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Abstract In this paper, by using the Frobenius morphism and the multiplication formulas
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erate Ringel-Hall algebra, and then construct the Gröbner-Shirshov basis for degenerate
Ringel-Hall algebras of type F4.
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1 Introduction

Through the works of Buchberger [1], Bergman [2] and Shirshov [3], the Gröbner-Shirshov
basis theory has become a powerful tool for the solution of the reduction problem in algebra
and provides a computational approach for the study of structures of algebras. The degenerate
Ringel-Hall algebra is the specialization of the Ringel-Hall algebra at q = 0 and in [4] Reineke
gave a remarkable basis which closes under multiplication.

In this paper, we first give a presentation of the degenerate Ringel-Hall algebra H0(F4) by
using the method of Frobenius morphism (see [5]) and the idea of monoid algebra (see [4]).
Then, by using the relations which are computed to give this presentation, we construct a
Gröbner-Shirshov basis for the degenerate Ringel-Hall algebra H0(F4).

2 Some Preliminaries

First, we recall some relevant notions and results about the Gröbner-Shirshov basis theory
from [6].

Let S be a linearly ordered set, k be a field and k〈S〉 the free associative algebra generated
by S over k. Let S∗ be the free monoid generated by S. Order S∗ by the deg-lex order “ < ”.
Then any polynomial f ∈ k〈S〉 has the leading word f. We call f monic if the coefficient of f

is 1.
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Let f, g ∈ k〈S〉 be two monic polynomials and ω ∈ S∗. If ω = fb = ag for some a, b ∈ S∗

such that deg(f)+deg(g) < deg(ω), then (f, g)ω = fb−ag is called the intersection composition
of f and g relative to ω. If ω = f = agb for some a, b ∈ S∗, then (f, g)ω = f − agb is called the
inclusion composition of f and g relative to ω.

Let R ⊂ k〈S〉 be a monic set. A composition (f, g)ω is called trivial modulo (R, ω) if
(f, g)ω =

∑
αiaitibi, where each αi ∈ k, ti ∈ R, ai, bi ∈ S∗ and aitibi < ω.

R is called a Gröbner-Shirshov basis if any composition of polynomials from R is trivial
modulo R.

A well order “ < ” on S∗ is monomial if for any u, v ∈ S∗, we have

u > v =⇒ ω1uω2 > ω1vω2 for all ω1, ω2 ∈ S∗.

A standard result about the Gröbner-Shirshov basis theory is the following lemma.

Lemma 2.1 (see [6]) (Composition-Diamond Lemma) Let k be a field, A = k〈S | R〉 =
k〈S〉/Id(R) and “ < ” be a monomial order on S∗, where Id(R) is the ideal of k〈S〉 generated
by R. Then the following statements are equivalent:

(a) R is a Gröbner-Shirshov basis;
(b) f ∈ Id(R) =⇒ f = atb for some t ∈ R and a, b ∈ S∗;
(c) Irr(R) = {u ∈ S∗ | u �= atb, t ∈ R, a, b ∈ S∗} is a k-linear basis of the algebra A.

Next, we recall some relevant notions and results about the Frobenius morphism method
from [5].

Let (Q, σ) be a quiver Q with the automorphism σ. The associated valued quiver Γ = Γ(Q, σ)
is defined as follows. Its vertex set Γ0 and arrow set Γ1 are simply the sets of σ-orbits in Q0

and Q1, respectively. For ρ ∈ Q1, its tail (resp., head) is the σ-orbit of tails (resp., heads) of
arrows in ρ. The valuation of Γ is given by

di = |{vertices in σ-orbit i}| for i ∈ Γ0,

mρ = |{arrows in σ-orbit ρ}| for ρ ∈ Γ1.

Let Fq be the finite field of q elements and K = Fq be the algebraic closure of Fq.

Definition 2.1 (see [5, 7]) Let M be a vector-space over K. An Fq-linear isomorphism
F : M −→ M is called a Frobenius map if it satisfies:

(a) F (λm) = λqF (m) for all m ∈ M and λ ∈ K;
(b) For any m ∈ M , Fn(m) = m for some n > 0.

Let C be a K-algebra with identity 1. We do not assume generally that C is finite-
dimensional. A map FC : C −→ C is called a Frobenius morphism on C if it is a Frobenius
map on the K-space C, and it is also an Fq-algebra isomorphism sending 1 to 1.

