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Abstract In this work, the authors introduce the concept of (p,q)-quasi-contraction
mapping in a cone metric space. We prove the existence and uniqueness of a fixed point
for a (p, ¢)-quasi-contraction mapping in a complete cone metric space. The results of
this paper generalize and unify further fixed point theorems for quasi-contraction, convex
contraction mappings and two-sided convex contraction of order 2.
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1 Introduction

In 1922, the Banach contraction principle was introduced (see [2]) and it remains a forceful
tool in nonlinear analysis (see [11]), which incites many authors to extend it, especially for
nonlinear mappings. We cite the contraction type of Kannan [14], Chatterjee [3], Zamfirescu
[20], Reich [16] and Cirié¢ [4], which gives one of the most general contraction conditions, called
quasi-contraction.

Inspired by the paper of Huang and Zhang [6], Tli¢ and Rakocevié¢ [7] extended the concept
of quasi-contraction mappings to cone metric spaces and provided a generalization of Theorem
1 in [6] to quasi-contraction mappings in complete cone metric spaces. Recently, many authors
studied several variants of contraction conditions and proved some fixed point theorems in a
cone metric space when the underlying cone is normal or not normal. We cite, for example
[12-13, 15, 17-18, 21].

This paper is organized as follows. In Section 2, we give some definitions and preliminaries
needed in the sequel. In Section 3, we extend the concept of (p, ¢)-quasi-contraction mappings

(see [5]) in cone metric spaces. These mappings extend Ili¢ and Rakocevié’s quasi-contraction
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ones, convex contractive maps of order n (see [1, 8]) and the two-sided convex contraction map-
pings (see [8]). The main result of this section is that every continuous (p, ¢)-quasi-contraction
mapping in a complete cone metric space has a unique fixed point and the Piccard iteration
converges to this point. Moreover, we obtain fixed point theorems for certain classes of discon-

tinuous mappings which generalize many known results.

2 Preliminaries

Let E be a real Banach space. A nonempty subset P of F is said to be a cone if and only if

(i) P is closed and P # {0},

(ii) for every positive real a, aP C P, and

(i) P+ P C P and PN (—P) = {0}.

Given a cone P C F, we can define a partial ordering < on E with respect to P by = < y
if and only if (y — z) € P. We will indicate by @ < y that © < y but  # y, and by z < y
that (y — ) € int P, where int P denotes the interior of P. The cone P is called minihedral if
sup{z,y} exists for all z,y € E. Recall also that P is called normal, if there is a number K > 0
such that for all z,y € F,

0<w<y implies [af <Ky (2.1)

The least positive number satisfying the above inequality, is called the normal constant of P.
In [6], Huang and Zhang introduced the notion of cone metric spaces as a generalization of the

metric spaces.

Definition 2.1 (see [6]) Let P be a cone in a Banach space such that int P # () and < is
a partial ordering in E with respect to P. A cone metric on a nonempty set X is a function
d: X x X — E such that, for all z,y,z € X, we have

(a) x =y if and only if d(x,y) =0,

(b) 0= d(z,y) =d(y,x), and

(¢) d(z,y) < d(z,z)+d(z,y).

A cone metric space is a pair (X, d) such that X is a nonempty set and d is a cone metric
on X.

Now, let’s recall some useful definitions needed in the sequel.

Definition 2.2 (see [6]) Let (X,d) be a cone metric space, and let {x,} be a sequence in
X. Then

(i) {xn} converges to x € X if, for every ¢ € E with 0 < ¢, there exists a natural number N
such that, for alln > N, we have d(z,,x) < c. We denote this convergence by x,, — x (n — 00)
or lim =z, = x.

n(H)oo {z,} is a Cauchy sequence if, for every ¢ € E with 0 < ¢, there exists a natural number
N such that, for all n,m > N, we have d(zy,Tn) < c.

(i) (X,d) is a complete cone metric space if, every Cauchy sequence is convergent.

