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Abstract In this paper, by using the Frobenius morphism and the multiplication formulas
of the generic extension monoid algebra, the authors first give a presentation of the degen-
erate Ringel-Hall algebra, and then construct the Grobner-Shirshov basis for degenerate
Ringel-Hall algebras of type Fj.
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1 Introduction

Through the works of Buchberger [1], Bergman [2] and Shirshov [3], the Grobner-Shirshov
basis theory has become a powerful tool for the solution of the reduction problem in algebra
and provides a computational approach for the study of structures of algebras. The degenerate
Ringel-Hall algebra is the specialization of the Ringel-Hall algebra at ¢ = 0 and in [4] Reineke
gave a remarkable basis which closes under multiplication.

In this paper, we first give a presentation of the degenerate Ringel-Hall algebra $o(Fy) by
using the method of Frobenius morphism (see [5]) and the idea of monoid algebra (see [4]).
Then, by using the relations which are computed to give this presentation, we construct a
Grobner-Shirshov basis for the degenerate Ringel-Hall algebra $o(Fy).

2 Some Preliminaries

First, we recall some relevant notions and results about the Grébner-Shirshov basis theory
from [6].

Let S be a linearly ordered set, k be a field and k(S) the free associative algebra generated
by S over k. Let S* be the free monoid generated by S. Order S* by the deg-lex order “ < ”.
Then any polynomial f € k(S) has the leading word f. We call f monic if the coefficient of f
is 1.
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Let f,g € k(S) be two monic polynomials and w € S*. If w = fb = ag for some a,b € S*

such that deg(f)+deg(g) < deg(w), then (f,g). = fb—ag is called the intersection composition
of f and g relative to w. If w = f = agb for some a,b € S*, then (f,g). = f — agb is called the
inclusion composition of f and g relative to w.

Let R C k{(S) be a monic set. A composition (f,g), is called trivial modulo (R,w) if
(f,9)w =D aya;t;b;, where each o; € k, t; € R, a;,b; € S* and a;t;b; < w.

R is called a Grobner-Shirshov basis if any composition of polynomials from R is trivial
modulo R.

A well order “ <” on S* is monomial if for any u,v € S*, we have
U >V = wiluws > wivws for all wy,ws € S*.
A standard result about the Grobner-Shirshov basis theory is the following lemma.

Lemma 2.1 (see [6]) (Composition-Diamond Lemma) Let k be a field, A = k(S | R) =
kE(S)/Id(R) and “ <” be a monomial order on S*, where Id(R) is the ideal of k(S) generated
by R. Then the following statements are equivalent:

(a) R is a Grébner-Shirshov basis;

(b) f € Id(R) = f = alb for some t € R and a,b € S*;

(c) Irr(R) = {u € S* | u # atb,t € R,a,b € S*} is a k-linear basis of the algebra A.

Next, we recall some relevant notions and results about the Frobenius morphism method
from [5].

Let (Q, o) be a quiver @ with the automorphism o. The associated valued quiver I' = T'(Q, o)
is defined as follows. Its vertex set I'g and arrow set I'y are simply the sets of o-orbits in Qg
and @1, respectively. For p € @1, its tail (resp., head) is the o-orbit of tails (resp., heads) of
arrows in p. The valuation of T' is given by

d; = |{vertices in g-orbit i} | fori € I,

m, = |{arrows in o-orbit p}| for p € I'y.
Let F, be the finite field of ¢ elements and K = F, be the algebraic closure of F,.

Definition 2.1 (see [5, 7]) Let M be a vector-space over K. An Fy-linear isomorphism
F: M — M is called a Frobenius map if it satisfies:

(a) F(Am) = A2F(m) for allm € M and X € K;

(b) For any m € M, F"(m) =m for some n > 0.

Let C be a K-algebra with identity 1. We do not assume generally that C is finite-
dimensional. A map F¢ : C — C' is called a Frobenius morphism on C' if it is a Frobenius
map on the K-space C, and it is also an F;-algebra isomorphism sending 1 to 1.