Let A := KQ be the path algebra of Q over K. Then σ induces a Frobenius morphism
F = FQ,σ = FQ,σ,q : A −→ A given by

∑
s

xsps 	−→ ∑
s

xq
sσ(ps), where

∑
s

xsps is a K-linear

combination of paths ps and σ(ps) = σ(ρt) · · ·σ(ρ1) if ps = ρt · · · ρ1 for arrows ρ1, · · · , ρt ∈ Q1.
Then the fixed-point algebra

A(q) = A(Q, σ; q) := AF = {a ∈ A | F (a) = a}
is an Fq-algebra associated with (Q, σ).
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Definition 2.2 (see [5]) Let (Q, σ) be a quiver with the automorphism σ. A representa-
tion V = (Vi, φρ) of Q is called F -stable (or equivalently, an F -stable A-module) if there is
a Frobenius map FV :

⊕
i∈Q0

Vi −→ ⊕
i∈Q0

Vi satisfying FV (Vi) = Vσi for all i ∈ Q0 such that

FV φρ = φσ(ρ)FV for each arrow ρ ∈ Q1

For an F -stable representation V = (Vi, φρ), let dimV =
∑

i∈Γ0

(dimVi)i ∈ NΓ0 and dimV =
∑

i∈Γ0

dimVi denote the dimension vector and the dimension of V , respectively. An F -stable

representation is called indecomposable if it is nonzero and not isomorphic to a direct sum of
two nonzero F -stable representations.

Lemma 2.2 (see [8]) There is a one-to-one correspondence between isoclasses of indecom-
posable A(q)-modules and isoclasses of indecomposable F -stable A-modules.

Then, we recall some relevant notions and results about the degenerate Ringel-Hall algebra
from [8].

From now on, we assume that (Q, σ) is a Dynkin quiver Q with the automorphism σ. Dlab
and Ringel [9–10] have shown that there is a bijection from the isoclasses of indecomposable
A(q)-modules to the set Φ+ = Φ+(Q, σ) of positive roots in the root system associated with
the valued quiver Γ = Γ(Q, σ). For each α ∈ Φ+, let Mq(α) denote the corresponding indecom-
posable A(q)-module, so dimMq(α) = α. By the Krull-Schmidt theorem, every A(q)-module
M is isomorphic to

Mq(λ) :=
⊕

α∈Φ+

λ(α)Mq(α)

for some function λ : Φ+ −→ N. Thus, the isoclasses of A(q)-modules are indexed by the set

B = B(Q, σ) =: {λ | λ : Φ+ −→ N} = N
Φ+

,

which is independent of q. By Lemma 2.2, the isoclasses of F -stable KQ-modules are also
indexed by B. Clearly, for each i ∈ Γ0, there is a complete simple A(q)-module Si corresponding
to i.

For M, N1, · · · , Nt ∈A(q)-mod, let FM
N1,··· ,Nt

be the number of filtrations

M = M0 ⊇ M1 ⊇ · · · ⊇ Mt−1 ⊇ Mt = 0

such that Mi−1/Mi
∼= Ni for all 1 ≤ i ≤ t is finite. By [11], FM

N1,··· ,Nt
is a polynomial in q when

q varies. More precisely, for λ, μ, ν ∈ B = B(Q, σ), there exists a polynomial ϕλ
μ,ν(q) ∈ Z[q]

(the polynomial ring over Z in one indeterminate q) such that ϕλ
μ,ν(qk) = F

Mqk
(λ)

Mqk(μ),Mqk(ν)
holds

for any finite field k with qk elements.
The generic Ringel-Hall algebra H = Hq(Q, σ) is the free module over Z[q] with the basis

{uλ | λ ∈ B} and the multiplication defined by

uμuν =
∑
λ∈B

ϕλ
μ,ν(q)uλ.

It is an N
|Γ0|-graded algebra

H =
⊕

e∈N|Γ0|

He,
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where He is spanned by all μα, α ∈ Be := {β ∈ B | dimMq(β) = e}.
For each λ ∈ B, set Mq(λ)K := Mq(λ)⊗FqK which is the F -stable KQ-module corresponding

to λ.
Now by specializing q to 0, we obtain the Z-algebra H0(Q, σ), called the degenerate Ringel-

Hall algebra associated with Γ = Γ(Q, σ). In other words, H0(Q, σ) = Hq(Q, σ) ⊗Z[q] Z, where
Z is viewed as a Z[q]-module with the action of q by zero. By abuse of notations, we also write
uλ = uλ ⊗ 1. Thus, the set {uλ | λ ∈ B} is a Z-basis of H0(Q, σ). Let ui = u[Si] ⊗ 1 in H0(Q, σ)
for i ∈ Γ0.

Lemma 2.3 (see [12]) As a Z-algebra, H0(Q, σ) is generated by ui, i ∈ Γ0.

Finally, we recall some relevant notions and results about monoid algebras from [4].
For KQ-modules M and N , the generic extension M ∗ N of M by N was defined in [13] as

the unique (up to isomorphism) element in Ext1
KQ(M, N) having an endomorphism algebra of

the minimal dimension. As shown in [4], the star operation ∗ defines the structure of a monoid
on the set MQ = MQ,K of isoclasses of KQ-modules.