In the case where P is a normal cone, we have the following lemmas.
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Lemma 2.1 (see [6]) Let (X,d) be a cone metric space, P be a normal cone with a normal
constant K, and {x,} be a sequence in X.

(i) If the limit of {x,,} exists, then it is unique.

(il) PEwvery convergent sequence in X is a Cauchy sequence.

(iii) {xn} is a Cauchy sequence if and only if d(xpn,xm) — 0 (n,m — 00).

Lemma 2.2 (see [6]) Let (X,d) be a cone metric space, P be a normal cone with a normal

constant K. Let {x,} and {y,} be two sequences in X such that x,, — = and y, — y. Then
d(xn,yn) — d(z,y) (n — 00). (2.2)

Definition 2.3 (see [6]) Let (X,d) be a cone metric space. X is called a sequentially
compact cone metric space if, for any sequence {x,} in X, there is a subsequence {xn,} of {xn}

such that {x,,} is convergent in X.
Lemma 2.3 Every sequentially compact cone metric space is a complete cone metric space.

Proof Let {z,} be a Cauchy sequence in the sequentially compact cone metric space X,
and then there exists a convergent subsequence {z,,} of {z,,} which converges to z € X. By

using the following inequality
d(Tn, ) < d(Tp, Tp,) + d(Tn,;, T), (2.3)

we obtain the desired result.

3 Main Results

In the sequel, we suppose that E is a Banach space, P is a normal cone in E with int P # (),
K is the normal constant of P, and < is a partial ordering in E with respect to P. In this section,
we generalize the Fisher’s quasi-contraction mapping on a cone metric space. We notice that
such a mapping is a generalization of Ili¢ and Rakocevi¢’s quasi-contraction mappings acting
on cone metric spaces (see [7]).

For this purpose, we introduce the definition of (p,¢)-quasi-contraction mappings in the

cone metric spaces as follows.

Definition 3.1 Let (X,d) be a cone metric space and p, q be two natural numbers such
that 0 < p < q. The mapping T : X — X is said to be a (p,q)-quasi-contraction, if there exists
a number ¢ € [0,1) such that for every x,y € X, there is u € Cp 4(x,y), such that

d(TPz, T) < cu, (3.1)
where
Cpqlz,y) ={d(T"z, T?y), ATz, T z), d(T°y, T y):0<r, ' <pand 0<s,s <q}.
Next, let n € N, z € X and O(z : n) = {z, Tz, T?z,--- ,T"x}. The following subset of X

O(x : 00) = {2, Tx, T?x,---}
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is called the orbit of T" at x. The partial cone metric space (X,d) is said to be T-orbitally
complete if, every Cauchy sequence contained in an orbit of T" converges in X. Obviously, every
complete cone metric space is T-orbitally complete, but the converse does not hold (see [14,
Example 3.1]).

Let (X,d) be a cone metric space. The mapping 7' : X — X is said to be an orbitally

(p, q)-quasi-contraction, if T' is (p, ¢)-quasi-contractive on any orbit of X.

Example 3.1 Let’s consider the following cone metric space stated in [6]:
E=R?* P={(z,y)€E:2,y>0}, X=R,
and its cone metric d : X x X — FE is defined by
d(z,y) = (ly — z|,a|y — x|), where a > 0 is a constant.

Notice that the mapping T defined on the cone metric space (X,d) by Tz = z is an orbitally

(p, ¢)-quasi-contraction, but it is not a (p, ¢)-quasi-contraction.

Now, let’s first consider the following subset of E defined by
A(z,p,n) = {d(a,b) : a,b € {T'z, p<i<n}}
In particular cases, and for simplicity, we denote
A(z,n) = A(z,0,n) and A(z:o0)={d(a,b):a,be Ox: )}

Finally, for any subset F' C E, we denote 6(F) = sup{||z||,x € F}.

