ γ
μ;ν − Γ γ

ν;μ)σ̇μ = 2Γ γ
;ν . (4.16)
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Since
Gβγ σ̇β = Gγ , GγGγβ = σ̇β , Gβ;ν σ̇β = G;ν ,

we have

Gβγ(Γ γ
μ;ν − Γ γ

ν;μ)σ̇β σ̇μ = 2GγΓ γ
;ν = 2GγGγβGβ;ν = 2G;ν . (4.17)

Substituting (4.14) and (4.17) into (4.13), we obtain the geodesic equations

σ̈α = 2GναG;ν , α = 1, · · · , n. (4.18)

On the other hand, by Proposition 3.1, we have

Gνα =
1
c0

[
δαν − 1

k
(sν , t;ν)Y

( sα

t;α

)]
, (4.19)

G;ν = r(s;ν − t;ν)f ′. (4.20)

Substituting (4.19)–(4.20) into (4.18) and using (2.2)–(2.9), we get (4.10).
When 〈σ, σ̇〉 = 0, ‖σ‖2 = ‖σ̇‖2 = R2, we have

r = t = R2, s = sν = s;ν = 0, c0 = f(−R2), (4.21)

G;ν = −R2f ′(−R2)σν , k = f(−R2)[f(−R2) + R2f ′(−R2)], (4.22)

Y =
(

R2[f(−R2) + R2f ′(−R2)]f ′′(−R2) 0
0 f(−R2)f ′(−R2)

)
. (4.23)

Substituting (4.21)–(4.23) into (4.10) and using f(−R2) = 1, f ′(−R2) = 1
R2 , we obtain

σ̈α = − 2R2f ′(−R2)
f(−R2) + R2f ′(−R2)

σα = −σα, α = 1, · · · , n. (4.24)

It is clear that the general solution of (4.24) is given by

σ(τ) = c1e
√−1τ + c2e−

√−1τ , (4.25)

where c1, c2 ∈ Cn are constant vectors to be determined. Substituting the initial conditions
σ(0) = p, σ̇(0) = q into (4.25), we obtain

c1 =
1
2
(p −√−1q), c2 =

1
2
(p +

√−1q),

which implies (4.11). Differentiating (4.11) with respect to τ , we get

σ̇(τ) =
√−1

2
[(p −√−1q)e

√−1τ − (p +
√−1q)e−

√−1τ ]. (4.26)

By the assumption we have

‖p‖2 = ‖q‖2 = R2, 〈p, q〉 = 0. (4.27)

Thus it follows from (4.11) and (4.26)–(4.27) that the geodesic σ given by (4.11) actually satisfies

‖σ‖2 = ‖σ̇‖2 = R2, 〈σ, σ̇〉 = 0. (4.28)
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By the explicit formula (4.11) for the geodesic σ(τ) of F , we see that σ(τ) is actually a
periodic function with period 2π. It is clear that σ is a closed geodesic and σ(0) = σ(2π) = p.
Moreover, by (4.28) we have

F (σ, σ̇) =

√
‖σ̇‖2f

( |〈σ, σ̇〉|2
‖σ̇‖2

− ‖σ‖2
)

=
√

R2f(−R2) = R.

Hence

L(σ) =
∫ 2π

0

F (σ, σ̇)dτ = 2πR.

Example 4.1 Let f(w) = 2e
1
2 (1+w)−1. Then it is easy to check that F =

√
rf(s − t) is a

strongly pseudoconvex complex Finsler metric defined on a domain M such that Bn(1) ⊂⊂ M

and f(−1) = f ′(−1) = 1. Thus by Theorem 4.3, the geodesics of F on the unit sphere S2n−1(1)
are great circles.
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