Chinese Annals of Mathematics, Series B © The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg 2016

A Note on the Maximal Functions on Weighted Harmonic AN Groups

Yurong WU^1 Shiliang ZHAO¹

Abstract In this paper, the authors point out that the methods used by Li (2004, 2005, 2007) can be applied to study maximal functions on weighted harmonic AN groups.

Keywords Hardy-Littlewood maximal function, Harmonic AN groups, Lorentz spaces
 2000 MR Subject Classification 42B25, 42B35

1 Introduction

Let (H, d) be a metric space and ρ is a Borel measure on H. Denote by B(x, r) the open ball with center $x \in H$ and of radius r > 0.

For a locally integrable function f, the centered Hardy-Littlewood maximal function of f is defined as

$$Mf(x) = \sup_{r>0} \frac{1}{\varrho(B(x,r))} \int_{B(x,r)} |f(y)| \mathrm{d}\varrho(y), \quad x \in H.$$

Similarly, the uncentered maximal function of f is defined as

$$M_*f(x) = \sup_{\substack{x \in B(z,r) \\ r > 0}} \frac{1}{\varrho(B(z,r))} \int_{B(z,r)} |f(y)| \mathrm{d}\varrho(y), \quad x \in H.$$

Notice that $Mf(x) \leq M_*f(x)$ and $||M_*f||_{L^{\infty}} \leq ||f||_{L^{\infty}}$.

If the measure ρ satisfies the doubling condition, then M_* is of the weak type (1, 1) (see [4]).

It becomes complicated if the measure ρ does not satisfy the doubling condition, for example, when H is a space of exponential growth. In this case, M and M_* generally have different properties.

A typical example is the non-compact symmetric space. In 1974, Clerc and Stein [3] obtained the L^p (p > 1) boundedness for the centered maximal function M. Subsequently, Strömberg [14] proved that M is of the weak type (1, 1). For non-compact symmetric spaces of real rank 1, Ionescu proved in [12] that the uncentered maximal function M_* is bounded from $L^{2,u}$ to $L^{2,v}$ if and only if $u = 1, v = \infty$. On the other hand, he obtained in [11] that M_* is bounded on L^p in the sharp range $p \in (2, \infty]$ on symmetric spaces of arbitrary real rank.

Manuscript received 30 August, 2014. Revised January 4, 2015.

¹Department of Mathematics, Fudan University, Shanghai 200433, China.

E-mail: wuyurong2003@163.com zhaoshiliang2013@gmail.com

Another example is the cuspidal manifold $\operatorname{Cusp}(\mathbb{X}) = \mathbb{R}^+ \times \mathbb{X}$ (see [5]). In [6–7], Li studied the centered maximal function M and the uncentered maximal function M_* on $\operatorname{Cusp}(\mathbb{X})$ and its weighted cases. Precisely, given $N \ge 0$, denote by $d_{\mathbb{X}}$ the distance of \mathbb{X} and $d\mu_{\mathbb{X}}$ the induced measure respectively, then the geodesic distance of $\operatorname{Cusp}(\mathbb{X})$ (see [5]) is given by

$$d(Y,Y') = \operatorname{arc} \cosh \frac{y^2 + y'^2 + d_{\mathbb{X}}^2(x,x')}{2yy'}, \quad \forall Y = (y,x), \ Y' = (y',x') \in \operatorname{Cusp}(\mathbb{X}).$$
(1.1)

Consider the measure $d\mu(y, x) = y^{-N-1} dy d\mu_{\mathbb{X}}(x)$ and suppose that there exist $\omega_1 > 0$, $\omega_2 \ge 0$ such that the volume |B(x, r)| of the ball with center $x \in \mathbb{X}$ and of radius r satisfies

$$|B(x,r)| \sim r^{\omega_1} \chi_{r \le 1} + r^{\omega_2} \chi_{r > 1}, \quad \forall r > 0, \ x \in \mathbb{X}.$$
 (1.2)

Set $\omega = \max\{\omega_1, \omega_2\}$, $p_1 = \frac{N}{2N-\omega}$ $(N < \omega < 2N)$, $p_0 = \frac{2N}{2N-\omega}$ $(\omega < 2N)$. Then the following results can be obtained.

Theorem A (1) If $\omega \ge 2N$, then M is not bounded on L^p for any $1 \le p < +\infty$.

(2) If $\omega \leq N$, then M is bounded from L^1 to $L^{1,\infty}$, and thus bounded on L^p for any 1 .

(3) If $N < \omega < 2N$, then M is bounded from $L^{p_1,1}$ to $L^{p_1,\infty}$, and bounded on L^p for any $p_1 , but <math>M$ is not bounded on L^p for any $1 \le p < p_1$.