The following lemma is crucial for the main results.

Lemma 3.1 Let (X,d) be a cone metric space, and let T : X — X be an orbitally (p,q)-

quasi-contraction mapping. Then, 6(A(x : 00)) is finite.

Proof Let x € X. If Tx = x, then it is obvious that A(z : c0) is bounded. Now, suppose
that To # x and consider ng € N such that max{c™ K, ¢ K?} < 1. Choose i, j, and n € N
such that

nog <1< j<n. (3.2)
Since T is a (p, ¢)-quasi-contraction, we deduce that
d(T'z, T z) < cuy,

where u; € A(x,i—q,n). By the same argument, it follows that there exists us € A(z,i—2¢q,n)

such that u; < cus. Hence
d(T'z, T x) < us.
After nyg iterations, we conclude that there exists u,, € A(xz,7 — nog,n) such that

ATz, T92) < ™ Up,. (3.3)
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By using (3.2) and the fact that A(z,i — nog,n) C A(z,0,n) = A(z,n), we infer that u,, €
A(z,n). Now, since P is normal and ¢™ K < 1, it follows that

|d(T 2z, T x)|| < 6(A(x,n)). (3.4)
We conclude that

§(A(z,n)) = max{||d(T"z, T'z) |, [|[d(T"2, T7z)|| : 0 < i,j < nog <1< n} (3.5)

From (3.5), there are two possible cases.

Case 1 Suppose that §(A(x,n)) = ||d(T'z, T'x)| for some 0 < i < nog <1 < n. Since d is

a cone metric, by the triangular inequality, it follows that
d(Tiz, T'z) < d(T'z, T™%) + d(T"%, T'z).
Taking into account that P is normal, and by using (3.3), we deduce that
|d(T 'z, T'x)|| < K||d(Tiz, T™)| + ¢ K25(A(x, n)).

Hence

K

0(Aw,n) < T

5(A G, m00) (3.6)
Case 2 Suppose that §(A(z,n)) = ||d(T?z, T?x)|| for some 1 <4, j < ng. Since d(T*x, T’ x)
€ A(xz,ng), it follows that

5(A(z,n)) < 6(A(x, no0)). (3.7)

Inequalities (3.6)—(3.7) imply that

K

§(A(z,n)) < max {1, Ty

}o(A (@, nog)). (38)

Since §(A(z,00)) = sup{d(A(z,n)) : n € N}, we conclude that §(A(x,00)) is finite.

Theorem 3.1 Let (X,d) be a cone metric space, and let T : X — X be a continuous and
T-orbitally (p, q)-quasi-contraction mapping. If X is T-orbitally complete, then the sequence
{T"x} converges to a fized point for every x € X. Moreover, if T is a (p, q)-quasi-contraction,

then for any x € X, the fixed point is unique.

Proof If Tx = z, then the result holds. In the rest of the proof, we will suppose that
Tz # x and we will prove that {T"z} is a Cauchy sequence.
For this purpose, let ¢ > 0, and choose N such that KcVo(A(z,00)) < e. For every two

natural numbers n, m such that m > n > Ng, there exists u; € A(z,n — ¢, m) such that

d(T"z,T"z) < cuq.
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Since T is a T-orbitally (p, ¢)-quasi-contraction mapping, every v1 € A(z,n — ¢, m) satisfies
v1 < cvg, where vy € A(z,n — 2q,m), and after N steps, we deduce that there exists uny €
A(z,m) such that

d(T"z, T™z) < MNuy.
By applying Lemma 3.1, we obtain that
d(T"z, T™xz)|| < keN6(A(x : 00)) < €,

and then {T"x} is a Cauchy sequence in (X, d). Since (X, d) is orbitally complete, there exists
y € X such that {T"x} converges to y. The continuity of T shows that y is a fixed point of 7.

