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Abstract For a symmetrizable Kac-Moody Lie algebra g, Lusztig introduced the cor-
responding modified quantized enveloping algebra U̇ and its canonical basis Ḃ given by
Lusztig in 1992. In this paper, in the case that g is a symmetric Kac-Moody Lie algebra of
finite or affine type, the authors define a set M̃ which depends only on the root category
R and prove that there is a bijection between M̃ and Ḃ, where R is the T 2-orbit category
of the bounded derived category of the corresponding Dynkin or tame quiver. The method
in this paper is based on a result of Lin, Xiao and Zhang in 2011, which gives a PBW-type
basis of U+.
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1 Introduction

Let U+ be the positive part of the quantized enveloping algebra U associated with a Cartan
datum. In the case of finite type, Lusztig gave two approaches to construct the canonical
basis B of U+ (see [11]). The first one is an elementary algebraic construction. By using
the Ringel-Hall algebra realization of U+, the isomorphism classes of representations of the
corresponding Dynkin quiver form a PBW-type basis of U+ and there is an order on this basis.
Under this order, the transition matrix between this basis and a monomial basis is a unipotent
lower triangular matrix. By a standard linear algebra method one can get a bar-invariant basis,
which is the canonical basis B. The second one is a geometric construction. Lusztig constructed
the canonical basis B by using perverse sheaves and intersection cohomology. The geometric
construction of B was generalized to the cases of all types in [12]. In the case of affine type,
Lin, Xiao and Zhang in [10] provided a process to construct a PBW-type basis of U+ and the
canonical basis B by using the Ringel-Hall algebra approach.

Let U̇ be the modified quantized enveloping algebra obtained from U by modifying the
Cartan part U0 to

⊕
λ∈P

Q(v)1λ, where P is the weight lattice. U̇ can be considered as the

limit of tensor products of the highest weight modules and the lowest weight modules. Lusztig
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introduced the canonical bases of the tensor products and then the canonical basis Ḃ of U̇ (see
[13–14]). Kashiwara also studied the algebra U̇ and its canonical basis Ḃ (see [9]).

Happel studied the bounded derived category Db(Λ) of a finite dimensional algebra Λ in [6–
7]. In the case that Λ is hereditary and representation-finite, he proved that there is a bijection
between the isomorphism classes of indecomposable objects in R = Db(Λ)/T 2 and all the roots
of the corresponding Lie algebra, where T is the translation functor in the triangulated category
Db(Λ). Hence R is called a root category. It was proved in [15] that R is still a triangulated
category. In [15–16], Peng and Xiao gave a realization of all symmetrizable Kac-Moody Lie
algebras via the root categories of finite-dimensional hereditary algebras.

Note that the construction of the canonical basis Ḃ is abstract and depends on the con-
struction of the canonical basis B of U+. Inspired by the method of Peng and Xiao, we want
to study the relations between the canonical basis Ḃ and the corresponding root category R.
In this paper, first we associate a set M̃ to R. In [10], Lin, Xiao and Zhang associated a set
M to a hereditary category and the definition of M̃ is based on that of M. However, M̃ is
independent of the embedding of the hereditary category to R. Fixing an embedding of the
hereditary category to R, we can get a bijection between M̃ and the canonical basis Ḃλ of U̇1λ

for every λ ∈ P . Hence we say that the set M̃ provides a parameterization of the canonical
basis Ḃ.

Since [21], it has been an open problem: How to realize the whole quantized enveloping
algebras by using Hall algebras from derived categories or root categories. A lot of efforts have
been paid on the progress (see [3, 8, 20, 22]) and the most recent progress is given by Bridgeland
in [1]. We hope that the main result in the present paper can provide a strong evidence for the
connection between canonical bases and root categories.

In Section 2, we first give some notations of quantized enveloping algebras and modified
quantized enveloping algebras. Then we review the definitions of Ringel-Hall algebras and root
categories. In Section 3, we study the case of finite type, which is simpler and can reflect the
idea clearly. In Section 4, we study the case of affine type. We first review the construction of
the PBW-type basis of U+ in [10]. Then we define a set M̃ depending on the corresponding
root category R and a PBW-type basis of U̇1λ with M̃ as an index. By a standard linear
algebra method, we get a bar-invariant basis and prove that each element in it is the leading
term of an element in Ḃλ. At last, we prove that there is a bijection between M̃ and Ḃλ.

2 Preliminaries

2.1 Quantized enveloping algebras

Let Q be the field of rational numbers and Z be the ring of integers. Let I be a finite-
index set with |I| = n and A = (aij)i,j∈I be a generalized Cartan matrix. Denote by r(A)
the rank of A. Let P∨ be a free Abelian group of rank 2n − r(A) with a Z-basis {hi | i ∈
I} ∪ {ds | s = 1, · · · , n − r(A)} and h = Q ⊗Z P∨ be the Q-linear space spanned by P∨. We
call P∨ the dual weight lattice and h the Cartan subalgebra. We also define the weight lattice
to be P = {λ ∈ h∗ | λ(P∨) ⊂ Z}.

Set Π∨ = {hi | i ∈ I} and choose a linearly independent subset Π = {αi | i ∈ I} ⊂ h∗

satisfying αj(hi) = aij and αj(ds) = 0 or 1 for all i, j ∈ I, s = 1, · · · , n− rankA. The elements
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of Π are called simple roots, and the elements of Π∨ are called simple coroots. The quintuple
(A, Π, Π∨, P, P∨) is called a Cartan datum associated with the generalized Cartan matrix A.

We shall review the definition of quantized enveloping algebras (see [14]). From now on,
assume that the generalized Cartan matrix A = (aij)i,j∈I is symmetric.

Fix an indeterminate v. For any n ∈ Z, set

[n]v =
vn − v−n

v − v−1
.

Set [0]v! = 1 and [n]v! = [n]v[n− 1]v · · · [1]v for any n ∈ Z>0. For any two nonnegative integers
m ≥ n, the analogue of binomial coefficients is given by[m

n

]
v

=
[m]v!

[n]v![m − n]v!
.