Proposition 2.1 (see [7]) If M and N are two F -stable KQ-modules, then M ∗N is also
F -stable.

By this proposition, the set of isoclasses [M ] of F -stable KQ-modules, together with the
operation [M ] ∗ [N ] = [M ∗ N ], defines a submonoid MQ,σ of MQ with the unit element [0].

Since all the indecomposable A(q)-modules are indexed by the set B, we give an enumeration
on Φ+ defined by β1, β2, · · · , βN such that for all prime powers q,

HomA(q)(Mq(βs), Mq(βt)) �= 0 implies s ≤ t.

Moreover, in this case, Ext1
A(q)(Mq(βs), Mq(βt)) �= 0 implies s > t. Thus, we give an enumera-

tion on indecomposable A(q)-modules and set Mq(β1) ≺ Mq(β2) ≺ · · ·Mq(βN ).
By the definition of the generic extension, if Ext1

A(q)(M, N) = 0, then M ∗ N ∼= M ⊕ N .
Consequently, we have the following known result.

Lemma 2.4 Each element [Mq(λ)K] in MQ,σ with λ ∈ B can be written as

[Mq(λ)K] = [Mq(β1)K]∗λβ1 ∗ · · · ∗ [Mq(βN )K]∗λβN .

Moreover, these elements form a Z-basis of ZMQ,σ.

For a dimension vector d =
∑

i∈Γ0

dii ∈ NΓ0, we consider the affine space

Rd =
∏

α:i→j

HomK(Kdi ,Kdj ).

Then the group Gd :=
∏

i∈Γ0

GLdi(K) acts on Rd by conjugation, i.e., by

(gi) · (xρ)ρ = (gjxρg
−1
i )ρ:i→j .

The orbits of Gd correspond bijectively to the isoclasses of representations of Γ of the dimension
vector d. Denote by OM the orbit corresponding to the isoclass [M ]. Since there are only finitely
many Gd-orbits in Rd, there exists a dense one, whose corresponding representation is denoted
by Ed.
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Lemma 2.5 (see [14]) Let i1, · · · , in be an enumeration of Γ0 such that k < l if there is

an arrow from ik to il. Then for all d =
n∑

k=1

dkαik
∈ Φ+, we have [Ed] = [Si1 ]∗di ∗ · · · ∗ [Sin ]∗dn

in MQ, σ.

Like the Ringel-Hall algebras, there is a natural grading on the monoid algebra ZMQ,σ in
terms of dimension vectors:

ZMQ,σ =
⊕

e∈N|Γ0|

ZMe,

where ZMe is spanned by all [Mq(α)K], α ∈ Be.

3 Presentation of Degenerate Ringel-Hall Algebra H0(F4)

In the following, we consider the quiver:

� �

��

� �

E6 :(I)
5 6

21

3 4

α

β

γ

δ

μ

where σ is the automorphism of E6 such that σ(1) = 1, σ(2) = 2, σ(3) = 5, σ(4) = 6, σ(5) =
3, σ(6) = 4, σ(α) = α, σ(β) = γ, σ(γ) = β, σ(δ) = μ, σ(μ) = δ. Then the associated valued
quiver F4 with the valuation ε1 = 1, ε2 = 1, ε3 = 2, ε4 = 2 has the form:

� � � �(II)
1 2 3 4

(1 , 2)

Then we have H0(F4) = H0(E6, σ). It is easy to see that the following relations hold in H0(F4)
(for 1 ≤ i, j ≤ 4):

(F1) uiuj = ujui for |i − j| ≥ 2, (F2) u2
i ui+1 = uiui+1ui for i ∈ {1, 3},

(F3) uiu
2
i+1 = ui+1uiui+1 for i ∈ {1, 3}, (F4) u3u2u3 = u2u

2
3,

(F5) u2u3u
2
2u3 = u3

2u
2
3, (F6) u2

2u3u2 = u3
2u3.

Now consider the corresponding monoid algebra ZME6,σ. By [14], the following relations
hold in ZME6,σ:

(F1) [Si] ∗ [Sj ] = [Sj ] ∗ [Si] for |i − j| ≥ 2,

(F2) [Si]∗2[Si+1] = [Si] ∗ [Si+1] ∗ [Si] for i ∈ {1, 3},
(F3) [Si][Si+1]∗2 = [Si+1] ∗ [Si] ∗ [Si+1] for i ∈ {1, 3},
(F4) [S3] ∗ [S2] ∗ [S3] = [S2] ∗ [S3]∗2,

(F5) [S2] ∗ [S3] ∗ [S2]∗2 ∗ [S3] = [S2]∗3 ∗ [S3]∗2,

(F6) [S2]∗2 ∗ [S3] ∗ [S2] = [S2]∗3 ∗ [S3].