Let A := KQ be the path algebra of @ over K. Then o induces a Frobenius morphism
F=Fyo =Fgoq:A— Agiven by > xsps — > 2%0(ps), where > z,p,s is a K-linear
S

combination of paths ps and o(ps) = a(pt): co(pp) if p; =py---pq for AITOWS P15 Pt € Q1.
Then the fixed-point algebra

Aq) =(Q,0:9) = AT ={a € A| F(a) = a}

is an [F,-algebra associated with (@, o).
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Definition 2.2 (see [5]) Let (Q,0) be a quiver with the automorphism o. A representa-
tion V.= (V;,0,) of Q is called F-stable (or equivalently, an F-stable A-module) if there is

a Frobenius map Fy : @ V;, — @ Vi satisfying Fy(V;) = Vo, for all i € Qo such that
1€Qo 1€Qo
Fy¢p = bop)Fv for each arrow p € Q1

For an F-stable representation V' = (V;, ¢,), let dimV = 3" (dimV;)i € NI'y and dimV =
i€l
> dimV; denote the dimension vector and the dimension of V, respectively. An F-stable
i€ly
representation is called indecomposable if it is nonzero and not isomorphic to a direct sum of

two nonzero F-stable representations.

Lemma 2.2 (see [8]) There is a one-to-one correspondence between isoclasses of indecom-
posable A(q)-modules and isoclasses of indecomposable F-stable A-modules.

Then, we recall some relevant notions and results about the degenerate Ringel-Hall algebra
from [8].

From now on, we assume that (Q, o) is a Dynkin quiver @) with the automorphism o. Dlab
and Ringel [9-10] have shown that there is a bijection from the isoclasses of indecomposable
A(q)-modules to the set @+ = ®T(Q, o) of positive roots in the root system associated with
the valued quiver I' = T'(Q, o). For each aw € T, let M, () denote the corresponding indecom-
posable A(g)-module, so dimM,(a) = «. By the Krull-Schmidt theorem, every A(g)-module
M 1is isomorphic to

My(A) = @ A(e) My(ax)
aedt

for some function A : ®* — N. Thus, the isoclasses of A(g)-modules are indexed by the set
B =B(Q,0) = {\|\:®" — N} =N*",

which is independent of ¢q. By Lemma 2.2, the isoclasses of F-stable K@Q-modules are also
indexed by 9B. Clearly, for each i € Ty, there is a complete simple A(g)-module S; corresponding
to 1.

For M, Ny,---, Ny €A(q)-mod, let F]J\\,{ ~, be the number of filtrations

M=MyDM; D---DM;_12M;=0

such that M;_1/M; = N; for all 1 < i <t is finite. By [11], FJI\\I/{,~~~,Nt is a polynomial in ¢ when
q varies. More precisely, for A, u,v € B = B(Q, o), there exists a polynomial ga,’),,,(q) € Z[dq]

(the polynomial ring over Z in one indeterminate q) such that ¢ ,(qr) = Fjj\\jq’“((k)) My, ) holds
? qp (1)> q (v

for any finite field k£ with ¢ elements.
The generic Ringel-Hall algebra $ = 94(Q, 0) is the free module over Z[q] with the basis

{ux | A € B} and the multiplication defined by

uptty = Y o) (Qux.
AEDB

It is an NTol_graded algebra

H= @ f.)67

ecNITol
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where £ is spanned by all po, a € B, :={F € B | dimM,(F) = e}.

For each A € 9B, set M, () := My(A)®F, K which is the F-stable KQ-module corresponding
to A.

Now by specializing q to 0, we obtain the Z-algebra $0(Q, o), called the degenerate Ringel-
Hall algebra associated with I' = I'(Q, ¢). In other words, Ho(Q, ) = H4(Q, 0) ®z[q Z, where
Z is viewed as a Z[q]-module with the action of q by zero. By abuse of notations, we also write
ux = uy® 1. Thus, the set {ux | A € B} is a Z-basis of H(Q, ). Let u; = ujs,; ® 1 in Ho(Q, o)
for i € T'g.