Note that [n]v and
[

m
n

]
v

are elements of the field Q(v).
The quantized enveloping algebra U associated with a Cartan datum (A, Π, Π∨, P, P∨) is an

associative algebra over Q(v) with 1 generated by the elements Ei, Fi (i ∈ I) and Kμ (μ ∈ P∨)
subject to the following relations:

K0 = 1, KμKμ′ = Kμ+μ′ for all μ, μ′ ∈ P∨;

KμEiK−μ = vαi(μ)Ei for all i ∈ I, μ ∈ P∨;

KμFiK−μ = v−αi(μ)Fi for all i ∈ I, μ ∈ P∨;

EiFj − FjEi = δij
Ki − K−i

v − v−1
for all i, j ∈ I;

for all i �= j, setting b = 1 − aij ,

b∑
k=0

(−1)kE
(k)
i EjE

(b−k)
i = 0,

b∑
k=0

(−1)kF
(k)
i FjF

(b−k)
i = 0.

Here Ki = Khi and E
(n)
i = En

i

[n]v! , F
(n)
i = F n

i

[n]v! .
Let U+ (resp. U−) be the subalgebra of U generated by the elements Ei (resp. Fi) for

all i ∈ I, and U0 be the subalgebra of U generated by Kμ for all μ ∈ P∨. The quantized
enveloping algebra U has the following triangular decomposition:

U ∼= U− ⊗ U0 ⊗ U+.

Denote by ( ) the unique Q-algebra automorphism of U given by

Ei = Ei, F i = Fi, Kμ = K−μ for all i ∈ I, μ ∈ P∨,

fx = fx for all f ∈ Q(v), x ∈ U,

where f(v) = f(v−1).
Let f be the associative algebra defined by Lusztig in [14]. f is generated by θi (i ∈ I)

subject to the following relations:

b∑
k=0

(−1)kθ
(k)
i θjθ

(b−k)
i = 0 for all i �= j,
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where b = 1 − aij and θ
(n)
i = θn

i

[n]v! .
There are two well-defined Q(v)-algebra homomorphisms + : f → U and − : f → U

satisfying Ei = θ+
i and Fi = θ−i for all i ∈ I. The images of + and − are U+ and U−

respectively.
Denote by ( ) the unique Q-algebra automorphism of f given by

θi = θi for all i ∈ I,

fx = fx for all f ∈ Q(v), x ∈ f .

Note that, for all x ∈ f , x± = x±.
Let A = Q[v, v−1] and Z = Z[v, v−1]. Denote by U±

Z the Z-subalgebras of U± generated
by E

(s)
i and F

(s)
i for all i ∈ I and s ∈ N respectively. Also, denote by UZ the Z-subalgebra of

U generated by E
(s)
i , F

(s)
i and Kμ for all i ∈ I, s ∈ N and μ ∈ P∨. Let U±

A = U±
Z ⊗Z A and

UA = UZ ⊗Z A. Similarly, let fZ be the Z-subalgebra of f generated by θ
(s)
i for all i ∈ I and

s ∈ N. At last, let fA = fZ ⊗Z A.
In [11–12, 14], Lusztig defined the canonical basis B of f .

2.2 Modified quantized enveloping algebras

Let us review the definition of the modified form U̇ of U (see [13–14]).
For any λ′, λ′′ ∈ P , set

λ′Uλ′′ =
U∑

μ∈P∨
(Kμ − qλ′(μ))U +

∑
μ∈P∨

U(Kμ − qλ′′(μ))
.

Let πλ′,λ′′ : U → λ′Uλ′′ be the canonical projection and

U̇ =
⊕

λ′,λ′′∈P

λ′Uλ′′ .

Consider the weight space decomposition U =
⊕

β∈ZI

U(β), where

U(β) = {x ∈ U | KμxK−1
μ = vβ(μ)x for all μ ∈ P∨}.

Here, the set I is viewed as a subset of P and i is identified with αi for each i ∈ I. The images
of summands U(β) under πλ′,λ′′ form the weight space decomposition

λ′Uλ′′ =
⊕
β∈ZI

λ′Uλ′′ (β).

Note that λ′Uλ′′ (β) = 0 unless λ′ − λ′′ = β.
There is a natural associative Q(v)-algebra structure on U̇ inherited from that of U. It is

defined as follows: For any λ′
1, λ

′′
1 , λ′

2, λ
′′
2 ∈ P, β1, β2 ∈ ZI such that λ′

1−λ′′
1 = β1, λ′

2−λ′′
2 = β2

and any x ∈ U(β1), y ∈ U(β2),

πλ′
1,λ′′

1
(x)πλ′

2,λ′′
2
(y) =

{
πλ′

1,λ′′
2
(xy), if λ′′

1 = λ′
2,

0, otherwise.
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For any λ ∈ P , let 1λ = πλ,λ(1), where 1 is the unit element of U. They satisfy the following
relations:

1λ1λ′ = δλ,λ′1λ.

In general, there is no unit element in the algebra U̇. However, the family (1λ)λ∈P can be
regarded locally as the unit element in U̇.

Note that λ′Uλ′′ = 1λ′U̇1λ′′ . Define U̇1λ =
⊕

λ′∈P

1λ′U̇1λ. Then U̇ =
⊕

λ∈P

U̇1λ.

The Q-algebra automorphism ( ) : U → U induces a linear isomorphism λ′Uλ′′ → λ′Uλ′′

for any λ′, λ′′ ∈ P . Taking direct sums, we obtain an algebra automorphism ( ) : U̇ → U̇. Note
that 1λ = 1λ for any λ ∈ P .

The elements b+b′−1λ for all b, b′ ∈ B form a basis of the Q(v)-vector space U̇1λ (see [14,
Section 23.2.1]). Denote by U̇Z the subalgebra of U̇ generated by the elements E

(n)
i 1λ and

F
(n)
i 1λ over Z for all i ∈ I, n ∈ N and λ ∈ P . The set {b+b′−1λ | b, b′ ∈ B, λ ∈ P} is a Z-basis

of U̇Z .
As the notations in [14], the canonical basis of U̇ is denoted by

Ḃ = {b♦λb′ | b, b′ ∈ B, λ ∈ P}.