In the following, we prove that the set {[S1], [S2], [S3], [S4]} and the relations (F1)–(F6)
between them give a presentation of the monoid algebra ZME6,σ.
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Proposition 3.1 The monoid algebra ZME6,σ has a presentation with generators [Si] (1 ≤
i ≤ 4) and relations (F1)–(F6).

Proof For convenience, set ZM = ZME6,σ. Let S be the free Z-algebra with generators
si (1 ≤ i ≤ 4). Consider the ideal J generated by the following elements for 1 ≤ i, j ≤ 4,

(F ′1) sisj − sjsi for |i − j| ≥ 2, (F ′2) s2
i si+1 − sisi+1si for i ∈ {1, 3},

(F ′3) sis
2
i+1 − si+1sisi+1 for i ∈ {1, 3}, (F ′4) s3s2s3 − s2s

2
3,

(F ′5) s2s3s
2
2s3 − s3

2s
2
3, (F ′6) s2

2s3s2 − s3
2s3.

Then, there is a surjective monoid algebra homomorphism η : S −→ ZM given by si 	−→ [Si]
with 1 ≤ i ≤ 4. Because we have Fi = 0 (1 ≤ i ≤ 6) in ZM, the map η induces a surjective
algebra homomorphism η : S/J −→ ZM given by si + J 	−→ [Si] (1 ≤ i ≤ 4). To complete the
proof, it suffices to show that η is injective.

Set fi = si + J (1 ≤ i ≤ 4). Given a KF4-module M with the dimension vector dimM :=
(a, b, c, d), we define a monomial in S/J by

n(M) = fa
1 f b

2f c
3fd

4 .

It is known that the Auslander-Reiten quiver for KE6 is as follows:

where each Pi (1 ≤ i ≤ 6) is the indecomposable projective KE6-module corresponding to
the vertex i and τ is the Auslander-Reiten translation.

Using the Frobenius morphism F = FE6,σ = FE6,σ,q introduced in Section 3, it is easy to
see that P1 and P2 are F -stable and all other Pi have F-period 2 with P

[1]
3 = P5, P

[1]
4 = P6.

By folding the Auslander-Reiten quiver of KE6, we obtain the Auslander-Reiten quiver of
A(q) = (KE6)F ∼= KF4:

[M14] [M24] [M34] [M44] [M54] [M64]

[M13] [M23] [M33] [M43] [M53] [M63]

(IV)
[M12] [M22] [M32] [M42] [M52] [M62]

[M11] [M21] [M31] [M41] [M51] [M61]



Gröbner-Shirshov Basis for Degenerate Ringel-Hall Algebras of Type F4 205

where Mij denotes the indecomposable KF4-modules, 1 ≤ i ≤ 6 and 1 ≤ j ≤ 4. Here M11 =
PF

1 , M12 = PF
2 , M13 = (P3 ⊕ P5)F , M14 = (P4 ⊕ P6)F and τ = τAF is the Auslander-Reiten

translation of A(q) (see [7] for details). Moreover, the dimension vectors of Mij (1 ≤ i ≤ 6, 1 ≤
j ≤ 4) and the associated monomials in S/J are given by

dimM14 = (0, 0, 0, 1) and n(M14) = f4,

dimM13 = (0, 0, 1, 1) and n(M13) = f3f4,

dimM12 = (0, 1, 1, 1) and n(M12) = f2f3f4,

dimM11 = (1, 1, 1, 1) and n(M11) = f1f2f3f4,

dimM21 = (0, 1, 1, 0) and n(M21) = f2f3

dimM22 = (1, 2, 2, 1) and n(M22) = f1f
2
2f2

3 f4,

dimM23 = (0, 2, 2, 1) and n(M23) = f2
2 f2

3f4,

dimM24 = (0, 0, 1, 0) and n(M24) = f3,

dimM31 = (1, 2, 1, 1) and n(M31) = f1f
2
2f3f4,

dimM32 = (1, 3, 2, 1) and n(M32) = f1f
3
2f2

3 f4,

dimM33 = (2, 4, 3, 2) and n(M33) = f2
1 f4

2f3
3 f2

4 ,

dimM34 = (0, 2, 1, 1) and n(M34) = f2
2 f3f4,

dimM41 = (1, 1, 1, 0) and n(M41) = f1f2f3,

dimM42 = (2, 3, 2, 1) and n(M42) = f2
1 f3

2f2
3 f4,

dimM43 = (2, 4, 3, 1) and n(M43) = f2
1 f4

2f3
3 f4,

dimM44 = (2, 2, 2, 1) and n(M44) = f2
1 f2

2f2
3 f4,

dimM51 = (0, 1, 0, 0) and n(M51) = f2,

dimM52 = (1, 2, 1, 0) and n(M52) = f1f
2
2f3,

dimM53 = (2, 4, 2, 1) and n(M53) = f2
1 f4

2f2
3 f4,

dimM54 = (0, 2, 1, 0) and n(M54) = f2
2 f3,

dimM61 = (1, 0, 0, 0) and n(M61) = f1,

dimM62 = (1, 1, 0, 0) and n(M62) = f1f2,

dimM63 = (2, 2, 1, 0) and n(M63) = f2
1 f2

2f3,

dimM64 = (2, 2, 1, 1) and n(M64) = f2
1 f2

2f3f4.