Lemma 2.3 (see [12]) As a Z-algebra, H0(Q, o) is generated by u;, i € T'y.

Finally, we recall some relevant notions and results about monoid algebras from [4].

For K@Q-modules M and N, the generic extension M * N of M by N was defined in [13] as
the unique (up to isomorphism) element in Ext,lcQ(M , N) having an endomorphism algebra of
the minimal dimension. As shown in [4], the star operation * defines the structure of a monoid
on the set Mg = Mg k of isoclasses of KQ-modules.

Proposition 2.1 (sec [7]) If M and N are two F-stable KQ-modules, then M « N is also
F-stable.

By this proposition, the set of isoclasses [M] of F-stable KQ-modules, together with the
operation [M] * [N] = [M % N], defines a submonoid Mg , of M¢ with the unit element [0].

Since all the indecomposable A(q)-modules are indexed by the set 9B, we give an enumeration
on ®T defined by 81, 2, -, Bn such that for all prime powers g,

Hom 4y (My(Bs), My(B:)) #0 implies s < t.

Moreover, in this case, Exth(q) (My(Bs), My(B¢)) # 0 implies s > t. Thus, we give an enumera-
tion on indecomposable A(g)-modules and set My (51) < My(B2) < -+ My(Bn).

By the definition of the generic extension, if Exti(q) (M,N) =0, then M« N = M@ N.
Consequently, we have the following known result.

Lemma 2.4 Fach element [My(N)k] in Mg, with A € B can be written as

[Mq(/\)IC] = [Mq(ﬁl)lc]*)\ﬁl Kook [Mq(ﬁN)IC]*)\ﬁN.
Moreover, these elements form a Z-basis of ZMQ.c.

For a dimension vector d = > d;i € NT'g, we consider the affine space
i€l
Ry =[] Homg(K%, K%).
ait—j
Then the group G4 := [] GLg,(K) acts on R4 by conjugation, i.e., by
i€l

(gi) : (xp)p = (gjxpgi_l)p:i—»j-
The orbits of G4 correspond bijectively to the isoclasses of representations of I" of the dimension
vector d. Denote by O the orbit corresponding to the isoclass [M]. Since there are only finitely

many Gg-orbits in Ry, there exists a dense one, whose corresponding representation is denoted
by Ed.
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Lemma 2.5 (see [14]) Let iy,--- ,in be an enumeration of T'g such that k < 1 if there is
an arrow from iy to i;. Then for alld =Y dya;, € ®F, we have [E4] = [S;,]*% % - % [S;,]*%n
k=1
in Mg, .

Like the Ringel-Hall algebras, there is a natural grading on the monoid algebra ZMg , in
terms of dimension vectors:

ZMgo. = P zM.,

eeNITol
where ZM_. is spanned by all [My(a)k], o € Be.

3 Presentation of Degenerate Ringel-Hall Algebra $¢(F})

In the following, we consider the quiver:

— 9 ..
’ 5 6
«
I FEg : .
(I 6 1 2
Y — 5
3 Iz 4

where ¢ is the automorphism of Eg such that o(1) =1, 0(2) =2, 0(3) =5, 0(4) =6, o(5) =
3, 0(6) =4, o(a) =, o(B) =7, o(y) =6, 0(d) = p, o(u) = 6. Then the associated valued
quiver Fy with the valuation e; = 1, e5 = 1, €3 = 2, €4 = 2 has the form:

(1) . — -

Then we have 90(Fy) = Ho(Fs,0). It is easy to see that the following relations hold in $o(Fy)
(for 1 <i,j < 4):

(F1) uiu; = uju, for |i — j| > 2, (F2) u?u;y1 = usuipiu; fori € {1,3},

(F3) wjui,, = wipruguipr fori € {1,3},  (F4) ugusus = usu3,

(F5) uguguiuz = usus, (F6) uduzus = ujus.

