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Abstract In this work, the authors introduce the concept of (p, q)-quasi-contraction
mapping in a cone metric space. We prove the existence and uniqueness of a fixed point
for a (p, q)-quasi-contraction mapping in a complete cone metric space. The results of
this paper generalize and unify further fixed point theorems for quasi-contraction, convex
contraction mappings and two-sided convex contraction of order 2.
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1 Introduction

In 1922, the Banach contraction principle was introduced (see [2]) and it remains a forceful
tool in nonlinear analysis (see [11]), which incites many authors to extend it, especially for
nonlinear mappings. We cite the contraction type of Kannan [14], Chatterjee [3], Zamfirescu
[20], Reich [16] and Ćirić [4], which gives one of the most general contraction conditions, called
quasi-contraction.

Inspired by the paper of Huang and Zhang [6], Ilić and Rakočević [7] extended the concept
of quasi-contraction mappings to cone metric spaces and provided a generalization of Theorem
1 in [6] to quasi-contraction mappings in complete cone metric spaces. Recently, many authors
studied several variants of contraction conditions and proved some fixed point theorems in a
cone metric space when the underlying cone is normal or not normal. We cite, for example
[12–13, 15, 17–18, 21].

This paper is organized as follows. In Section 2, we give some definitions and preliminaries
needed in the sequel. In Section 3, we extend the concept of (p, q)-quasi-contraction mappings
(see [5]) in cone metric spaces. These mappings extend Ilić and Rakočević’s quasi-contraction
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ones, convex contractive maps of order n (see [1, 8]) and the two-sided convex contraction map-
pings (see [8]). The main result of this section is that every continuous (p, q)-quasi-contraction
mapping in a complete cone metric space has a unique fixed point and the Piccard iteration
converges to this point. Moreover, we obtain fixed point theorems for certain classes of discon-
tinuous mappings which generalize many known results.

2 Preliminaries

Let E be a real Banach space. A nonempty subset P of E is said to be a cone if and only if
(i) P is closed and P �= {0},
(ii) for every positive real a, aP ⊂ P , and
(iii) P + P ⊂ P and P ∩ (−P ) = {0}.
Given a cone P ⊂ E, we can define a partial ordering � on E with respect to P by x � y

if and only if (y − x) ∈ P . We will indicate by x ≺ y that x � y but x �= y, and by x � y

that (y − x) ∈ intP , where intP denotes the interior of P . The cone P is called minihedral if
sup{x, y} exists for all x, y ∈ E. Recall also that P is called normal, if there is a number K > 0
such that for all x, y ∈ E,

0 � x � y implies ‖x‖ � K ‖y‖ . (2.1)

The least positive number satisfying the above inequality, is called the normal constant of P .
In [6], Huang and Zhang introduced the notion of cone metric spaces as a generalization of the
metric spaces.

Definition 2.1 (see [6]) Let P be a cone in a Banach space such that intP �= ∅ and � is
a partial ordering in E with respect to P . A cone metric on a nonempty set X is a function
d : X × X → E such that, for all x, y, z ∈ X, we have

(a) x = y if and only if d(x, y) = 0,
(b) 0 � d(x, y) = d(y, x), and
(c) d(x, y) � d(x, z) + d(z, y).

A cone metric space is a pair (X, d) such that X is a nonempty set and d is a cone metric
on X .

Now, let’s recall some useful definitions needed in the sequel.

Definition 2.2 (see [6]) Let (X, d) be a cone metric space, and let {xn} be a sequence in
X. Then

(i) {xn} converges to x ∈ X if, for every c ∈ E with 0 � c, there exists a natural number N

such that, for all n ≥ N , we have d(xn, x) � c. We denote this convergence by xn → x (n → ∞)
or lim

n→∞xn = x.
(ii) {xn} is a Cauchy sequence if, for every c ∈ E with 0 � c, there exists a natural number

N such that, for all n, m ≥ N , we have d(xn, xm) � c.
(iii) (X, d) is a complete cone metric space if, every Cauchy sequence is convergent.

In the case where P is a normal cone, we have the following lemmas.
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Lemma 2.1 (see [6]) Let (X, d) be a cone metric space, P be a normal cone with a normal
constant K, and {xn} be a sequence in X.

(i) If the limit of {xn} exists, then it is unique.
(ii) Every convergent sequence in X is a Cauchy sequence.
(iii) {xn} is a Cauchy sequence if and only if d(xn, xm) → 0 (n, m → ∞).