Note that {b♦λb′ | b, b′ ∈ B} is also a Z-basis of U̇Z1λ. According to the proof of Theorem
25.2.1 in [14]

b♦λb′ ≡ b+b′−1λ mod P (tr|b| − 1, tr|b′| − 1). (2.1)

Here P (tr|b| − 1, tr|b′| − 1) is the Q(v)-submodule of U̇ spanned by the set

{b+
1 b−2 1λ | b1, b2 ∈ B such that tr|b1| ≤ tr|b| − 1, tr|b2| ≤ tr|b′| − 1 and |b1| − |b2| = |b| − |b′|},

where |b| is the weight of b and trμ =
∑

ai if μ =
∑

aiαi.

2.3 Ringel-Hall algebras

In this subsection, we shall review the definition of Ringel-Hall algebras (see [5, 10, 18]).
A quiver Q = (I, H, s, t) consists of a vertex set I, an arrow set H , and two maps s, t : H → I

such that an arrow ρ ∈ H starts at s(ρ) and terminates at t(ρ).
Let k be a field and Λ = kQ be the path algebra of Q over k. Denote by mod-Λ the category

of finite dimensional left Λ-modules and rep-Q the category of finite dimensional representations
of Q over k. It is well-known that mod-Λ is equivalent to rep-Q. We shall identify Λ-modules
with representations of Q under this equivalence.

Let P be the set of isomorphism classes of finite dimensional nilpotent Λ-modules and ind(P)
be the set of isomorphism classes of indecomposable finite dimensional nilpotent Λ-modules.
For any α ∈ P , fix a Λ-module M(α) in the isomorphism class α.

The set of isomorphism classes of nilpotent simple Λ-modules is indexed by the set I and
the Grothendieck group G(Λ) of mod-Λ is the free Abelian group ZI. For any Λ-module M ,
the dimension vector dimM of M is an element in G(Λ) = ZI.

The Euler form 〈−,−〉 on G(Λ) = ZI is defined by

〈α, β〉 =
∑
i∈I

aibi −
∑
ρ∈H

as(ρ)bt(ρ),
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where α =
∑
i∈I

aii, β =
∑
i∈I

bii ∈ ZI. For any Λ-modules M and N , one has

〈dimM, dimN〉 = dimk HomΛ(M, N) − dimk ExtΛ(M, N).

The symmetric Euler form is defined by (α, β) = 〈α, β〉+〈β, α〉 for all α, β ∈ ZI. This gives rise
to a symmetric generalized Cartan matrix A = (aij)i,j∈I , where aij = (i, j). The generalized
Cartan matrix A depends only on the underlying graph of quiver Q.

From now on, let k be a finite field with q elements. Given three modules L, M and N in
mod-Λ, let gL

MN be the number of Λ-submodules W of L such that W � N and L/W � M in
mod-Λ. Let v =

√
q ∈ C. By definition, the Ringel-Hall algebra Hq(Λ) of Λ is the Q(v)-vector

space with basis {u[M ] | [M ] ∈ P} whose multiplication is given by

u[M ]u[N ] =
∑

[L]∈P
gL

MNu[L].

It is easily seen that Hq(Λ) is an associative Q(v)-algebra with unit u[0], where 0 denotes the
zero module. Note that, the Ringel-Hall algebra Hq(Λ) is an NI-graded algebra by dimension
vectors of modules.

The twisted Ringel-Hall algebra H∗
q(Λ) is defined as follows. Set H∗

q(Λ) = Hq(Λ) as Q(v)-
vector space and define the multiplication by

u[M ] ∗ u[N ] = v〈dimM,dimN〉 ∑
[L]∈P

gL
MNu[L].

Let Si be the nilpotent simple module corresponding to i ∈ I and define ui = u[Si]. The
composition algebra C∗

q (Λ) is a subalgebra of H∗
q(Λ) generated by ui for all i ∈ I. For any

Λ-module M , denote
〈M〉 = v− dimk M+dimk EndΛ(M)u[M ].

Note that {〈M(α)〉 | α ∈ P} is a Q(v)-basis of H∗
q(Λ).

Let Q be a finite quiver. Then consider the generic Ringel-Hall algebra associated with Q.
Let k be a finite field and Λk = kQ. Denote by H∗

q(Λk) the corresponding twisted Ringel-Hall
algebra. Let K be a set of some finite fields k such that the set {qk = |k| | k ∈ K} is an infinite
set. Let R be an integral domain containing Q and vqk

, where vqk
=

√
qk for any k ∈ K. For

each k ∈ K, the composition algebra C∗
q (Λk) is the R-subalgebra of H∗

q(Λk) generated by the
elements ui(k) for all i ∈ I. Consider the direct product

H∗(Q) =
∏
k∈K

H∗
q(Λk)

and the elements v = (vqk
)k∈K, v−1 = (v−1

qk
)k∈K and ui = (ui(k))k∈K. By C∗(Q)A we denote

the subalgebra of H∗(Q) generated by v, v−1 and ui over Q. We may regard it as an A-algebra
generated by ui, where v is viewed as an indeterminate. Finally, define C∗(Q) = Q(v)⊗C∗(Q)A,
which is called the generic composition algebra of Q.

Then we have the following well-known result of Green and Ringel (see [5, 18]).

Theorem 2.1 Let Q be a connected quiver, A be the corresponding generalized Cartan
matrix, and f be the Lusztig’s algebra of type A. Then there is an isomorphism of algebras:

C∗(Q) ∼= f ,

ui �→ θi.
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Hence, we always identify C∗(Q) with f .

2.4 Root categories

A triangulated category (C, T ) is called 2-periodic if the translation functor T satisfies T 2 �
id.

Let k be a field. Given a finite dimensional hereditary k-algebra Λ, denote by Db(Λ) the
bounded derived category of the Abelian category mod-Λ and T the translation functor in
this triangulated category. Consider the orbit category R(Λ) = Db(Λ)/T 2 of Db(Λ) under
the equivalent functor T 2. Let F : Db(Λ) → R(Λ) be the canonical functor. The translation
functor T of Db(Λ) induces an equivalent functor in R(Λ) of order 2, which is still denoted by
T . By [15], (R(Λ), T ) is also a triangulated category and the functor F : Db(Λ) → R(Λ) sends
each triangle in Db(Λ) to a triangle in R(Λ). It is clear that the root category R = R(Λ) is a
2-periodic triangulated category.