Now consider the corresponding monoid algebra ZMpg, ,. By [14], the following relations
hold in ZMEg, o

(F1) [Si]  [S;] = [S5] = [Si] for i — j| = 2,
(F2) [Si]*?[Siv1] = [Si] * [Siza] % [Si] for i € {1,3},
(F3) [Sil[Si41]™? = [Siwa] % [Si] * [Si] for i € {1,3},
(F4) [S5] * [S2] * [S3] = [Sa] * [S5]*%,

(F5) [Sa] * [S3] * [Sa]™ * [S5] = [S2]* * [S5]"2,

(F6) [Sa2]"™® * [S3] = [S2] = [S2]™ % [S].

In the following, we prove that the set {[S1],[S2],[S3],[S4]} and the relations (F1)-(F6)
between them give a presentation of the monoid algebra ZMg, ..
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Proposition 3.1 The monoid algebra ZM g, » has a presentation with generators [S;] (1 <
i <4) and relations (F1)-(F6).

Proof For convenience, set ZM = ZMEg,, ,. Let S be the free Z-algebra with generators
s; (1 <4< 4). Consider the ideal J generated by the following elements for 1 < 4,5 < 4,

(F'1) sisj — s;8i for |i —j| > 2, (F'2) s?si41 — sisip1s; fori € {1,3},

(F'3) sis7,1 — sisv18i8i41 fori € {1,3},  (F'4) s3s283 — s253,

(F'5) 52535553 — S552, (F'6) s2s350 — 5353.
Then, there is a surjective monoid algebra homomorphism 7 : § — ZM given by s; — [S;]
with 1 < ¢ < 4. Because we have i = 0 (1 < i < 6) in ZM, the map 7 induces a surjective
algebra homomorphism 7 : §/J — ZM given by s; + J — [S;] (1 < i < 4). To complete the
proof, it suffices to show that 7 is injective.

Set fi = s; + 3 (1 <14 <4). Given a KF;-module M with the dimension vector dimM :=
(a,b,c,d), we define a monomial in §/J by

n(M) = 13515

It is known that the Auslander-Reiten quiver for ICEg is as follows:

\///\/\/\/\

NN NS NN
w INONINTNI NS
INENININS N

where each P; (1 < ¢ < 6) is the indecomposable projective K Eg-module corresponding to
the vertex 7 and 7 is the Auslander-Reiten translation.

Using the Frobenius morphism F' = Fg, , = FE,,0,q introduced in Section 3, it is easy to
see that P; and P, are F-stable and all other P; have F-period 2 with Pgm = P, PF] = Fs.
By folding the Auslander-Reiten quiver of KFEg, we obtain the Auslander-Reiten quiver of
A(q) = (ICEG)F = ICF4:

[My1] [M21] [M31] [My1] [Mg1] [Mg1]
[My2] [M22] [M32] [My2] [Mg2] [Mg2]
(Iv) / \ / \ / \ / \ / \ /
[My3] [M23] [M33] [My3] [M53] [Mg3]

INSNSNSN NS

[M24] [M34] [My4] [M54] [Mg4]



Grébner-Shirshov Basis for Degenerate Ringel-Hall Algebras of Type Fy 205

where M;; denotes the indecomposable JCFy-modules, 1 <4 < 6 and 1 < j < 4. Here My; =
PE My = Pf M3 = (Ps @ P5)F', M1y = (Py @ Ps)!" and 7 = 74# is the Auslander-Reiten
translation of A(q) (see [7] for details). Moreover, the dimension vectors of M;; (1 <¢ < 6,1 <
j < 4) and the associated monomials in §/J are given by