Lemma 2.2 (see [6]) Let (X, d) be a cone metric space, P be a normal cone with a normal
constant K. Let {xn} and {yn} be two sequences in X such that xn → x and yn → y. Then

d(xn, yn) → d(x, y) (n → ∞). (2.2)

Definition 2.3 (see [6]) Let (X, d) be a cone metric space. X is called a sequentially
compact cone metric space if, for any sequence {xn} in X, there is a subsequence {xni} of {xn}
such that {xni} is convergent in X.

Lemma 2.3 Every sequentially compact cone metric space is a complete cone metric space.

Proof Let {xn} be a Cauchy sequence in the sequentially compact cone metric space X ,
and then there exists a convergent subsequence {xni} of {xn} which converges to x ∈ X . By
using the following inequality

d(xn, x) � d(xn, xni) + d(xni , x), (2.3)

we obtain the desired result.

3 Main Results

In the sequel, we suppose that E is a Banach space, P is a normal cone in E with intP �= ∅,
K is the normal constant of P , and � is a partial ordering in E with respect to P . In this section,
we generalize the Fisher’s quasi-contraction mapping on a cone metric space. We notice that
such a mapping is a generalization of Ilić and Rakočević’s quasi-contraction mappings acting
on cone metric spaces (see [7]).

For this purpose, we introduce the definition of (p, q)-quasi-contraction mappings in the
cone metric spaces as follows.

Definition 3.1 Let (X, d) be a cone metric space and p, q be two natural numbers such
that 0 < p ≤ q. The mapping T : X → X is said to be a (p, q)-quasi-contraction, if there exists
a number c ∈ [0, 1) such that for every x, y ∈ X, there is u ∈ Cp,q(x, y), such that

d(T px, T qy) � cu, (3.1)

where

Cp,q(x, y) = {d(T rx, T sy), d(T rx, T r′
x), d(T sy, T s′

y) : 0 ≤ r, r′ ≤ p and 0 ≤ s, s′ ≤ q}.

Next, let n ∈ N, x ∈ X and O(x : n) = {x, Tx, T 2x, · · · , T nx}. The following subset of X

O(x : ∞) = {x, Tx, T 2x, · · · }
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is called the orbit of T at x. The partial cone metric space (X, d) is said to be T -orbitally
complete if, every Cauchy sequence contained in an orbit of T converges in X . Obviously, every
complete cone metric space is T -orbitally complete, but the converse does not hold (see [14,
Example 3.1]).

Let (X, d) be a cone metric space. The mapping T : X → X is said to be an orbitally
(p, q)-quasi-contraction, if T is (p, q)-quasi-contractive on any orbit of X .

Example 3.1 Let’s consider the following cone metric space stated in [6]:

E = R
2, P = {(x, y) ∈ E : x, y ≥ 0}, X = R,

and its cone metric d : X × X → E is defined by

d(x, y) = (|y − x|, α|y − x|), where α ≥ 0 is a constant.

Notice that the mapping T defined on the cone metric space (X, d) by Tx = x is an orbitally
(p, q)-quasi-contraction, but it is not a (p, q)-quasi-contraction.

Now, let’s first consider the following subset of E defined by

Δ(x, p, n) = {d(a, b) : a, b ∈ {T ix, p ≤ i ≤ n}}.

In particular cases, and for simplicity, we denote

Δ(x, n) = Δ(x, 0, n) and Δ(x : ∞) = {d(a, b) : a, b ∈ O(x : ∞)}.

Finally, for any subset F ⊂ E, we denote δ(F ) = sup{‖x‖, x ∈ F}.
The following lemma is crucial for the main results.

Lemma 3.1 Let (X, d) be a cone metric space, and let T : X → X be an orbitally (p, q)-
quasi-contraction mapping. Then, δ(Δ(x : ∞)) is finite.

Proof Let x ∈ X . If Tx = x, then it is obvious that Δ(x : ∞) is bounded. Now, suppose
that Tx �= x and consider n0 ∈ N such that max{cn0K, cn0K2} < 1. Choose i, j, and n ∈ N

such that

n0q ≤ i < j ≤ n. (3.2)

Since T is a (p, q)-quasi-contraction, we deduce that

d(T ix, T jx) � cu1,

where u1 ∈ Δ(x, i−q, n). By the same argument, it follows that there exists u2 ∈ Δ(x, i−2q, n)
such that u1 � cu2. Hence

d(T ix, T jx) � c2u2.