Now we give an enumeration of the indecomposable A(q)-modules in figure (IV):

(∗) Mi4 ≺ Mi3 ≺ Mi2 ≺ Mi1 ≺ Mi+1,4 ≺ Mi+1,3 ≺ Mi+1,2 ≺ Mi+1,1.

Now, by using the relations (F ′1)–(F ′6), we compute the relations between n(Mij) (1 ≤ i ≤
6, 1 ≤ j ≤ 4) in S/J :

n(M13)n(M14) = f3f4f4 = f4f3f4 = n(M14)n(M13);

n(M21)n(M14) = f2f3f4 = n(M12);

n(M22)n(M13) = f1f
2
2 f2

3f4f3f4
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= f1f
2
2 f3f4f3f3f4 (by (F ′2))

= f1f
2
2 f3f4f3f4f3 (by (F ′2))

= f2f1f2f3f4f3f4f3 (by (F ′3))

= f2f1f2f
2
3f4f4f3 (by (F ′2))

= f2f1f3f2f3f
2
4 f3 (by (F ′4))

= f2f3f1f2f3f
2
4 f3 (by (F ′1))

= f2f3f1f2f4f3f4f3 (by (F ′3))

= f2f3f4f1f2f3f4f3 (by (F ′1))

= n(M12)n(M11)n(M24).

In this way, we get the following set B of relations:

1. n(Mi+1,1)n(Mi4) = n(Mi2), 2. n(Mi+1,4)n(Mi4) = n(Mi3),

3. n(Mi+3,1)n(Mi4) = n(Mi1), 4. n(Mi+3,3)n(Mi4) = n(Mi+2,3),

5. n(Mi+4,2)n(Mi4) = n(Mi+2,1), 6. n(Mi+4,4)n(Mi4) = n(Mi+2,4),

7. n(M63)n(M14) = n(M64), 8. n(Mi+4,1)n(Mi3) = n(Mi2),

9. n(Mi+4,2)n(Mi3) = n(Mi+1,2), 10. n(Mi+4,3)n(Mi3) = n(Mi+2,3),

11. n(Mi+4,4)n(Mi3) = n(Mi+1,3), 12. n(M62)n(M13) = n(M11),

13. n(M63)n(M13) = n(M44), 14. n(Mi+1,1)n(Mi2) = n(Mi+1,3),

15. n(Mi+3,1)n(Mi2) = n(Mi+1,2), 16. n(Mi+3,2)n(Mi2) = n(Mi+2,3),

17. n(Mi+4,1)n(Mi2) = n(Mi+2,4), 18. n(Mi+4,2)n(Mi2) = n(Mi+2,2),

19. n(M61)n(M12) = n(M11), 20. n(M62)n(M12) = n(M31),

21. n(Mi+1,1)n(Mi1) = n(Mi+1,2), 22. n(M63)n(M12) = n(M42),

23. n(Mi+2,2)n(Mi1) = n(Mi+2,3), 24. n(Mi+3,1)n(Mi1) = n(Mi+3,4),

25. n(Mi+4,1)n(Mi1) = n(Mi+2,1), 26. n(Mi+4,2)n(Mi1) = n(Mi+3,2),

27. n(Mi+4,4)n(Mi1) = n(Mi+2,2), 28. n(M62)n(M11) = n(M64),

29. n(Mi3)n(Mi4) = n(Mi4)n(Mi3), 30. n(Mi2)n(Mi4) = n(Mi4)n(Mi2),

31. n(Mi1)n(Mi4) = n(Mi4)n(Mi1), 32. n(Mi+1,2)n(Mi4) = n(Mi2)n(Mi1),

33. n(Mi+1,3)n(Mi4) = n(Mi2)n(Mi2), 34. n(Mi+2,1)n(Mi4) = n(Mi4)n(Mi+2,1),

35. n(Mi+2,2)n(Mi4) = n(Mi1)n(Mi+2,4), 36. n(Mi+2,4)n(Mi4) = n(Mi4)n(Mi+2,4),

37. n(Mi+3,2)n(Mi4) = n(Mi1)n(Mi+2,1), 38. n(Mi+3,4)n(Mi4) = n(Mi1)n(Mi1),

39. n(Mi+4,1)n(Mi4) = n(Mi4)n(Mi+4,1), 40. n(Mi+4,3)n(Mi4) = n(Mi+2,1)n(Mi+2,1),

41. n(M61)n(M14) = n(M14)n(M61), 42. n(M62)n(M14) = n(M14)n(M62),

43. n(M64)n(M14) = n(M14)n(M64), 44. n(Mi2)n(Mi3) = n(Mi3)n(Mi2),

45. n(Mi1)n(Mi3) = n(Mi3)n(Mi1), 46. n(Mi+1,1)n(Mi3) = n(Mi2)n(Mi+1,4),

47. n(Mi+1,4)n(Mi3) = n(Mi3)n(Mi+1,4), 48. n(Mi+2,1)n(Mi3) = n(Mi2)n(Mi1),

49. n(Mi+2,2)n(Mi3) = n(Mi1)n(Mi+1,3), 50. n(Mi+2,4)n(Mi3) = n(Mi2)n(Mi2),

51. n(Mi+3,1)n(Mi3) = n(Mi1)n(Mi+1,4), 52. n(Mi+3,2)n(Mi3) = n(Mi1)n(Mi+1,2),
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53. n(Mi+3,3)n(Mi3) = n(Mi+1,2)n(Mi+1,2), 54. n(M61)n(M13) = n(M13)n(M61),

55. n(M64)n(M13) = n(M11)n(M11), 56. n(Mi1)n(Mi2) = n(Mi2)n(Mi1),

57. n(Mi+1,2)n(Mi2) = n(Mi1)n(Mi+1,3), 58. n(Mi+1,3)n(Mi2) = n(Mi2)n(Mi+1,3),

59. n(Mi+1,4)n(Mi2) = n(Mi2)n(Mi+1,4), 60. n(Mi+2,1)n(Mi2) = n(Mi1)n(Mi+2,4),

61. n(Mi+2,2)n(Mi2) = n(Mi+1,2)n(Mi+2,4), 62. n(Mi+2,4)n(Mi2) = n(Mi2)n(Mi+2,4),

63. n(Mi+3,3)n(Mi2) = n(Mi+1,1)n(Mi+2,3), 64. n(Mi+3,4)n(Mi2) = n(Mi1)n(Mi+1,2),

65. n(Mi+4,3)n(Mi2) = n(Mi+2,2)n(Mi+2,1), 66. n(Mi+4,4)n(Mi2) = n(Mi+1,1)n(Mi+2,4),

67. n(M64)n(M12) = n(M11)n(M31), 68. n(Mi+1,2)n(Mi1) = n(Mi1)n(Mi+1,2),

69. n(Mi+1,3)n(Mi1) = n(Mi1)n(Mi+1,3), 70. n(Mi+1,4)n(Mi1) = n(Mi1)n(Mi+1,4),

71. n(Mi+2,1)n(Mi1) = n(Mi1)n(Mi+2,1), 72. n(Mi+2,3)n(Mi1) = n(Mi1)n(Mi+2,3),

73. n(Mi+2,4)n(Mi1) = n(Mi1)n(Mi+2,4), 74. n(Mi+3,2)n(Mi1) = n(Mi+2,1)n(Mi+3,4),

75. n(Mi+3,3)n(Mi1) = n(Mi+2,2)n(Mi+3,4), 76. n(Mi+3,4)n(Mi1) = n(Mi1)n(Mi+3,4),

77. n(Mi+4,3)n(Mi1) = n(Mi+2,1)n(Mi+3,2), 78. n(M61)n(M11) = n(M11)n(M61),

79. n(M63)n(M11) = n(M41)n(M64), 80. n(M64)n(M11) = n(M11)n(M64),

81. n(Mi+2,3)n(Mi4) = n(Mi1)n(Mi1)n(Mi+2,4),

82. n(Mi+1,2)n(Mi3) = n(Mi2)n(Mi1)n(Mi+1,4),

83. n(Mi+1,3)n(Mi3) = n(Mi2)n(Mi2)n(Mi+1,4),

84. n(Mi+2,3)n(Mi3) = n(Mi1)n(Mi1)n(Mi+1,3),

85. n(Mi+3,4)n(Mi3) = n(Mi1)n(Mi1)n(Mi+1,4),

86. n(Mi+2,3)n(Mi2) = n(Mi1)n(Mi+1,2)n(Mi+2,4),

where each first subscript belongs to the set {1, 2, 3, 4, 5, 6}.
Remark 3.1 By comparing the set B with the minimal Gröbner-Shirshov basis given in

[15], we found that the right-hand side of each one in B is just the minimal term (we forget the
coefficient) of the right-hand side of the corresponding one in the minimal Gröbner-Shirshov
basis in [15]. But at the moment, we do not know the reason.