Let Q be a connected quiver and R(Q) = Db(kQ)/T 2. Denote by P̃ the set of isomorphism
classes of objects in R(Q) and ind(P̃) the set of isomorphism classes of indecomposable objects
in R(Q). Note that mod-kQ can be embeded into R(Q) as a full subcategory and ind(P̃) =
ind(P) ∪̇ ind(T (P)), where ∪̇ means disjoint union.

3 The Finite Type

3.1 The PBW-type basis of U+

In this section, let Q be a connected Dynkin quiver, k be a finite field and Λ = kQ. Denote
by Φ+ (resp. Φ−) the set of positive (resp. negative) roots of the Dynkin quiver Q. Note that
Φ+ and Φ− can be viewed as subsets of ZI. By Gabriel’s theorem, the map dim induces a
bijection between ind(P) and Φ+. Given a positive root α, the corresponding isomorphism
class is also denoted by α.

Since Q is representation-directed, we can define a total order on the set

Φ+ = {α1, α2, · · · , αn}

such that the corresponding indecomposable Λ-modules

{M(α1), M(α2), · · · , M(αn)}

satisfy the following conditions:

Hom(M(αi), M(αj)) �= 0 ⇒ i ≤ j.

Define
Nind(P) = {a : Φ+ → N}.

For any a ∈ Nind(P), we can define a representation

M(a) =
⊕

α∈Φ+

a(α)M(α)

and any representation can be written in this form.
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Since the Hall polynomials exist in this case, we can consider the generic composition algebra
C∗(Q) directly. Note that the set Nind(P) is independent of the choice of the finite field and
〈M(a)〉 can be viewed as an element in C∗(Q) for any a ∈ Nind(P).

By [19], we have the following proposition.

Proposition 3.1 The set {〈M(a)〉 | a ∈ Nind(P)} is an A-basis of C∗
A(Q).

3.2 PBW-type basis of U̇1λ

Let R(Q) be the root category corresponding to a connected Dynkin quiver Q over some
finite field k. Remember that ind(P̃) is the set of isomorphism classes of indecomposable objects
in R(Q). Let Φ = {dim(M) | M ∈ ind(P̃)}. Then Φ is the root system of the corresponding
Lie algebra and there is a bijection between ind(P̃) and Φ by Gabriel’s theorem. Note that
Φ = Φ+ ∪̇ Φ−. For any element α ∈ Φ, we also denote by M(α) the corresponding object in
R(Q).

Define
Nind(P̃) = {ã : Φ → N}.

For any ã ∈ Nind(P̃), we can define an object

M(ã) =
⊕
α∈Φ

ã(α)M(α)

and any object in R(Q) can be written in this form.
Note that the category R(Q), so the set Nind(P̃), depends only on the underlying graph of

Q. If Q′ is another quiver such that Db(kQ) � Db(kQ′), they give the same set Nind(P̃).
Given any symmetric generalized Cartan matrix A = (aij)n×n of finite type, consider a

quiver Q, the quantum enveloping algebra U and the modified quantized enveloping algebra U̇
corresponding to A.

Remember that mod-kQ can be embedded into R(Q) as a full subcategory and

ind(P̃) = ind(P) ∪̇ ind(T (P)).

For any ã ∈ Nind(P̃), let a1 = ã|ind(P) and a2 = ã|ind(T (P)), which is denoted by ã = (a1, a2).
Since we always identify C∗(Q) with f , the elements in the following set

{〈M(ã)〉λ = 〈M(a1)〉+ · 〈M(a2)〉−1λ | ã ∈ Nind(P̃)}

can be regarded as elements in U̇1λ.
We have the following proposition.

Proposition 3.2 The set {〈M(ã)〉λ | ã ∈ Nind(P̃)} is a Q(v)-basis of U̇1λ.

Proof The modified quantized enveloping algebra U̇ is a free f ⊗ fopp-module with basis
(1λ)λ∈P (see [14, Theorem 23.2.1]). So the set

{〈M(a1)〉+ · 〈M(a2)〉−1λ | a1 ∈ ind(P), a2 ∈ ind(T (P))}

is a basis of U̇1λ. By ã = (a1,a2), the set {〈M(ã)〉λ | ã ∈ Nind(P̃)} is a Q(v)-basis of U̇1λ.

Denote by BQ(U̇1λ) the PBW-type basis {〈M(ã)〉λ | ã ∈ Nind(P̃)}. Note that this PBW-
type basis depends on the embedding of mod-kQ into R(Q).
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3.3 A bar-invariant basis of U̇1λ

As before, let Q be a connected Dynkin quiver and R(Q) be the corresponding root category.
Remember that the set of positive roots Φ+ = {α1, · · · , αn}. For any a,b : Φ+ → N, define
b ≺ a if and only if there exists some 1 ≤ j ≤ n such that b(αi) = a(αi) for all i < j and
b(αj) > a(αj). For any ã, b̃ : Φ → N, define ã ≺ b̃ if and only if a1 � b1 and a2 � b2 but
ã �= b̃, where ã = (a1,a2) and b̃ = (b1,b2).

For any c : Φ+ → N, there exists a monomial w∗(c) on Chevalley generators ui satisfying

w∗(c) = 〈M(c)〉 +
∑
c′≺c

acc′〈M(c′)〉,

where acc′ ∈ A (see [19]). Note that the transition matrix a = (acc′) from {〈M(c)〉 | c : Φ+ →
N} to {w∗(c) | c : Φ+ → N} satisfies that acc = 1 and acc′ = 0 unless c′ ≺ c. That is, a is a
unipotent lower triangular matrix.

Let a = (acc′). Since w∗(c) = w∗(c), we have

w∗(c) = w∗(c) =
∑
c′

acc′ 〈M(c′)〉,

and thus

〈M(c)〉 =
∑
c′

a−1
cc′w∗(c′) =

∑
c′

∑
c′′

a−1
cc′ac′c′′ 〈M(c′′)〉.

