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1 Introduction

Let (H, d) be a metric space and � is a Borel measure on H . Denote by B(x, r) the open
ball with center x ∈ H and of radius r > 0.

For a locally integrable function f , the centered Hardy-Littlewood maximal function of f is
defined as

Mf(x) = sup
r>0

1
�(B(x, r))

∫
B(x,r)

|f(y)|d�(y), x ∈ H.

Similarly, the uncentered maximal function of f is defined as

M∗f(x) = sup
x∈B(z,r)

r>0

1
�(B(z, r))

∫
B(z,r)

|f(y)|d�(y), x ∈ H.

Notice that Mf(x) ≤ M∗f(x) and ‖M∗f‖L∞ ≤ ‖f‖L∞.
If the measure � satisfies the doubling condition, then M∗ is of the weak type (1, 1) (see [4]).
It becomes complicated if the measure ρ does not satisfy the doubling condition, for example,

when H is a space of exponential growth. In this case, M and M∗ generally have different
properties.

A typical example is the non-compact symmetric space. In 1974, Clerc and Stein [3] obtained
the Lp (p > 1) boundedness for the centered maximal function M . Subsequently, Strömberg
[14] proved that M is of the weak type (1, 1). For non-compact symmetric spaces of real rank
1, Ionescu proved in [12] that the uncentered maximal function M∗ is bounded from L2,u to
L2,v if and only if u = 1, v = ∞. On the other hand, he obtained in [11] that M∗ is bounded
on Lp in the sharp range p ∈ (2,∞] on symmetric spaces of arbitrary real rank.
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Another example is the cuspidal manifold Cusp(X) = R
+ × X (see [5]). In [6–7], Li studied

the centered maximal function M and the uncentered maximal function M∗ on Cusp(X) and
its weighted cases. Precisely, given N ≥ 0, denote by dX the distance of X and dμX the induced
measure respectively, then the geodesic distance of Cusp(X) (see [5]) is given by

d(Y, Y ′) = arc cosh
y2 + y′2 + d2

X
(x, x′)

2yy′ , ∀Y = (y, x), Y ′ = (y′, x′) ∈ Cusp(X). (1.1)

Consider the measure dμ(y, x) = y−N−1dydμX(x) and suppose that there exist ω1 > 0, ω2 ≥ 0
such that the volume |B(x, r)| of the ball with center x ∈ X and of radius r satisfies

|B(x, r)| ∼ rω1χr≤1 + rω2χr>1, ∀r > 0, x ∈ X. (1.2)

Set ω = max{ω1, ω2}, p1 = N
2N−ω (N < ω < 2N), p0 = 2N

2N−ω (ω < 2N). Then the following
results can be obtained.

Theorem A (1) If ω ≥ 2N , then M is not bounded on Lp for any 1 ≤ p < +∞.
(2) If ω ≤ N , then M is bounded from L1 to L1,∞, and thus bounded on Lp for any

1 < p ≤ +∞.
(3) If N < ω < 2N , then M is bounded from Lp1,1 to Lp1,∞, and bounded on Lp for any

p1 < p < +∞, but M is not bounded on Lp for any 1 ≤ p < p1.

Theorem B (1) If ω < 2N , then for any p0 < p ≤ +∞, M∗ is bounded on Lp and is
bounded from Lp0,1 to Lp0,∞, but M∗ is not bounded on Lp for any 1 ≤ p ≤ p0.

(2) If ω ≥ 2N , then M∗ is not bounded on Lp for any 1 ≤ p < +∞.

Theorem C If ω1 = ω < 2N , then for any α > 1, M∗ is not bounded from Lp0,α to Lp0,∞,
and therefore M∗ is not bounded on Lp for any 1 ≤ p ≤ p0.