Now we are ready to prove the injectivity of

η : S/J −→ ZM, si + J 	−→ [Si], 1 ≤ i ≤ 4.

For convenience, we set

V1 = M14, V2 = M13, V3 = M12, V4 = M11, V5 = M24, V6 = M23, V7 = M22, V8 = M21,

V9 = M34, V10 = M33, V11 = M32, V12 = M31, V13 = M44, V14 = M43, V15 = M42, V16 = M41,

V17 = M54, V18 = M53, V19 = M52, V20 = M51, V21 = M64, V22 = M63, V23 = M62, V24 = M61.

Then by the order (∗), we have V1 ≺ · · · ≺ V24. Given a monomial ω = fi1 · · · fim (1 ≤ i1 ≤
im ≤ 4), we have

ω = fi1 · · · fim = n(Si1) · · · n(Sim).

Applying the relations in B repeatedly, we can get ω = n(V1)n1 · · · n(Vμ)n24 for some n1, · · · , n24

≥ 0. Hence, all the monomials n(V1)n1 · · · n(Vμ)n24 with n1, · · · , n24 ≥ 0 span S/J.
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On the other hand, Lemma 2.5 implies that for n1, · · · , n24 ≥ 0,

η(n(V1)n1 · · ·n(V24)n24) = [V1]∗n1 ∗ · · · ∗ [V24]∗n24 .

By Lemma 2.4, the elements [V1]∗n1 ∗· · ·∗[V24]∗n24 with n1, · · · , n24 ≥ 0 form a basis of ZME6,σ.
Consequently, the morphism η is injective.

Hence we have following result.

Proposition 3.2 There are graded Z-algebra isomorphisms

Φ : ZME6,σ −→ H0(F4), [Si] 	−→ ui, 1 ≤ i ≤ 4.

Proof By Lemma 2.3 and Proposition 3.1, there is a surjective Z-algebra homomorphism
Φ : ZME6,σ −→ H0(F4) given by [Si] 	−→ ui with 1 ≤ i ≤ 4. Since {[Mq(λ)K] | λ ∈ B} and
{uλ | λ ∈ B} are bases for ZME6,σ and H0(F4), respectively, we know that Φ is an isomorphism.

So we have the following theorem.

Theorem 3.1 The generators ui (1 ≤ i ≤ 4) and the relations (F1)–(F6) give a presenta-
tion of H0(F4).

4 Gröbner-Shirshov Basis for H0(F4)

For any monomial u ∈ H0(F4), we define the length l(u) of u to be the number of the ui ∈ C

occuring in u. Now, we define a degree lexicographic order ≺ on the monomials in H0(F4) as
follows:

u ≺ v if and only if l(u) < l(v) or l(u) = l(v) and u < v,

and then it is a monomial order (see [16]).
We have already shown that H0(F4) is an associative algebra over Z generated by C =

{u1, u2, u3, u4} with the generating relations

F ′ =

⎧⎪⎪⎨
⎪⎪⎩

u1u3 = u3u1, u1u4 = u4u1, u2u4 = u4u2,
u1u

2
2 = u2u1u2, u2

1u2 = u1u2u1, u3u
2
4 = u4u3u4,

u2
3u4 = u3u4u3, u3u2u3 = u2u

2
3, u2u3u

2
2u3 = u3

2u
2
3,

u2
2u3u2 = u3

2u3.

In the following, we apply the algebra isomorphism Φ ◦ η to the relations 1, 29 and 81 in B.

(1) We apply Φ ◦ η to the relations 1:

n(M21)n(M14) = n(M12), n(M31)n(M24) = n(M22), n(M41)n(M34) = n(M32),

n(M51)n(M44) = n(M42), n(M61)n(M54) = n(M52),

So then, we have 3 relations (two identical relations are omitted):

u1u
2
2u

2
3u4 = u1u

2
2u3u4u3, u1u

3
2u

2
3u4 = u1u2u3u

2
2u3u4, u2

1u
3
2u

2
3u4 = u2u

2
1u

2
2u

2
3u4.

(2) We apply Φ ◦ η to relations 29:

n(M13)n(M14) = n(M14)n(M13), n(M23)n(M24) = n(M24)n(M23),

n(M33)n(M34) = n(M34)n(M33), n(M43)n(M44) = n(M44)n(M43),

n(M53)n(M54) = n(M54)n(M53), n(M63)n(M64) = n(M64)n(M63),
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and we have 6 relations:

u3u
2
4 = u4u3u4, u2

2u
2
3u4u3 = u3u

2
2u

2
3u4,

u2
1u

4
2u

3
3u

2
4u

2
2u3u4 = u2

2u3u4u
2
1u

4
2u

3
3u

2
4, u2

1u
4
2u

3
3u4u

2
1u

2
2u

2
3u4 = u2

1u
2
2u

2
3u4u

2
1u

4
2u

3
3u4,

u2
1u

4
2u

2
3u4u

2
2u3 = u2

2u3u
2
1u

4
2u

2
3u4, u2

1u
2
2u3u

2
1u

2
2u3u4 = u2

1u
2
2u3u4u

2
1u

2
2u3.