Let h = a−1a. The matrix h is again a unipotent lower triangular matrix and h = h−1.
There exists a unique unipotent lower triangular matrix d = (dcc′ ) with off-diagonal entries in
v−1Q[v−1], such that d = dh. Then the canonical basis of f is

Ec = 〈M(c)〉 +
∑
c′≺c

dcc′ 〈M(c′)〉,

with dcc′ ∈ v−1Q[v−1] (see [19]).
Similarly, we can get a bar-invariant basis of U̇1λ from

BQ(U̇1λ) = {〈M(c1)〉+ · 〈M(c2)〉−1λ | c̃ : Φ → N, c̃ = (c1, c2)}

and

{w∗(c1)+ · w∗(c2)−1λ | c̃ : Φ → N, c̃ = (c1, c2)}

under the order ≺ on Nind(P̃) defined above.
First define w∗(c̃)λ = w∗(c1)+ · w∗(c2)

−1λ, where c̃ = (c1, c2). Since

w∗(c) = 〈M(c)〉 +
∑
c′≺c

acc′〈M(c′)〉,

we have

w∗(c1)+ = 〈M(c1)〉+ +
∑

c′
1≺c1

ac1c′
1
〈M(c′1)〉+
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and

w∗(c2)− = 〈M(c2)〉− +
∑

c′
2≺c2

ac2c′
2
〈M(c′2)〉−

in U± respectively. Hence, we have

w∗(c̃)λ = w∗(c1)+ · w∗(c2)−1λ

=
(
〈M(c1)〉 +

∑
c′
1≺c1

ac1c′
1
〈M(c′1)〉

)+

·
(
〈M(c2)〉 +

∑
c′
2≺c2

ac2c′
2
〈M(c′2)〉

)−
1λ

= 〈M(c1)〉+ · 〈M(c2)〉−1λ + 〈M(c1)〉+ ·
∑

c′
2≺c2

ac2c′
2
〈M(c′2)〉−1λ

+
∑

c′
1≺c1

ac1c′
1
〈M(c′1)〉+ · 〈M(c2)〉−1λ +

∑
c′
1≺c1

ac1c′
1
〈M(c′1)〉+ ·

∑
c′
2≺c2

ac2c′
2
〈M(c′2)〉−1λ

= 〈M(c̃)〉λ +
∑
c̃′≺c̃

ãc̃c̃′〈M(c̃′)〉λ,

where c̃ = (c1, c2), c̃′ = (c′1, c
′
2) and ãc̃c̃′ = ac1c′

1
ac2c′

2
∈ A.

As before, the transition matrix ã = (ãc̃c̃′) from {〈M(c̃)〉λ | c̃ : Φ → N} to {w∗(c̃)λ | c̃ :
Φ → N} satisfies that ãc̃c̃ = 1 and ac̃c̃′ = 0 unless c̃′ ≺ c̃. That is, ã is also a unipotent lower
triangular matrix with off-diagonal entries in A.

Let ã = (ãc̃c̃′). Since w∗(c̃)λ = w∗(c̃)λ, we have

w∗(c̃)λ = w∗(c̃)λ =
∑
c̃′

ac̃c̃′〈M(c̃′)〉λ,

and thus

〈M(c̃)〉λ =
∑
c̃′

ã
−1

c̃c̃′w∗(c̃′)λ =
∑
c̃′

∑
c̃′′

ã
−1

c̃c̃′ ãc̃′c̃′′〈M(c̃′′)〉λ.

Let h̃ = ã
−1

ã. The matrix h̃ is again a unipotent lower triangular matrix and h̃ = h̃−1.
There exists a unique unipotent lower triangular matrix d̃ = (d̃c̃c̃′) with off-diagonal entries in

v−1Q[v−1], such that d̃ = d̃h̃. Then we get a bar-invariant basis of U̇1λ

E c̃
λ = 〈M(c̃)〉λ +

∑
c̃′≺c̃

d̃c̃c̃′〈M(c̃′)〉λ,

with d̃c̃′c̃ ∈ v−1Q[v−1]. We denote this basis by BQ(U̇1λ).

Theorem 3.1 BQ(U̇1λ) = {E c̃
λ | c̃ : Φ → N} = {b+b′−1λ | b, b′ ∈ B}.

We omit the proof of this theorem. The proof of Theorem 3.1 is simpler than Theorem 4.1
of the affine case, which will be proved in the next section.

3.4 A parameterization of the canonical basis of U̇1λ

Let U̇ =
⊕

λ∈P

U̇1λ be the modified quantized enveloping algebra corresponding to the quiver

Q and Ḃλ be the canonical basis of U̇1λ.
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Theorem 3.2 We have a bijection

ΨQ : Nind(P̃) → Ḃλ

given by

c̃ �→ Ec1♦λEc2 ,

which is the composition of the following two bijections:

Nind(P̃) → BQ(U̇1λ),

c̃ �→ E c̃
λ

and

BQ(U̇1λ) → Ḃλ,

b+b′−1λ �→ b♦λb′.

Proof The first bijection from Nind(P̃) to BQ(U̇1λ) comes from our construction of E c̃
λ and

the second bijection from BQ(U̇1λ) to Ḃλ comes from (2.1). By Theorem 3.1, E c̃
λ = Ec1+Ec2−1λ.

Hence, ΨQ : Nind(P̃) → Ḃλ is a bijection.

4 The Affine Type

4.1 The PBW-type basis of U+

We first review the construction of the PBW-type basis in [2, 4, 10, 23].

4.1.1 The integral basis arising from the Kronecker quiver

Let Q be the Kronecker quiver with I = {1, 2} and H = {ρ1, ρ2}:

1
ρ1

��
ρ2

�� 2

Let k be a finite field with q elements, v =
√

q and Λ = kQ be the path algebra of Q.
The set of dimension vectors of indecomposable Λ-modules is

Φ+ = {(l + 1, l), (m, m), (n, n + 1) | l, m, n ∈ Z, l ≥ 0, m ≥ 1, n ≥ 0}.

The dimension vectors (l + 1, l) and (n, n + 1) correspond to preprojective and preinjective
indecomposable Λ-modules respectively.

Remember that P is the set of isomorphism classes of finite dimensional Λ-modules. Denote
by Hq (resp. H∗

q) the Ringel-Hall (resp. twisted Ringel-Hall) algebra of Λ.
Define

E(n+1,n) = 〈M(n + 1, n)〉 and E(n,n+1) = 〈M(n, n + 1)〉,
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where M(n + 1, n) (resp. M(n, n + 1)) is the corresponding Λ-module of the dimension vector
(n + 1, n) (resp. (n, n + 1)) for any n ∈ N. Let δ = (1, 1). For any n ≥ 1, define

Ẽnδ = E(n−1,n) ∗ E(1,0) − v−2E(1,0) ∗ E(n−1,n).