Theorem B (1) If $\omega < 2N$, then for any $p_0 , <math>M_*$ is bounded on L^p and is bounded from $L^{p_0,1}$ to $L^{p_0,\infty}$, but M_* is not bounded on L^p for any $1 \leq p \leq p_0$.

(2) If $\omega \geq 2N$, then M_* is not bounded on L^p for any $1 \leq p < +\infty$.

Theorem C If $\omega_1 = \omega < 2N$, then for any $\alpha > 1$, M_* is not bounded from $L^{p_0,\alpha}$ to $L^{p_0,\infty}$, and therefore M_* is not bounded on L^p for any $1 \le p \le p_0$.

Furthermore, in [8], Li considered a more general class of non-doubling measure $d\mu_{\beta} = \beta(y) dy d\mu_{\mathbb{X}}(x)$, where $\beta : \mathbb{R}^+ \to \mathbb{R}^+$ is a continuous function satisfying

$$\frac{\beta(s)}{\beta(t)} \le C, \quad \forall 0 < \frac{t}{2} \le s \le 2t.$$
(1.3)

As a consequence of (1.3), there exist two constants A > 0 and $\alpha \in \mathbb{R}$ such that

$$\frac{\beta(s)}{\beta(t)} \le A\left(\frac{s}{t}\right)^{\alpha}, \quad \forall 0 < s \le 2t.$$
(1.4)

Then on the weighted manifold $H = (\text{Cusp}(\mathbb{X}), d\mu_{\beta})$ where β satisfies (1.4) with $\alpha > -1$, the following result has been established in [8] for the centered maximal function $M_{\mu_{\beta}}$ and uncentered maximal function $M_{*,\mu_{\beta}}$ associated with $d\mu_{\beta}$:

Theorem D $M_{\mu_{\beta}}$ is bounded from $L^{1}(d\mu_{\beta})$ to $L^{1,\infty}(d\mu_{\beta})$ and therefore is bounded on $L^{p}(d\mu_{\beta})$ for p > 1; $M_{*,\mu_{\beta}}$ is bounded on L^{p} for p > 1.

For more results about maximal functions in the setting of exponential growth (see for example [1-2, 9-10, 13] and references therein). In this article, we study the maximal functions on weighted harmonic AN groups.

This paper is organized as follows. In Section 2 we will present some facts about harmonic AN groups and in Section 3 we will state our main results and give an explanation.

Throughout this paper, C will denote various constants which depend only on the dimension. $A \leq B$ means $A \leq CB$ with such a C, and $A \sim B$ stands for $A \leq CB$ and $B \leq CA$.

2 Main Results and the Interpretation

In this section, we consider the maximal functions on the harmonic AN groups $S = \mathbb{R}^+ \times \mathbb{H}(2n, m)$. We will point out that the methods used in [6–8] can be applied to this case.

In what follows, we consider the measure $d\mu = a^{\sigma-Q-1} dadx d\rho$ and $d\mu_{\beta} = \beta(a) dadx d\rho$ on S, where β satisfies (1.4) with $\alpha > -1$.

Denote by M and M_* the centered and uncentered maximal functions associated with the measure $d\mu$, respectively, and by $M_{\mu\beta}$ and $M_{*,\mu\beta}$ the centered and uncentered maximal function associated with the measure $d\mu\beta$ respectively.

Set

$$p_0 = \frac{Q - \sigma}{Q - 2\sigma}, \quad 0 < \sigma < \frac{Q}{2},$$
$$p_1 = \frac{2(Q - \sigma)}{Q - 2\sigma}, \quad \sigma < \frac{Q}{2}.$$

Then we can obtain the following theorems, of which we omitt the detailed proofs.

Theorem 2.1 (1) If $\frac{Q}{2} \leq \sigma \leq Q$, then M is not bounded on L^p for any 1 .

(2) If $\sigma < 0$ or $\sigma > Q$, then M is bounded on L^p for any $1 and is bounded from <math>L^1$ to $L^{1,\infty}$.

(3) If $0 < \sigma < \frac{Q}{2}$, then M is not bounded on L^p for any $1 \le p \le p_0$, but it is bounded from $L^{p_0,1}$ to $L^{p_0,\infty}$ and is bounded on L^p for any $p_0 .$

Theorem 2.2 (1) If $\frac{Q}{2} \leq \sigma \leq Q$, then M_* is not bounded on L^p for any 1 .

(2) If $\sigma > Q$, then M_* is bounded on L^p for any p > 1.

(3) If $\sigma < \frac{Q}{2}$, then M_* is not bounded on L^p for any $1 \le p \le p_1$, but it is bounded from $L^{p_1,1}$ to $L^{p_1,\infty}$ and is bounded on L^p for any $p_1 .$

Theorem 2.3 If $\sigma < \frac{Q}{2}$, then for any $\gamma > 1$, M_* is not bounded from $L^{p_1,\gamma}$ to $L^{p_1,\infty}$.