Furthermore, in [8], Li considered a more general class of non-doubling measure dμβ =
β(y)dydμX(x), where β : R

+ → R
+ is a continuous function satisfying

β(s)
β(t)

≤ C, ∀0 <
t

2
≤ s ≤ 2t. (1.3)

As a consequence of (1.3), there exist two constants A > 0 and α ∈ R such that

β(s)
β(t)

≤ A
(s

t

)α

, ∀0 < s ≤ 2t. (1.4)

Then on the weighted manifold H = (Cusp(X), dμβ) where β satisfies (1.4) with α > −1,
the following result has been established in [8] for the centered maximal function Mμβ

and
uncentered maximal function M∗,μβ

associated with dμβ :

Theorem D Mμβ
is bounded from L1(dμβ) to L1,∞(dμβ) and therefore is bounded on

Lp(dμβ) for p > 1; M∗,μβ
is bounded on Lp for p > 1.

For more results about maximal functions in the setting of exponential growth (see for
example [1–2, 9–10, 13] and references therein). In this article, we study the maximal functions
on weighted harmonic AN groups.
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This paper is organized as follows. In Section 2 we will present some facts about harmonic
AN groups and in Section 3 we will state our main results and give an explanation.

Throughout this paper, C will denote various constants which depend only on the dimension.
A � B means A ≤ CB with such a C, and A ∼ B stands for A ≤ CB and B ≤ CA.

2 Main Results and the Interpretation

In this section, we consider the maximal functions on the harmonic AN groups S = R
+ ×

H(2n, m). We will point out that the methods used in [6–8] can be applied to this case.

In what follows, we consider the measure dμ = aσ−Q−1dadxdρ and dμβ = β(a)dadxdρ on
S, where β satisfies (1.4) with α > −1.

Denote by M and M∗ the centered and uncentered maximal functions associated with the
measure dμ, respectively, and by Mμβ

and M∗,μβ
the centered and uncentered maximal function

associated with the measure dμβ respectively.

Set

p0 =
Q − σ

Q − 2σ
, 0 < σ <

Q

2
,

p1 =
2(Q − σ)
Q − 2σ

, σ <
Q

2
.

Then we can obtain the following theorems, of which we omitt the detailed proofs.

Theorem 2.1 (1) If Q
2 ≤ σ ≤ Q, then M is not bounded on Lp for any 1 < p < ∞.

(2) If σ < 0 or σ > Q, then M is bounded on Lp for any 1 < p ≤ ∞ and is bounded from
L1 to L1,∞.

(3) If 0 < σ < Q
2 , then M is not bounded on Lp for any 1 ≤ p ≤ p0, but it is bounded from

Lp0,1 to Lp0,∞ and is bounded on Lp for any p0 < p ≤ ∞.

Theorem 2.2 (1) If Q
2 ≤ σ ≤ Q, then M∗ is not bounded on Lp for any 1 < p < ∞.

(2) If σ > Q, then M∗ is bounded on Lp for any p > 1.

(3) If σ < Q
2 , then M∗ is not bounded on Lp for any 1 ≤ p ≤ p1, but it is bounded from

Lp1,1 to Lp1,∞ and is bounded on Lp for any p1 < p ≤ ∞.

Theorem 2.3 If σ < Q
2 , then for any γ > 1, M∗ is not bounded from Lp1,γ to Lp1,∞.

Theorem 2.4 (1) Mμβ
is bounded from L1(dμβ) to L1,∞(dμβ) and therefore is bounded on

Lp(dμβ) for any p > 1.

(2) M∗,μβ
is bounded on Lp(dμβ) for any p > 1.

To prove the above theorems, we need the following volume estimates of balls in R
+ ×

H(2n, m).

Lemma 2.1 Given a ball B((a0, (x0, ρ0)), r) centered at (a0, (x0, ρ0)) ∈ R
+ ×H(2n, m) and
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of radius r, then we have

μ(B((a0, (x0, ρ0)), r)) ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

aσ
0r2n+m+1, 0 < r ≤ 1,

aσ
0re

r
2 (m+n), σ =

m + n

2
, r > 1,

aσ
0erσ, σ >

m + n

2
, r > 1,

aσ
0er(m+n−σ), σ <

m + n

2
, r > 1

(2.1)

and

μβ(B((a0, (x0, ρ0)), r)) ∼
⎧⎨
⎩

am+n+1
0 er(m+n+1)β(a0 cosh r), r > 1,

am+n+1
0 (sinh r)m+2n+1β(a0 cosh r), 0 < r ≤ 1.