(3) We apply Φ ◦ η to the relations 81:

n(M33)n(M14) = n(M11)n(M11)n(M34), n(M43)n(M24) = n(M21)n(M21)n(M44),

n(M53)n(M34) = n(M31)n(M31)n(M54), n(M63)n(M44) = n(M41)n(M41)n(M64),

and we have 4 relations:

u2
1u

4
2u

3
3u

3
4 = u1u2u3u4u1u2u3u4u

2
2u3u4, u2

1u
4
2u

3
3u4u3 = u2u3u2u3u

2
1u

2
2u

2
3u4,

u2
1u

4
2u

2
3u4u

2
2u3u4 = u1u

2
2u3u4u1u

2
2u3u4u

2
2u3, u2

1u
2
2u3u

2
1u

2
2u

2
3u4 = u1u2u3u1u2u3u

2
1u

2
2u3u4.

By applying the algebra isomorphism Φ ◦ η to all the relations in B, we get a new set F ′′ of the
relations (since there are 247 relations in F ′′, to save space, we do not write them all here).

By computing all possible compositions between the elements of F ′∪F ′′, we get the following
non-trivial compositions, that is, the new set F ′′′ of the relations in H0(F4):

u1u2u3u
2
2u3u4 = u2u1u2u3u4u2u3, u1u2u3u4u2u1u2u3u4 = u2u1u2u3u4u1u2u3u4,

u2u3u1u2u3u4u2u3 = u2u3u2u3u1u2u3u4, u1u2u3u4u2u3u1u2u3u4 = u2u3u1u2u3u4u1u2u3u4,

u2u1u2u3u
2
2u3 = u2

2u3u2u1u2u3, u1u2u3u4u2u3u
2
2u3u4 = u2

2u3u4u1u2u3u4u2u3,

u2u1u
2
2u3 = u2u1u2u3u2, u2u1u2u3u1u2u3u4u

2
2u3 = u2

2u3u2u1u2u3u1u2u3u4,

u1u2u1u2u3u4u2 = u2u1u2u1u2u3u4, u1u2u1u2u3u4u1u2u3u4 = u1u2u3u4u1u2u1u2u3u4,

u1u2u1u2u3u2 = u2u1u2u1u2u3, u1u2u3u
2
2u3u4u

2
2u3u4 = u2

2u3u4u1u2u3u
2
2u3u4,

u1u2u1u2u3u1u2u3 = u1u2u3u1u2u1u2u3, u1u2u3u1u2u3u1u2u3u4 = u1u2u3u1u2u3u4u1u2u3,

u1u2u1u2u1u2u3 = u1u2u1u2u3u1u2, u1u2u3u1u2u3u4u2u3 = u2u3u1u2u3u1u2u3u4,

u2u3u2u3u2u3u4 = u2u3u2u3u4u2u3, u1u2u1u2u3u4u1u2u3 = u1u2u3u1u2u1u2u3u4,

u2
2u3u2u1u2u3u4 = u2u1u2u3u4u

2
2u3,

u1u2u3u2u3u4u1u2u3u4 = u1u2u3u4u1u2u3u2u3u4,

u1u2u3u2u1u2u3 = u2u1u2u3u1u2u3,

u2u3u2u3u4u2u3u4 = u2u3u4u2u3u2u3u4,

u1u2u3u4u2u3u2u3u4 = u2u3u2u3u4u1u2u3u4,

u1u2u1u2u3u
2
2u3u4u1u2u3u4 = u1u

2
2u3u4u1u2u3u1u

2
2u3u4,

u1u2u3u
2
2u3u4u1u2u3u4u2u3 = u2u3u1u2u3u

2
2u3u4u1u2u3u4,

u1u2u3u1u2u3u4u1u2u3u4 = u1u2u3u4u1u2u3u1u2u3u4,

u1u2u3u1u2u3u
2
2u3u4u1u2u3u4 = u1u2u3u1u2u3u4u1u2u3u

2
2u3u4,

u1u2u3u
2
2u3u4u1u2u3u

2
2u3u4u1u2u3u4 = u1u2u3u

2
2u3u4u1u2u3u4u1u2u3u

2
2u3u4.

We set F = F ′∪F ′′∪F ′′′. Then by the construction of the set F of the relations in H0(F4),
we get our main result in this paper.
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Theorem 4.1 With the notations above, F is a Gröbner-Shirshov basis for H0(F4).
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