Theorem 2.4 (1) $M_{\mu\beta}$ is bounded from $L^1(d\mu\beta)$ to $L^{1,\infty}(d\mu\beta)$ and therefore is bounded on $L^p(d\mu\beta)$ for any p > 1.

(2) $M_{*,\mu_{\beta}}$ is bounded on $L^{p}(d\mu_{\beta})$ for any p > 1.

To prove the above theorems, we need the following volume estimates of balls in $\mathbb{R}^+ \times \mathbb{H}(2n, m)$.

Lemma 2.1 Given a ball $B((a_0, (x_0, \rho_0)), r)$ centered at $(a_0, (x_0, \rho_0)) \in \mathbb{R}^+ \times \mathbb{H}(2n, m)$ and

of radius r, then we have

$$\mu(B((a_0, (x_0, \rho_0)), r)) \sim \begin{cases} a_0^{\sigma} r^{2n+m+1}, & 0 < r \le 1, \\ a_0^{\sigma} r e^{\frac{r}{2}(m+n)}, & \sigma = \frac{m+n}{2}, r > 1, \\ a_0^{\sigma} e^{r\sigma}, & \sigma > \frac{m+n}{2}, r > 1, \\ a_0^{\sigma} e^{r(m+n-\sigma)}, & \sigma < \frac{m+n}{2}, r > 1 \end{cases}$$
(2.1)

and

$$\mu_{\beta}(B((a_0, (x_0, \rho_0)), r)) \sim \begin{cases} a_0^{m+n+1} e^{r(m+n+1)} \beta(a_0 \cosh r), & r > 1, \\ a_0^{m+n+1} (\sinh r)^{m+2n+1} \beta(a_0 \cosh r), & 0 < r \le 1. \end{cases}$$

We point out that the above volume estimates of r > 1 can be obtained by Proposition 4.1 of [7] and Corollary 4.2 of [8] since d and d_* (see the following Remark 2.2) are equivalent for large d.

Remark 2.1 When $\sigma = 0$ in Theorem 2.1, the weak type (1,1) boundedness of M has been obtained in [1].

Remark 2.2 The above theorems can be interpreted by the models in [6–8].

In fact, set
$$d_{*,\mathbb{H}} = d_{\mathbb{H}}^2$$
 and define d_* in $\mathbb{R}^+ \times \mathbb{H}(2n, m)$ as

$$\cosh d_* = \frac{d_{*,\mathbb{H}}^2((x,\rho), (x',\rho')) + a^2 + a'^2}{2aa'}.$$
(2.2)

Define the ball B(x, r) associated with $d_{*,\mathbb{H}}$ as

$$B(x,r) = \{ y \in \mathbb{H}(2n,m) : d_{*,\mathbb{H}}(y,x) < r \},\$$

and then the volume of B(x,r) is $r^{Q}|B_{\mathbb{H}}(e_{\mathbb{H}},1)|$ (see Section 2). The condition (1.2) here then becomes

$$|B(x,r)| \sim r^Q, \quad \forall r > 0, \ x \in \mathbb{H}(2n,m), \tag{2.3}$$

so $\omega = \omega_1 = \omega_2 = Q$. If we set $\mathbb{X} = \mathbb{H}(2n, m)$ and $\operatorname{Cusp}(\mathbb{X}) = \mathbb{R}^+ \times \mathbb{H}(2n, m)$, then the models in [6–8] remain valid and similar results can be obtained for the maximal functions associated with d_* .

Thanks to the inequality $a + b \ge 2\sqrt{ab}$ $(a, b \ge 0)$, we can prove that the distances d and d_* are in some sense equivalent for large d_* , that is, there exists a constant C > 0 such that for $\forall \mathcal{Y}, \mathcal{Y}' \in \mathbb{R}^+ \times \mathbb{H}(2n, m)$:

$$d_*(\mathcal{Y}, \mathcal{Y}') - C \le d(\mathcal{Y}, \mathcal{Y}') \le d_*(\mathcal{Y}, \mathcal{Y}') + C, \quad \forall d_*(\mathcal{Y}, \mathcal{Y}') \gg C.$$

Therefore, we can use the methods in [6–8] when d is large. On the other hand, the local maximal functions are always of the weak type (1,1) according to [4] since the measures $d\mu$ and $d\mu_{\beta}$ satisfy the local doubling property by Lemma 2.1. Thus we obtain Theorems 2.1–2.4 for the centered and uncentered maximal functions associated with d.