Now, if T is a (p, ¢)-quasi-contraction on X, and if we suppose that there exists another
z € X such that Tz = z, then

d(z,y) = d(T?z, T%) < cd(z,y). (3.9)

Since ¢ < 1, we have d(z,y) = 0. Hence, the fixed point of T' is unique.

Example 3.2 Let P = {(z,y) € R? such that x, > 0} be a normal cone of the Banach
space R? and let
X ={(z,0) € R2 such that 0 < z < 1}.

For every (x,0), (y,0) € X, we define the metric d as follows:

d((ﬂ?,O), (y,O)) = (|J$ - ylv')/lx - y')a where 7 € [0’ 1]'

Clearly, (X, d) is a complete cone metric space. Now, let 7': X — X be a mapping such that
T((x,0)) = (%, 0). Notice that T is a continuous mapping which has (0,0) as a unique fixed
point.
Moreover, we have
2 2
° +y°+xy d

A(T(2,0),7(y,0)) = =2

((2,0), (y,0)),

which implies that T is not a Banach contraction mapping. However, since

3 3

d(TQ(a:,O),TQ(y,O))zd(T<x o),T(y—,o))

37 3
29 — P 29 — P
:O 81 ‘ 81 D
B 26 4+ 23y3 4 b /ad — B 23—y
- 27 (‘ 3 ‘7‘ 3 D

IN

1
§d(T({E, 0)7 T(yv O))a
we infer that T is a (2, 2)-quasi-contraction.

As a corollary of Theorem 3.1, when X is a metric space, we obtain the main result of Fisher
[5, Theorem 2].
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Corollary 3.1 Let T be (p, q)-quasi-contraction on a complete metric space X into itself

and assume that T is the continuous. Then, T has a unique fixed point in X.

Notice that in Theorem 3.1, the continuity of 7', when p = 1, is not needed. In this case,

we prove the following theorem.

Theorem 3.2 Let (X,d) be a cone metric space, and let T : X — X be continuous such
that T-orbitally is the (1, q)-quasi-contraction mapping. If X is T-orbitally complete, then the
sequence {T™x} converges to a fized point for every x € X. Moreover, if T is (1,q)-quasi-

contractive, then for any x € X, the fized point is unique and T is continuous in such a point.

Proof By using Theorem 3.1, the sequence {T™x} converges to some y € X. Let n € N

be large enough. Then, we have

d(y,Ty) < d(y, T"y) + d(T"y, Ty)

<d
< d(y, T"y) + cu,
where
we {d(T" "y, T"y), d(Ty, T"y), dy, T"y), d(y,Ty): 0 <i,j < q}.
Taking into account that P is a normal cone with a constant K, we deduce that
ld(y, Ty)|l < Klld(y, T"y)|| + Kcllull (3.10)

Since the sequence {T"x} converges to y, it follows that d(y,Ty) = 0 and hence, y is a fixed
point of T.

Now, assume besides that T is a (1, ¢)-quasi-contraction mapping. The uniqueness of the
fixed point may be checked in a similar way as in Theorem 3.1. It remains to prove that T
is continuous in the fixed point y. To show this, let {y,} be a sequence of points in the cone

metric space X which converges to y. Then, there exists u € C4 4(yn,y) such that

d(Tyn,y) = d(Tyn, Ty) < cu < c[d(yn,y) + d(y, Tyn)),

and it follows that

C
d(Tyn,y) < 7= dYn,y)-

Hence

cK
1Ty, )l < T (s )1 (3.11)

so we conclude that lim ||d(Tyn,y)|| = 0, which completes the proof.
n—oo
As a corollary, when p = ¢ = 1, we have the main result of Ili¢ and Rakocevié [7].

Corollary 3.2 Let (X,d) be a complete cone metric space, and let T : X — X satisfy the

following inequality

d(Tz,Ty) < cu (3.12)
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for some u € {d(x,y),d(z,Tx),d(y, Ty),d(x,Ty),d(y, Tx)}. Then T has a unique fized point
in X, and for every x € X, the sequence {T"x} converges to the fixed point.