dimMi4 = (0,0,0,1) and n(M14) = f4,
dimM5 = (0,0,1,1) and n(Mi3) = f3f4,
dimM;5 = (0,1,1,1) and n(M12) = fof3fa,
dimM;; = (1,1,1,1) and n(M11) = fifafsfa,
dimMs; = (0,1,1,0) and n(Ms1) = fafs
dimMoy = (1,2,2,1) and n(May) = f1f2f2f4,
dimMss = (0,2,2,1) and n(Mag) = f3 f4,
dimMs, = (0,0,1,0) and n(Mzy4) = f5,
dimMs; = (1,2,1,1) and n(Ms;) = f1f2 f3fa,
dimM;zy = (1 3, 2, 1) and n(Msz) = f1f3 £ f4,
dimMs3 = (2,4,3,2) and n(Msz) = f2fs f3 37,
dimM3, = (0, 27 1, 1) and n(Mszy) = f2 f3f4,
dimMy; = (1,1,1,0) and n(My1) = f1f2f3,
dimMys = (2,3,2,1) and n(Myo) = f2f3f2fa,
dimMy3 = (2,4,3,1) and n(My3) = f2faf3fa,
dimMyy = (2,2,2,1) and n(Mys) = f2f2f2f4,
dimMs; = (0,1,0,0) and n(Ms1) = fa,
dimMso = (1,2,1,0) and n(Mse) = f1f2 f3,
dimMs3 = (2,4,2,1) and n(Ms3) = f2fof2fa,
dimM;, = (0,2,1,0) and n(Mss) = f2fs,
dimMg, = (1,0,0,0) and n(Me1) = f1,
dimMge = (1,1,0,0) and n(Mez2) = f1f2,
dimMsgs = (2,2,1,0) and n(Mgs) = f1 f2 f3,
dimMey = (2,2,1,1) and n(Mgs) = f2f2f3fs.

Now we give an enumeration of the indecomposable A(g)-modules in figure (IV):
(¥) Mg < Mz < Mg < My < Miy14 < Mip13 < Mip12 < My

Now, by using the relations (F'1)-(F'6), we compute the relations between n(1;;) (1 <i <
6,1<j<4)inS/3J:

n(Miz)n(Mia) = fafafs = fafsfs = n(Mig)n(Mi3);
n(May)n(Mis) = fafsfa = n(Mia);
n(Mag)n(Mis) = f1f3 f5 fafsfa
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(by (F'3))

(by (F'2))
(by (F'4))

(by (F'1))
(by (F'3))

(by (F'1))

(by (F'2))
n(Mlg)n(MH)n(MM).

(by (F'2))

fafifafsfafsfafs
fafifof3 fafafs
fofafifofafafafs
fafsfafrfafsfafs

f1f3 fsfafafafa
fif3fafafsfafs
fofifsfafafifs
fafsfifofafifs

In this way, we get the following set B of relations:

206

: =

T3.3 333 33 $zeseidiiesEs
22333 333 33  FTEREEFEIEREEEES
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333533 ) 333 23 133333 13333
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R Rl I e i e R e R I = IRl i T R R e e
4 s 4 9 9 E S8 4 E E 5 5 E 2 I d a5 o EE S oa a5
S S S Ao~ N A Ao B N o o O o e
2222222222223 222222322222323
= £ £ £ 2 € € 2 € € £ 2 € € 2 8 € £ € € g € € g €
N = 4 4 = a4 a4 a4 N NN m o n o n o JFoOFo T OO 0 0

= = = ~ = =

7471717 4734

L 3I3I.. 133

R e R e R e R R S < A IR e IR i)

8 2 d o s I FE AR EEEE 255

= =S =2 == 3I2=2t=2==2=2=22T323=2=2=2=2222%2==-=

~— N S~— S~— e e e e TN TR N N N S e N N

s = g W s = W c = W £ 2 2 2 ¥ 2 & = & nme”Mn c =

L = =~ == | | | Y - - |

FEIFIN 2l !l 222320 0 3 FFF 0 ee:

= =S =2 T2 =282 =2a=2=2=2=223=2=2=2=32T2==-=

((((((((((( SN N N N N S e N N

= £ = = = E £E E ES S E E E E = = = £ &

)))))))))))))))))))) —~ o~
IS B R = - = T E g 2 o c & & ©

e N N N N T N S

e € = e € e € e € c e € e € e € c e € e € e € =1 e €
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53. n(Mits,3)n(Mis) = n(Mit1,2)n(Mis1,2), 54. n(Me1)n (M) = n(Mis)n(Me),