We point out that the above volume estimates of r > 1 can be obtained by Proposition 4.1
of [7] and Corollary 4.2 of [8] since d and d∗ (see the following Remark 2.2) are equivalent for
large d.

Remark 2.1 When σ = 0 in Theorem 2.1, the weak type (1,1) boundedness of M has been
obtained in [1].

Remark 2.2 The above theorems can be interpreted by the models in [6–8].

In fact, set d∗,H = d2
H

and define d∗ in R
+ × H(2n, m) as

coshd∗ =
d2
∗,H((x, ρ), (x′, ρ′)) + a2 + a′2

2aa′ . (2.2)

Define the ball B(x, r) associated with d∗,H as

B(x, r) = {y ∈ H(2n, m) : d∗,H(y, x) < r},

and then the volume of B(x, r) is rQ|BH(eH, 1)| (see Section 2). The condition (1.2) here then
becomes

|B(x, r)| ∼ rQ, ∀r > 0, x ∈ H(2n, m), (2.3)

so ω = ω1 = ω2 = Q. If we set X = H(2n, m) and Cusp(X) = R
+ × H(2n, m), then the models

in [6–8] remain valid and similar results can be obtained for the maximal functions associated
with d∗.

Thanks to the inequality a + b ≥ 2
√

ab (a, b ≥ 0), we can prove that the distances d and d∗
are in some sense equivalent for large d∗, that is, there exists a constant C > 0 such that for
∀Y,Y ′ ∈ R

+ × H(2n, m):

d∗(Y,Y ′) − C ≤ d(Y,Y ′) ≤ d∗(Y,Y ′) + C, ∀d∗(Y,Y ′) � C.

Therefore, we can use the methods in [6–8] when d is large. On the other hand, the local
maximal functions are always of the weak type (1,1) according to [4] since the measures dμ and
dμβ satisfy the local doubling property by Lemma 2.1. Thus we obtain Theorems 2.1–2.4 for
the centered and uncentered maximal functions associated with d.
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Remark 2.3 Li pointed out in [8] that harmonic AN groups are a typical example of the
spaces of quasi-hyperbolic type, that is, there exists a constant C > 1 such that

C−1d∗(Y,Y ′) ≤ d(Y,Y ′) ≤ Cd∗(Y,Y ′), Y,Y ′ ∈ R
+ × H(2n, m), (2.4)

d∗(Y,Y ′) − C ≤ d(Y,Y ′) ≤ d∗(Y,Y ′) + C, ∀ d∗(Y,Y ′) � C. (2.5)

However, we find that (2.4) fails if d∗ is small enough. In fact, denote by o the identity
element of R

+ × H(2n, m), then for any g = (a, (x, ρ)) ∈ R
+ × H(2n, m), we have

d(g, o) = arc cosh
|x|4
16 + |ρ|2 + a2 + 1 + |x|

2 (a + 1)
2a

= arc cosh
[
1 +

|x|4
16 + |ρ|2 + (a − 1)2 + |x|2

2 (a + 1)
2a

]

∼
[ |x|4

16 + |ρ|2 + (a − 1)2 + |x|
2 (a + 1)

a

] 1
2
, a → 1, (x, ρ) → 0.

Similarly, we have

d∗(g, o) ∼
[ |x|4

16 + |ρ|2 + (a − 1)2

a

] 1
2
, a → 1, (x, ρ) → 0.

If d(g, o) � d∗(g, o) holds, then

|x|2
2

(a + 1) � |x|4
16

+ |ρ|2 + (a − 1)2, a → 1, (x, ρ) → 0,

which is not right. Thus (2.4) does not hold for small d∗.
In spite of this, (2.5) is still enough to get Theorems 2.1–2.4.
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