Notice that, when X is a metric space, if we take p = 1, we obtain Theorem 3 in [5].

Corollary 3.3 Let T be a (1, q)-quasi-contraction on a complete metric space X into itself.

Then T has a unique fized point in X.

Remark 3.1 It should be noticed that if P is minihedral and p = ¢ = 2, then we obtain,
as particular cases, Istratescu’s fixed point theorem for convex contraction mappings of order 2
(see [8, Theorem 1.2]), the Istratescu’s fixed point theorem for two-sided convex contraction of
order 2 (see [8, Theorem 2.3]) in complete metric spaces, and their generalizations to the cone

metric spaces obtained by Alghamdi et al. [1].

Theorem 3.3 Let X be a sequentially compact minihedral cone metric space. Let T be a
continuous mapping on X which satisfies that for every x,y € X, there exists u € Cp 4(x,y)
such that

d(TPz, T) < u. (3.13)
Then T has a unique fized point in X.
Proof We suppose that T is not a (p, ¢)-quasi-contraction. Since X is a minihedral cone

metric space, there exists an increasing sequence {c,} of numbers converging to 1 and two

sequences {z,} and {y,} in X such that
Cntty, < d(TPxy, Tyy)

for any u, € Cp 4(Tn,yn). Since X is a sequentially compact cone metric space, there exists
a subsequence {z,,} of {z,} and {y,,} of {y,} which converges to = and y, respectively. It

follows that, for any u,, € Cp ¢(@n,, Yn,), ¢ € N*, we have
CnyUn; = d(TPxp,, Tn,).
Since T is continuous, letting 7 tend to infinity, we infer that, for any u € C), 4(x,y),
u = d(TPz, T). (3.14)

Inequalities (3.13)—(3.14) give a contradiction, so then T is a (p, ¢)-quasi-contraction and the

conclusion follows by Theorem 3.1.
We notice that if p = ¢ = 1, we have the following corollary.

Corollary 3.4 Let X be a sequentially compact minihedral cone metric space. Let T be a

continuous mapping on X satisfying the inequality
d(Tz,Ty) < max{d(z,y),d(z,Tz),d(y,Ty),d(z, Ty), d(y, Tx)}

for every x,y € X, for which the right-hand side of the inequality is non-zero. Then T has a
unique fized point in X.
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Next, we prove that a (p, ¢)-quasi-contraction mapping satisfies a property (P). We say
that the mapping T has the property (P) if, Fix(T) = Fix(T") for all n > 1, i.e., every periodic
point is a fixed point. Such a property was introduced by Rhoades in his works (see [9-10,
18]). Recently, it was generalized for the quasi-contraction mappings on the cone metric spaces
by Kadelburg et al. [13], and for the convex contraction mappings on cone metric spaces by
Alghamdi et al. [1].

Theorem 3.4 Let (X,d) be a complete cone metric space, and let T : X — X be a contin-
wous and (p, q)-quasi-contraction mapping. Then T has the property (P).

Proof Let n € N*. It is clear that Fix(T) C Fix(T™). It remains to prove the inverse
inclusion. For this purpose, let’s choose y € Fix(T™), and then T™(Ty) = T(T"y) = Ty, so
O(y : o0) C Fix(T™). Arguing as for Theorem 3.1, we have that {T™y} is a Cauchy sequence,
and then

d(y, Ty) = d(T""y, T""+1y) — 0,

so d(y, Ty) = 0, which ends the proof.

Corollary 3.5 Let T be a continuous (p, q)-quasi-contraction mapping on a complete cone
metric space (X,d). Then, T and T™ have a unique common fized point for every natural number

n.

Remark 3.2 It should be noticed that Corollary 3.5 is an extension of Corollary 1 and
Corollary 2 obtained by Alghamdi et al. [1].
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