196

Remark 2.3 Li pointed out in [8] that harmonic AN groups are a typical example of the spaces of quasi-hyperbolic type, that is, there exists a constant C > 1 such that

$$C^{-1}d_*(\mathcal{Y}, \mathcal{Y}') \le d(\mathcal{Y}, \mathcal{Y}') \le Cd_*(\mathcal{Y}, \mathcal{Y}'), \quad \mathcal{Y}, \mathcal{Y}' \in \mathbb{R}^+ \times \mathbb{H}(2n, m),$$
(2.4)

$$d_*(\mathcal{Y}, \mathcal{Y}') - C \le d(\mathcal{Y}, \mathcal{Y}') \le d_*(\mathcal{Y}, \mathcal{Y}') + C, \quad \forall \ d_*(\mathcal{Y}, \mathcal{Y}') \gg C.$$

$$(2.5)$$

However, we find that (2.4) fails if d_* is small enough. In fact, denote by o the identity element of $\mathbb{R}^+ \times \mathbb{H}(2n, m)$, then for any $g = (a, (x, \rho)) \in \mathbb{R}^+ \times \mathbb{H}(2n, m)$, we have

$$d(g,o) = \operatorname{arc} \cosh \frac{\frac{|x|^4}{16} + |\rho|^2 + a^2 + 1 + \frac{|x|}{2}(a+1)}{2a}$$
$$= \operatorname{arc} \cosh \left[1 + \frac{\frac{|x|^4}{16} + |\rho|^2 + (a-1)^2 + \frac{|x|^2}{2}(a+1)}{2a}\right]$$
$$\sim \left[\frac{\frac{|x|^4}{16} + |\rho|^2 + (a-1)^2 + \frac{|x|}{2}(a+1)}{a}\right]^{\frac{1}{2}}, \quad a \to 1, \ (x,\rho) \to 0$$

Similarly, we have

$$d_*(g,o) \sim \left[\frac{\frac{|x|^4}{16} + |\rho|^2 + (a-1)^2}{a}\right]^{\frac{1}{2}}, \quad a \to 1, \ (x,\rho) \to 0.$$

If $d(g, o) \leq d_*(g, o)$ holds, then

$$\frac{|x|^2}{2}(a+1) \lesssim \frac{|x|^4}{16} + |\rho|^2 + (a-1)^2, \quad a \to 1, \ (x,\rho) \to 0,$$

which is not right. Thus (2.4) does not hold for small d_* .

In spite of this, (2.5) is still enough to get Theorems 2.1–2.4.

Acknowledgement We are grateful to Prof. Li H. Q. for his useful suggestions and help.

References

- Anker, J. P., Damek, E. and Yacoub, C., Spherical analysis on harmonic AN groups, Ann. Scuola Norm. Super. Pisa. Cl. Sci., 23, 1996, 643–679.
- [2] Chen, J. C. and Wang, S. L., On boundedness of Hardy-Littlewood maximal function operator on Riemannian manifolds, *Chin. Ann. Math., Ser. B*, 14, 1993, 69–76.
- [3] Clerc, J. L. and Stein, E. M., L^p-multipliers for noncompact symmetric spaces, Proc. Nat. Acad. Sci. USA, 71, 1974, 3911–3912.
- Coifman, R. and Weiss, G., Analyse harmonique non commutative sur certains espaces homogènes, Lecture Notes in Mathematics, vol. 242, Springer-Verlag, Berlin, 1971.
- [5] Li, H. Q., Analyse sur les variétés cuspidales, Math. Ann., 326, 2003, 625-647.
- [6] Li, H. Q., La fonction maximale de Hardy-Littlewood sur une classe d'espaces métriques mesurables, C. R. Math. Acad. Sci. Paris, 338(1), 2004, 31–34.
- [7] Li, H. Q., La fonction maximale non centre sur les variétés de type cuspidale, J. Funct. Anal., 229, 2005, 155–183.
- [8] Li, H. Q., Les fonctions maximales de Hardy-Littlewood pour des mesures sur les variétés cuspidales, J. Math. Pures Appl., 88, 2007, 261–275.
- [9] Lohoué, N., Fonction maximale sur les variétés de Cartan-Hadamard, C. R. Math. Acad. Sci. Paris, 300, 1985, 213–216.

- [10] Lohoué, N., Estimations de la fonction maximale de Hardy-Littlewood, Bull. Soc. Math. France, 135(1), 2007, 135–169.
- [11] Ionescu, A. D., A maximal operator and a covering lemma on non-compact symmetric spaces, Math. Res. Lett., 7, 2000, 83–93.
- [12] Ionescu, A. D., An endpoint estimate for the Kunze-Stein phenomenon and related maximal operators, Ann. of Math., 152, 2000, 259–275.
- [13] Lohoué, N., Minoration du volume des grosses boules sur les groupes de Lie semi-simples, J. Anal. Math., 95, 2005, 133–145.
- [14] Strömberg, J. O., Weak type L¹ estimates for maximal functions on non-compact symmetric spaces, Ann. of Math., 114, 1981, 115–126.