Then, define inductively

E0δ = 1, Ekδ =
1
[k]

k∑
s=1

vs−kẼsδ ∗ E(k−s)δ for all k ≥ 1.

Consider the generic composition algebra C∗. Since Ekδ, E(m+1,m) and E(n,n+1) are defined
in each H∗

q , they can be regarded as elements in
∏
q
H∗

q . Note that, these elements also belong

to C∗
A.
Denote by P(m) the set of all partitions of m. For any partition

w = (w1 ≥ w2 ≥ · · · ≥ wt) ∈ P(m),

define

Ewδ = Ew1δ ∗ Ew2δ ∗ · · · ∗ Ewtδ.

Proposition 4.1 (see [2, 10, 23]) The set

{〈P 〉 ∗ Ewδ ∗ 〈I〉}

is an A-basis of C∗
A, where P ∈ P is preprojective, w ∈ P(m), I ∈ P is preinjective and m ∈ N.

4.1.2 The integral basis arising from a tube

Let Δ = Δ(n) be the cyclic quiver whose vertex set is Δ0 = Z/nZ = {1, 2, · · · , n} and
whose arrow set is Δ1 = {i → i + 1 | i ∈ Δ0}:

2 �� 3 �� 4

���
��

��
��

1

����������
5

����
��

��
�

n

����������
· · · · · · 7 6		

Let k be a finite field with q elements, v =
√

q and T = T (n) be the category of finite
dimensional nilpotent representations of Δ(n) over k. For any i ∈ Δ0, denote by Si the
corresponding simple object in T . For any i ∈ Δ0 and l ∈ N, denote by Si[l] the indecomposable
object in T with top Si and length l. Note that Si[l] is independent of the choice of finite
fields. Let P be the set of isomorphism classes of objects in T . Denote by H (resp. H∗)
the corresponding Ringel-Hall algebra (resp. the twisted Ringel-Hall algebra). Since the Hall
polynomials always exist in this case, they are regarded as generic forms. Denote by C∗ the
twisted composition subalgebra of H∗.
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Let Π be the set of n-tuples of partitions π = (π(1), π(2), · · · , π(n)), where π(i) = (π(i)
1 ≥

π
(i)
2 ≥ · · · ) is a partition of some non-negative integer. For each π ∈ Π, define an object in T

M(π) =
⊕
i∈Δ0
j≥1

Si[π
(i)
j ].

In this way, we obtain a bijection between Π and P .
An n-tuple π = (π(1), π(2), · · · , π(n)) of partitions in Π is called aperiodic, if for each l ≥ 1

there exists some i = i(l) ∈ Δ0 such that π
(i)
j �= l for all j ≥ 1. Denote by Πa the set of aperiodic

n-tuples of partitions. An object M in T is called aperiodic if M � M(π) for some π ∈ Πa.
For any dimension vector α ∈ NΔ0, define Πα = {λ ∈ Π | dimM(λ) = α} and Πa

α = Πa ∩ Πα.
For any objects M and N in T , there exists a unique (up to isomorphism) extension L of

M by N with the minimal dimEnd(L). The extension L is called the generic extension of M

by N , which is denoted by L = M � N .
Let Ω be the set of all words on the alphabet Δ0. For each w = i1i2 · · · im ∈ Ω, set

M(w) = Si1 � Si2 � · · · � Sim . Then there is a unique p(w) = π ∈ Π such that M(π) � M(w).
It has been proved in [17] that π = p(w) ∈ Πa and p induces a surjection p : Ω � Πa.

For each object M in T and s ≥ 1, denote by sM the direct sum of s copies of M . For
any w ∈ Ω, write w in the tight form w = je1

1 je2
2 · · · jet

t ∈ Ω with jr−1 �= jr for all r. Let μr

be the element in Π such that M(μr) = erSjr . For any λ ∈ Π t∑
r=1

erjr

, write gλ
w for the Hall

polynomial g
M(λ)
M(μ1),··· ,M(μt)

. A word w is called distinguished if the Hall polynomial g
p(w)
w = 1.

For any π ∈ Πa, there exists a distinguished word wπ = je1
1 je2

2 · · · jet
t ∈ p−1(π) in tight form

by [4]. From now on, fix a distinguished word wπ ∈ p−1(π) for any π ∈ Πa. Thus we have a
section D = {wπ | π ∈ Πa} of p over Πa. D is called a section of distinguished words in [4].

For each w = je1
1 je2

2 · · · jet
t ∈ Ω in the tight form, define in C∗ a monomial

m(w) = E∗e1
ji

∗ · · · ∗ E∗et

jt
.

Then define Eπ for all π ∈ Πa inductively by the following relations:

Eπ = m(wπ), if π ∈ Πa
α is minimal

and

Eπ = m(wπ) −
∑
λ≺π

λ∈Πa
α

vdgλ
wπ

(v2)Eλ,

where α =
t∑

i=1

erjr, d = − dimM(π) + dim EndM(π) + dimM(λ) − dim EndM(λ) and λ ≺

μ ⇔ dim Hom(M, M(λ)) ≤ dim Hom(M, M(μ)) for all objects M in T .
For any π ∈ Πa, Eπ is contained in C∗. We have the following proposition.

Proposition 4.2 (see [4, 10]) Let D = {wπ | π ∈ Πa} be a section of distinguished words.
Then both {m(wπ) | π ∈ Πa} and {Eπ | π ∈ Πa} are A-bases of C∗

A. And the transition matrix
between these two bases is a unipotent lower triangular matrix with off-diagonal entries in A.

It has been proved in [4] that the basis {Eπ | π ∈ Πa} is independent of the choice of the
sections of distinguished words.
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4.1.3 The integral bases arising from preprojective and preinjective components

Let k be a finite field with q elements and v =
√

q. Let Q be a connected tame quiver
without oriented cycles and Λ = kQ be the corresponding path algebra. Denote by Prep
and Prei the sets of isomorphism classes of indecomposable preprojective and preinjective Λ-
modules respectively, which are independent of the choice of finite fields. Let Hq (resp. H∗

q) be
the Ringel-Hall (resp. twisted Ringel-Hall) algebra of Λ.