55. n(Mea)n(Mag) = n(Mi1)n(Mi1), 56. n(M;1)n(M;2) = n(Mio)n(M;1),

57. n(Mig1,2)n(Miz) = n(Mix)n(Mit1,3) 58. n(Mig1,3)n(Miz) = n(Miz)n(Mit1,3),
59. n(Miq1,4)n(Mi2) = n(Miz)n(Mit1,4), 60. n(Miy2,1)n(Miz) = n(Mi)n(Miy2,4),
61. n(Mir2,2)n(Mi2) = n(Mit1,2)n(Mit2,4), 62. n(Miy2,4)n(Miz) = n(Mi2)n(Miy2,4),
63. n(Mi+s,3)n(Miz) = n(Mit1,1)n(Miy23), 64. n(Miys,4)n(Miz) = n(Mi )n(Miy1,2),
65. n(Mi+a,3)n(Mi2) = n(Mit22)n(Miy2,1), 66. n(Mira,4)n(Mi2) = n(Mit1,1)n(Mit2.4),
67. n(Meg)n(Mi2) = n(Mi1)n(Ms1), 68. n(M;q12)n(Mi1) = n(Mi)n(Mit1,2),
69. n(M;113)n(M;) = n(M;1)n(Mit1,3), 70. n(M;q1.4)0(Min) = (M )n(Mit1,4),
71 n(Mig,1)n(Mi) = n(Min)n(Mig2,1), 72. 0(Miy2,3)0( M) = n(Mi )n(Miy23),
73. a(Miy2,4)n(Mix) = n(Mi )n(Migz4), T4 n(Miys2)n(Mi) = n(Mip2,1)n(Miys ),
75. n(Miys,3)n(Mi1) = n(Miy2,2)n(Mits,4), 76. n(Migs.4)n(Mi) = n(Mi)n(Migs,a),
77 0 (Miga3)n(Mir) = n(Mig2,1)n(Miys2), 78. n(Mg1)n(My1) = n(Mi1)n(Me),

79. n(Mez)n(Mi1) = n(My1)n(Mea), 80. n(Mpa)n(Mi1) = n(Mi1)n(Mea),

81. n(Mis2,3)n(Mia) = n(Mi )n(Mir)n(Miy2,4),

82. n(Miy1,2)n(Miz) = n(Mi)n(Mi)n(Mit,4),

83. n(Mis1,3)n(Mis) = n(Miz)n(Mi2)n(Miy1,4),

84. n(Miy2,3)n(Miz) = n(M)n(M)n(Mit,3),

85. n(Miys a)n(M;3) = n(Mp )n(Mi )n(Mit1,4)

86. n(Miv2,3)n(Miz) = n(Ma)n(Miv1,2)n(Mitz,4),

where each first subscript belongs to the set {1,2,3,4,5,6}.

Remark 3.1 By comparing the set B with the minimal Grébner-Shirshov basis given in
[15], we found that the right-hand side of each one in B is just the minimal term (we forget the
coefficient) of the right-hand side of the corresponding one in the minimal Grébner-Shirshov
basis in [15]. But at the moment, we do not know the reason.

Now we are ready to prove the injectivity of
n: S/J—ZM, s;+F+—1[Si], 1<i<A4.
For convenience, we set
Vi = My, Vo = M3, V3 = Mi2, Vi = Mi1, Vs = May, Vo = Mas, Vo = Moo, Vs = Moy,
Vo = M3y, Vio = M3s, Vi1 = M3a, Vie = M31,Vig = My, Via = My, Vis = Ma2, Vie = Mu,
Viz = Msa, Vis = Ms3,Vig = M52, Vag = Ms1, Va1 = Mea, Va2 = Mes, Vaz = Me2, Vas = Me.