After n0 iterations, we conclude that there exists un0 ∈ Δ(x, i − n0q, n) such that

d(T ix, T jx) � cn0un0 . (3.3)
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By using (3.2) and the fact that Δ(x, i − n0q, n) ⊂ Δ(x, 0, n) = Δ(x, n), we infer that un0 ∈
Δ(x, n). Now, since P is normal and cn0K < 1, it follows that

‖d(T ix, T jx)‖ < δ(Δ(x, n)). (3.4)

We conclude that

δ(Δ(x, n)) = max{‖d(T ix, T lx)‖, ‖d(T ix, T jx)‖ : 0 ≤ i, j < n0q ≤ l ≤ n}. (3.5)

From (3.5), there are two possible cases.

Case 1 Suppose that δ(Δ(x, n)) = ‖d(T ix, T lx)‖ for some 0 ≤ i < n0q ≤ l ≤ n. Since d is
a cone metric, by the triangular inequality, it follows that

d(T ix, T lx) � d(T ix, T n0qx) + d(T n0qx, T lx).

Taking into account that P is normal, and by using (3.3), we deduce that

‖d(T ix, T lx)‖ ≤ K‖d(T ix, T n0qx)‖ + cn0K2δ(Δ(x, n)).

Hence

δ(Δ(x, n)) ≤ K

1 − cn0K2
δ(Δ(x, n0q)). (3.6)

Case 2 Suppose that δ(Δ(x, n)) = ‖d(T ix, T jx)‖ for some 1 ≤ i, j ≤ n0. Since d(T ix, T jx)
∈ Δ(x, n0), it follows that

δ(Δ(x, n)) ≤ δ(Δ(x, n0q)). (3.7)

Inequalities (3.6)–(3.7) imply that

δ(Δ(x, n)) ≤ max
{
1,

K

1 − cn0K

}
δ(Δ(x, n0q)). (3.8)

Since δ(Δ(x,∞)) = sup{δ(Δ(x, n)) : n ∈ N}, we conclude that δ(Δ(x,∞)) is finite.

Theorem 3.1 Let (X, d) be a cone metric space, and let T : X → X be a continuous and
T -orbitally (p, q)-quasi-contraction mapping. If X is T -orbitally complete, then the sequence
{T nx} converges to a fixed point for every x ∈ X. Moreover, if T is a (p, q)-quasi-contraction,
then for any x ∈ X, the fixed point is unique.

Proof If Tx = x, then the result holds. In the rest of the proof, we will suppose that
Tx �= x and we will prove that {T nx} is a Cauchy sequence.

For this purpose, let ε > 0, and choose N such that KcNδ(Δ(x,∞)) < ε. For every two
natural numbers n, m such that m ≥ n ≥ Nq, there exists u1 ∈ Δ(x, n − q, m) such that

d(T nx, T mx) � cu1.



216 W. Chaker, A. Ghribi, A. Jeribi and B. Krichen

Since T is a T -orbitally (p, q)-quasi-contraction mapping, every v1 ∈ Δ(x, n − q, m) satisfies
v1 � cv2, where v2 ∈ Δ(x, n − 2q, m), and after N steps, we deduce that there exists uN ∈
Δ(x, m) such that

d(T nx, T mx) � cNuN .

By applying Lemma 3.1, we obtain that

‖d(T nx, T mx)‖ ≤ kcNδ(Δ(x : ∞)) < ε,

and then {T nx} is a Cauchy sequence in (X, d). Since (X, d) is orbitally complete, there exists
y ∈ X such that {T nx} converges to y. The continuity of T shows that y is a fixed point of T .

Now, if T is a (p, q)-quasi-contraction on X , and if we suppose that there exists another
z ∈ X such that Tz = z, then

d(z, y) = d(T pz, T qy) � cd(z, y). (3.9)

Since c < 1, we have d(z, y) = 0. Hence, the fixed point of T is unique.

Example 3.2 Let P = {(x, y) ∈ R
2 such that x, y ≥ 0} be a normal cone of the Banach

space R
2 and let

X = {(x, 0) ∈ R
2 such that 0 ≤ x ≤ 1}.

For every (x, 0), (y, 0) ∈ X , we define the metric d as follows:

d((x, 0), (y, 0)) = (|x − y|, γ|x − y|), where γ ∈ [0, 1].