Since Prei is representation-directed, we can define a total order on the set

Φ+
Prei = {· · · , β3, β2, β1}

of all positive real roots appearing in Prei such that the corresponding Λ-modules

{· · · , M(β3), M(β2), M(β1)}

satisfy the following conditions:

Hom(M(βi), M(βj)) �= 0 ⇒ i ≥ j.

Similarly, since Prep is representation-directed, we can define a total order on the set

Φ+
Prep = {α1, α2, α3, · · · }

of all positive real roots appearing in Prep such that the corresponding Λ-modules

{M(α1), M(α2), M(α3), · · · }

satisfy the following conditions:

Hom(M(αi), M(αj)) �= 0 ⇒ i ≤ j.

Define
NPrei

f = {b : Φ+
Prei → N | b is support-finite}.

For any b ∈ NPrei
f , we can define a preinjective representation

M(b) =
⊕

βi∈Φ+
Prei

b(βi)M(βi)

and any preinjective representation can be written in this form.
Define

N
Prep
f = {a : Φ+

Prep → N | a is support-finite}.

For any a ∈ N
Prep
f , we can define a preprojective representation

M(a) =
⊕

αi∈Φ+
Prep

a(αi)M(αi)

and any preprojective representation can be written in this form.
For any three elements b,b1,b2 ∈ NPrei

f (resp. a, a1, a2 ∈ N
Prep
f ), the Hall polynomial

g
M(b)
M(b1)M(b2) (resp. g

M(a)
M(a1)M(a2)

) always exists.
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Consider the generic composition algebra C∗ of Q. Note that 〈M(b)〉 ∈ C∗
A (resp. 〈M(a)〉 ∈

C∗
A) for any b ∈ NPrei

f (resp. a ∈ N
Prep
f ). Denote by C∗

Prei (resp. C∗
Prep) the A-submodule of C∗

A
generated by {〈M(b)〉 | b ∈ NPrei

f } (resp. {〈M(a)〉 | a ∈ N
Prep
f }).

Proposition 4.3 (see [10]) The A-submodule C∗
Prei (resp. C∗

Prep) is a subalgebra of C∗
A and

{〈M(b)〉 | b ∈ NPrei
f } (resp. {〈M(a)〉 | a ∈ N

Prep
f }) is an A-basis of C∗

Prei (resp. C∗
Prep).

4.1.4 The integral basis for the generic composition algebra

Let k also be a finite field with q elements and v =
√

q. Let Q be a connected tame quiver
without oriented cycles and Λ = kQ be the corresponding path algebra.

First consider the embedding of the category of representations of the Kronecker quiver into
that of Q.

Let e be an extending vertex of Q and P = P (e) be the projective cover of a simple module
Se. Let p = dimP (e) and δ be the minimal imaginary root vector. Note that 〈p, p〉 = 1 = 〈p, δ〉
and there exists a unique indecomposable preprojective module L such that dimL = p + δ.
Moreover, HomΛ(L, P ) = 0 and ExtΛ(L, P ) = 0. Let C(P, L) be the smallest full subcategory
of mod-Λ which contains P and L and is closed under taking extensions, kernels of epimorphisms
and cokernels of monomorphisms. The category C(P, L) is equivalent to the module category
of the Kronecker quiver K over k. Thus we have an exact embedding F : mod-kK ↪→ mod-Λ.
Note that the embedding F is independent of the choice of finite fields. Hence, this gives rise
to a monomorphism of algebras F : H∗(K) → H∗(Q). In H∗(K), we have defined EmδK for
any m ∈ N. Define Emδ = F (EmδK ). Since EmδK ∈ C∗(K), Emδ ∈ C∗(Q).

List all non-homogeneous tubes T1, T2, · · · , Ts in mod-Λ (in fact s ≤ 3). For each Ti, let ri

be the period of Ti, C∗(Ti) be the corresponding generic composition algebra and C∗(Ti)A be its
integral form as we did in Section 4.1.2. For each Ti, denote by Πa

i the set of aperiodic ri-tuples
of partitions. We have constructed in Section 4.1.2 the elements Eπi for any πi ∈ Πa

i and the
set {Eπi | πi ∈ Πa

i } is an A-basis of C∗(Ti)A.
Let M be the set of

c = (ac,bc, πc, wc),

where ac ∈ N
Prep
f , bc ∈ NPrei

f , πc = (π1c, π2c, · · · , πsc) ∈ Πa
1 × Πa

2 × · · · × Πa
s and wc = (w1 ≥

w2 ≥ · · · ≥ wt) is a partition of m ∈ N.
For each c ∈ M, define

Ec = 〈M(ac)〉 ∗ Eπ1c ∗ Eπ2c ∗ · · · ∗ Eπsc ∗ Ewcδ ∗ 〈M(bc)〉,

where 〈M(ac)〉 and 〈M(bc)〉 are defined in Section 4.1.3, Eπic is defined in Section 4.1.2 and
Ewcδ is defined in Section 4.1.1.

Note that the set {Ec | c ∈ M} is contained in C∗(Q). We have the following proposition.

Proposition 4.4 (see [10]) The set {Ec | c ∈ M} is an A-basis of C∗(Q)A.

From this basis we can get a bar-invariant basis. But it is not the one considered by Lusztig.
Hence in [10], another PBW-type basis is constructed. Let us review its definition.

There is a bilinear form (−,−) on H∗
q(Λ) defined in [5]. It is also well-defined on C∗(Q)

which coincides with the one defined by Lusztig in [14]. Consider the Q(v)-basis {Ec | c ∈ M}.
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Let R(C∗(Q)) be the Q(v)-subspace of C∗(Q) with the basis {Eπ1c ∗ Eπ2c ∗ · · · ∗ Eπsc ∗ Ewcδ},
where πc = (π1c, π2c, · · · , πsc) ∈ Πa

1 × Πa
2 × · · · × Πa

s , and wc = (w1 ≥ w2 ≥ · · · ≥ wt) is a
partition. R(C∗(Q)) is a subalgebra of C∗(Q).

Let Ra(C∗(Q)) be the subalgebra of R(C∗(Q)) with the basis {Eπ1c ∗Eπ2c ∗ · · · ∗Eπsc | πc =
(π1c, π2c, · · · , πsc) ∈ Πa

1 × Πa
2 × · · · × Πa

s}. For any α, β ∈ NI, define α ≤ β if β − α ∈ NI. If
β < δ, R(C∗(Q))β = Ra(C∗(Q))β . Define Fδ = {x | (x, Ra(C∗(Q))δ) = 0}.