Then by the order (x), we have Vi < --- < Vo4. Given a monomial w = f;, --- f;,, (1 < i1 <
im < 4), we have

w=fi, - fi,, = (S ) n(Si,)
Applying the relations in B repeatedly, we can get w = n(V3)"™ ---n(V,,)"2* for some ny, - -+ , Moy
> 0. Hence, all the monomials n(V;)™ ---n(V,)"** with ni,--- ,ngs > 0 span S/J.
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On the other hand, Lemma 2.5 implies that for nq,--- ,n9y > 0,
(V)™ - on(V2q)"2) = [VA]™ oo [Vag] 20

By Lemma 2.4, the elements [V1]*"1 % - -%[Va4]*™?* with nq,- -+ ,nga > 0 form a basis of ZM g, ..
Consequently, the morphism 7 is injective.
Hence we have following result.

Proposition 3.2 There are graded Z-algebra isomorphisms
®: ZMEs o — Ho(Fu), [Si] — usy, 1<0<4,

Proof By Lemma 2.3 and Proposition 3.1, there is a surjective Z-algebra homomorphism
O : ZMp, o — $Ho(Fy) given by [S;] — u; with 1 < ¢ < 4. Since {[M;(MNk] | A € B} and
{ux | A € B} are bases for ZM g, » and $9(Fy4), respectively, we know that ® is an isomorphism.

So we have the following theorem.

Theorem 3.1 The generators u; (1 < i < 4) and the relations (F1)—(F6) give a presenta-
tion of Ho(Fy).

4 Grobner-Shirshov Basis for $o(Fy)

For any monomial u € $(F4), we define the length I(u) of u to be the number of the u; € C
occuring in u. Now, we define a degree lexicographic order < on the monomials in $o(Fy) as
follows:

u<wv if and only if I(u) < I(v) or I(u) = I(v) and u < v,

and then it is a monomial order (see [16]).
We have already shown that $o(F4) is an associative algebra over Z generated by C' =
{u1,uz2,us,us} with the generating relations

Uru3 = Usuy, UTUg = UqU7, U2Uyg = UqU2,
2 2 _ 2 _
U1UZ = U2UIUZ, UTU2 = U1U2U1, UIUL = U4U3U4,
2 _ _ 2 2 — 23,2
UzUg = U3U4U3, U3U2UI = U2UZ, U2U3UZU3 = UyU3,

’U,%’LL3’LL2 = u%u&

F =

In the following, we apply the algebra isomorphism ® o7 to the relations 1, 29 and 81 in B.
(1) We apply @ o7 to the relations 1:

n(Ma1)n(Mig) = n(Mia), n(Msi)n(Mag) = n(Maz), n(My)n(Mse) = n(Msz),
n(Ms1)n(Maa) = n(Ma2), n(Me1)n(Msa) = n(Ms2),
So then, we have 3 relations (two identical relations are omitted):

2,2 2 3,2 2 2,3, 2 2,2, 2
U1UU3U4 = UTURU3U4LUS, U1UU3U4 = UTU2U3UU3U4, UTUU3U4 = U2UTURU3U4.

(2) We apply ® o7 to relations 29:

n(Mig)n(Mia) = n(Mia)n(Mis), n(Maz)n(May)
n(Mgg)n(M34) = 11(]\4’34)T‘l(]\433)7 n(M43)n(M44)
n(Msz)n(Msa) = n(Msa)n(Mss), n(Me3z)n(Mes)

n(Mag)n(Mas),
(Mya)n(Mays),
n(Mes)n(Mes),

I
=
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and we have 6 relations:
u(;ui = U4U3U4, u%u%m;u:», = U3U%U§U4,
u%u%u%uiu%%wl = u%u;;u;;u%u%uguﬁ, u%u%u%mu%u%u%w = u%u%u%mu%u%ugm,
u%u%u%u;;u%u?, = u%ugu%uéugw, ’U/%’U,%’LL3’U,%’U,%U3’U,4 = u%u%ugwu%u%u&
(3) We apply ® o7 to the relations 81:
n(Mzz)n(Mig) = n(Miy)n(Myg)n(Msy), n(Myz)n(Mag) = n(Moy)n(May)n(May),
n(Mss)n(Mss) = n(Mz)n(Ma)n(Msa),  n(Mes)n(Maa) = n(Mar)n(Mar)n(Mea),
and we have 4 relations:
UTUSUFUG = U UQUBUAUI U U ULUS U U, udusuiusuz = usuzusuzuuduiug,
U%U3U§U4U%U3U4 = u1u§u3u4u1u§U3u4u§U3, u%u%%u%u%u%f@ = u1UQU3u1UQU3u%u§U3U4.