Clearly, (X, d) is a complete cone metric space. Now, let T : X → X be a mapping such that
T ((x, 0)) =

(
x3

3 , 0
)
. Notice that T is a continuous mapping which has (0, 0) as a unique fixed

point.
Moreover, we have

d(T (x, 0), T (y, 0)) =
x2 + y2 + xy

3
d((x, 0), (y, 0)),

which implies that T is not a Banach contraction mapping. However, since

d(T 2(x, 0), T 2(y, 0)) = d
(
T

(x3

3
, 0

)
, T

(y3

3
, 0

))

=
(∣∣∣x

9 − y9

81

∣∣∣, γ
∣∣∣x

9 − y9

81

∣∣∣
)

=
x6 + x3y3 + y6

27

(∣∣∣x
3 − y3

3

∣∣∣, γ
∣∣∣x

3 − y3

3

∣∣∣
)

≤ 1
9
d(T (x, 0), T (y, 0)),

we infer that T is a (2, 2)-quasi-contraction.

As a corollary of Theorem 3.1, when X is a metric space, we obtain the main result of Fisher
[5, Theorem 2].
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Corollary 3.1 Let T be (p, q)-quasi-contraction on a complete metric space X into itself
and assume that T is the continuous. Then, T has a unique fixed point in X.

Notice that in Theorem 3.1, the continuity of T , when p = 1, is not needed. In this case,
we prove the following theorem.

Theorem 3.2 Let (X, d) be a cone metric space, and let T : X → X be continuous such
that T -orbitally is the (1, q)-quasi-contraction mapping. If X is T -orbitally complete, then the
sequence {T nx} converges to a fixed point for every x ∈ X. Moreover, if T is (1, q)-quasi-
contractive, then for any x ∈ X, the fixed point is unique and T is continuous in such a point.

Proof By using Theorem 3.1, the sequence {T nx} converges to some y ∈ X . Let n ∈ N

be large enough. Then, we have

d(y, T y) � d(y, T ny) + d(T ny, T y)

� d(y, T ny) + cu,

where

u ∈ {d(T n−iy, T n−jy), d(Ty, T n−jy), d(y, T n−jy), d(y, T y) : 0 ≤ i, j ≤ q}.

Taking into account that P is a normal cone with a constant K, we deduce that

‖d(y, T y)‖ ≤ K‖d(y, T ny)‖ + Kc‖u‖. (3.10)

Since the sequence {T nx} converges to y, it follows that d(y, T y) = 0 and hence, y is a fixed
point of T .

Now, assume besides that T is a (1, q)-quasi-contraction mapping. The uniqueness of the
fixed point may be checked in a similar way as in Theorem 3.1. It remains to prove that T

is continuous in the fixed point y. To show this, let {yn} be a sequence of points in the cone
metric space X which converges to y. Then, there exists u ∈ C1,q(yn, y) such that

d(Tyn, y) = d(Tyn, T qy) � cu � c[d(yn, y) + d(y, T yn)],

and it follows that

d(Tyn, y) � c

1 − c
d(yn, y).

Hence

‖d(Tyn, y)‖ ≤ cK

1 − c
‖d(yn, y)‖, (3.11)

so we conclude that lim
n→∞ ‖d(Tyn, y)‖ = 0, which completes the proof.

As a corollary, when p = q = 1, we have the main result of Ilić and Rakočević [7].

Corollary 3.2 Let (X, d) be a complete cone metric space, and let T : X → X satisfy the
following inequality

d(Tx, T y) � cu (3.12)
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for some u ∈ {d(x, y), d(x, Tx), d(y, T y), d(x, T y), d(y, Tx)}. Then T has a unique fixed point
in X, and for every x ∈ X, the sequence {T nx} converges to the fixed point.

Notice that, when X is a metric space, if we take p = 1, we obtain Theorem 3 in [5].

Corollary 3.3 Let T be a (1, q)-quasi-contraction on a complete metric space X into itself.
Then T has a unique fixed point in X.

Remark 3.1 It should be noticed that if P is minihedral and p = q = 2, then we obtain,
as particular cases, Istratescu’s fixed point theorem for convex contraction mappings of order 2
(see [8, Theorem 1.2]), the Istratescu’s fixed point theorem for two-sided convex contraction of
order 2 (see [8, Theorem 2.3]) in complete metric spaces, and their generalizations to the cone
metric spaces obtained by Alghamdi et al. [1].

Theorem 3.3 Let X be a sequentially compact minihedral cone metric space. Let T be a
continuous mapping on X which satisfies that for every x, y ∈ X, there exists u ∈ Cp,q(x, y)
such that

d(T px, T qy) < u. (3.13)

Then T has a unique fixed point in X.