By applying the algebra isomorphism ® o7 to all the relations in B, we get a new set F” of the

relations (since there are 247 relations in F”, to save space, we do not write them all here).

By computing all possible compositions between the elements of F'UF", we get the following

non-trivial compositions, that is, the new set " of the relations in $o(Fy):

2 _ _
U1U2UZUFU3U4 = U2UTU2UZU4LU2UZ, ULU2UU4U2UIU2UI U4 = U2UTU2UZULULU2U3 U4,

U2U3UTU2U3UAU2UZ = U2U3U2U3UIU2U3 U4,  UIU2UZULU2U3UT U2UZU4 = U2U3UIU2UZULUTU2U3 UL,

’U,Q’U,l’U,QU3U%’U,3 = u%U3u2u1uQU3, ’U,1’U,2’U,3’U,4’LL2’LL3U%U3U4 = U%U3U4U1’U,2’U3’U,4UQU3,
u2u1u§u;3 = U2U1U2U3U2, UQU1UQU3U1UQU3U4U%U3 = U%U3UQU1UQU3U1UQU3U4,
ULU2UIU2UIULU2 = U2UTU2UIU2UI U4, ULU2ULU2UIULUTU2UIU4 = UTU2UIU4LULU2ULU2U3 U4,
ULU2UTU2UIU2 = U2ULUULUUSZ, U1UQU3U%U3U4U%U3U4 = U%U3U4U1UQU3U%U3U4,

ULU2UIU2UIULU2UZ = UTU2UIULU2UIU2UZ, UTU2UIUIU2UIUIU2UIU4 = U1 U2UIUIU2UIU4LUI U2US,

ULU2UTU2UIU2UZ = U U2U U2U3 UL U2, UTU2U3UTU2U3UAU2UZ = U2U3UTU2U3UTU2U3U4,

U2U3ULU3UU3 U4 = U2U3U2U3ULU2U3Z, UTU2UTU2U3UAU] U2UZ = U U2UZUIU2UT U2U3 U4,

’U,%’U,3UQ’LL1’LL2’U,3U4 = ’U,Q’ul’U,QU3’U,4’U,%U3,
UTUUIU2UIUAUL U2UIU4 = UTU2UIULUTU2U3U2UZ UL,
UL U2UIU2UTU2UZ = U2UTU2UIUTU2US,
U2U3U2UZULU2UIU4 = U2U3ULU2UZU2UI U4,

UL U2UIUAU2UIU2UI UL = U2UIU2UIU4LU] U2U3 U4,

2 2
UTUZUIU4LUTU2U3ULUZUI U4,

U1UQU1UQU3U%U3U4U1UQU3U4
2 _ 2

UTU2U3UZU3U4AUTU2U3ZU4AU2U3 = U2U3ULU2U3UZU3U4LUIU2UI UL,

UTU2UIUI U2U3U4UTU2UI U4 = UL U2UZULU U2U3 U U2UZ U4,

2 _ 2
UTU2UIUIU2UIUZ U3 U4AUTU2U3 U4 = UTU2U3UTU2U3U4LUT U2U3UZU3 U4,

(5] UQU3’U,%’U,3U4’U,1’U,Q’LL3’LL%U,3U4’U,1U,2’U3U,4 = ’U,1U,2’LL3’U,%’U,3U4’U,1 ’LLQ’U,3U,4U1’U,2’U3U%U,3U4.

We set F = F'UF"UF". Then by the construction of the set F of the relations in $o(Fy),

we get our main result in this paper.
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Theorem 4.1 With the notations above, F is a Grobner-Shirshov basis for $o(Fy).
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