Proof We suppose that T is not a (p, q)-quasi-contraction. Since X is a minihedral cone
metric space, there exists an increasing sequence {cn} of numbers converging to 1 and two
sequences {xn} and {yn} in X such that

cnun ≺ d(T pxn, T qyn)

for any un ∈ Cp,q(xn, yn). Since X is a sequentially compact cone metric space, there exists
a subsequence {xni} of {xn} and {yni} of {yn} which converges to x and y, respectively. It
follows that, for any uni ∈ Cp,q(xni , yni), i ∈ N

∗, we have

cniuni ≺ d(T pxni , T
qyni).

Since T is continuous, letting i tend to infinity, we infer that, for any u ∈ Cp,q(x, y),

u � d(T px, T qy). (3.14)

Inequalities (3.13)–(3.14) give a contradiction, so then T is a (p, q)-quasi-contraction and the
conclusion follows by Theorem 3.1.

We notice that if p = q = 1, we have the following corollary.

Corollary 3.4 Let X be a sequentially compact minihedral cone metric space. Let T be a
continuous mapping on X satisfying the inequality

d(Tx, T y) < max{d(x, y), d(x, Tx), d(y, T y), d(x, T y), d(y, Tx)}

for every x, y ∈ X, for which the right-hand side of the inequality is non-zero. Then T has a
unique fixed point in X.
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Next, we prove that a (p, q)-quasi-contraction mapping satisfies a property (P). We say
that the mapping T has the property (P) if, Fix(T ) = Fix(T n) for all n ≥ 1, i.e., every periodic
point is a fixed point. Such a property was introduced by Rhoades in his works (see [9–10,
18]). Recently, it was generalized for the quasi-contraction mappings on the cone metric spaces
by Kadelburg et al. [13], and for the convex contraction mappings on cone metric spaces by
Alghamdi et al. [1].

Theorem 3.4 Let (X, d) be a complete cone metric space, and let T : X → X be a contin-
uous and (p, q)-quasi-contraction mapping. Then T has the property (P).

Proof Let n ∈ N
∗. It is clear that Fix(T ) ⊂ Fix(T n). It remains to prove the inverse

inclusion. For this purpose, let’s choose y ∈ Fix(T n), and then T n(Ty) = T (T ny) = Ty, so
O(y : ∞) ⊂ Fix(T n). Arguing as for Theorem 3.1, we have that {T ny} is a Cauchy sequence,
and then

d(y, T y) = d(T nmy, T nm+1y) → 0,

so d(y, T y) = 0, which ends the proof.

Corollary 3.5 Let T be a continuous (p, q)-quasi-contraction mapping on a complete cone
metric space (X, d).Then, T and T n have a unique common fixed point for every natural number
n.

Remark 3.2 It should be noticed that Corollary 3.5 is an extension of Corollary 1 and
Corollary 2 obtained by Alghamdi et al. [1].
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Fund. Math., 3, 1922, 133–181.

[3] Chatterjee, S. K., Fixed point theorems, Rend. Acad. Bulgare Sc., 25, 1972, 727–730.
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[13] Kadelburg, Z., Radenović, S. and Rakočević, V., Remarks on “quasi-contraction on a cone metric space”,
Appl. Math. Lett., 22, 2009, 1674–1679.

[14] Kannan, R., Some results on fixed points, Bull. Calcutta Math. Soc., 60, 1968, 71–76.

[15] Pathak, H. K. and Shahzad, N., Fixed point results for generalized quasicontraction mappings in abstract
metric spaces, Nonlinear Anal., 71, 2009, 6068–6076.

[16] Reich, S., Kannan’s fixed point theorem, Boll. Un. Mat. Ital., 4, 1971, 1–11.

[17] Rezapour, Sh., Haghi, R. H. and Shahzad, N., Some notes on fixed points of quasi-contraction maps, Appl.
Math. Lett., 23, 2010, 498–502.

[18] Rezapour, Sh. and Hamlbarani, R., Some notes on the paper: Cone metric spaces and fixed point theorems
of contractive mappings, J. Math. Anal. Appl., 345, 2008, 719–724.

[19] Rhoades, B. E., Some maps for which periodic and fixed points coincide, Fixed Point Theory, 4, 2003,
173–176.

[20] Zamfirescu, T., Fix point theorems in metric spaces, Arch. Math. (Basel), 23, 1972, 292–298.

[21] Zhang, X., Fixed point theorem of generalized quasi-contractive mapping in cone metric space, Comput.
Math. Appl., 62, 2011, 1627–1633.