In [10], it is proved that

R(C∗(Q))δ = Ra(C∗(Q))δ ⊕Fδ

and dimFδ = 1. By the method of Schmidt orthogonalization, we may set

E′
δ = Eδ −

∑
M(πic)

dimM(πic)=δ
1≤i≤s

aπicEπic

satisfying Fδ = Q(v)E′
δ.

Now let R(C∗(Q))(1) be the subalgebra of R(C∗(Q)) generated by Ra(C∗(Q)) and Fδ. If
β < 2δ, R(C∗(Q))(1)β = R(C∗(Q))β . Define

F2δ = {x | (x, R(C∗(Q))(1)2δ) = 0}.

Then dimF2δ = 1 and R(C∗(Q))2δ = R(C∗(Q))(1)2δ ⊕F2δ.
In general, define

Fnδ = {x | (x, R(C∗(Q))(n − 1)nδ) = 0}.

Let R(C∗(Q))(n) be the subalgebra of R(C∗(Q)) generated by R(C∗(Q))(n− 1) and Fnδ. Then
dimFnδ = 1 and R(C∗(Q))nδ = R(C∗(Q))(n − 1)nδ ⊕ Fnδ. Similarly, choose E′

nδ such that
Enδ − E′

nδ ∈ R(C∗(Q))(n − 1)nδ and Fnδ = Q(v)E′
nδ for all n ≥ 1.

Let Pnδ = nE′
nδ. For a partition w = (1r12r2 · · · trt) of m ∈ N, let Pwδ = P ∗r1

1δ ∗ · · · ∗ P ∗rt

tδ .
For any c ∈ M, let Swcδ be the Schur function corresponding to Pwcδ and

F c = 〈M(ac)〉 ∗ Eπ1c ∗ Eπ2c ∗ · · · ∗ Eπsc ∗ Swcδ ∗ 〈M(bc)〉.

Proposition 4.5 (see [10]) The set {F c | c ∈ M} is an almost orthonormal Q(v)-basis of
C∗(Q) � f .

4.2 The PBW-type basis of U̇1λ

Let Q be a connected tame quiver without oriented cycles and R(Q) be the corresponding
root category over some finite field k. Remember that P̃ is the set of isomorphism classes of
objects in R(Q) and ind(P̃) is the set of isomorphism classes of indecomposable objects in
R(Q). The set ind(P̃) can be divided into four parts as follows:

ind(P̃) = P ∪̇ T ∪̇ T (P) ∪̇ T (T).

Fix an embedding of mod-kQ into R(Q). Then P = Prep(Q) ∪̇ T (Prei(Q)) and T is the set of
isomorphism classes of all indecomposable regular representations of Q. T consists of isomor-
phism classes of indecomposable representations in homogeneous tubes and non-homogeneous
tubes T1, T2, · · · , Ts appearing in mod-kQ.
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Let M̃ be the set of

c̃ = (dc̃, πc̃, wc̃,d′
c̃, π

′
c̃, w

′
c̃),

where

dc̃ ∈ NP

f , d′
c̃ ∈ N

T (P)
f ,

πc̃ = (π1c̃, π2c̃, · · · , πsc̃) ∈ Πa
1 × Πa

2 × · · · × Πa
s ,

π′
c̃ = (π′

1c̃, π
′
2c̃, · · · , π′

sc̃) ∈ Πa
1 × Πa

2 × · · · × Πa
s ,

and

wc̃ = (w1 ≥ w2 ≥ · · · ≥ wt),

w′
c̃ = (w′

1 ≥ w′
2 ≥ · · · ≥ w′

t′)

are partitions of m ∈ N and m′ ∈ N respectively. NP

f is the set of all support-finite functions

d : P → N and N
T (P)
f is the set of all support-finite functions d : T (P) → N. Note that

πc̃ = (π1c̃, π2c̃, · · · , πsc̃) and wc̃ = (w1 ≥ w2 ≥ · · · ≥ wt), defined in Section 4.1, come from the
set T, while π′

c̃ = (π′
1c̃, π

′
2c̃, · · · , π′

sc̃) and w′
c̃ = (w′

1 ≥ w′
2 ≥ · · · ≥ w′

t′), defined in Section 4.1,
come from the set T (T).

Note that the category R(Q), so the set M̃, depends only on the underlying graph of Q. If
Q′ is another quiver such that Db(kQ) � Db(kQ′), they give the same set M̃.

Given any symmetric generalized Cartan matrix A = (aij)n×n of the affine type, consider
a quiver Q, the quantum enveloping algebra U and the modified quantized enveloping algebra
U̇ corresponding to A.

Remember that mod-kQ can be embedded into R(Q) as a full subcategory and

ind(P̃) = ind(P) ∪̇ ind(T (P)).

For any c̃ = (dc̃, πc̃, wc̃,d′
c̃, π

′
c̃, w

′
c̃) ∈ M̃, let d1 = dc̃|T (Prei(Q)) and d2 = dc̃|Prep(Q), which

is denoted by dc̃ = (d1,d2). Also, let d′
1 = d′

c̃|Prei(Q) and d′
2 = d′

c̃|T (Prep(Q)), which is denoted
by d′

c̃ = (d′
1,d

′
2). Then c1 = (d2, πc̃, wc̃,d′

1) and c2 = (d′
2, π

′
c̃, w

′
c̃,d1) can be regarded as

elements in M and they are denoted by c̃ = (c1, c2).
Since we always identify C∗(Q) with f , the elements in the following set

{F c̃
λ = 〈M(d1)〉−〈M(d2)〉+E+

π1c̃
E+

π2c̃
· · ·E+

πsc̃
S+

wc̃δ〈M(d′
1)〉+〈M(d′

2)〉−E−
π′
1c̃

E−
π′
2c̃
· · ·E−

π′
sc̃

S−
w′

c̃
δ1λ}

can be regarded as elements in U̇1λ. Denote by BQ(U̇1λ) the set {F c̃
λ | c̃ ∈ M̃}.

We also consider the following subset of U̇1λ:

{F ′c̃
λ = F c1+ · F c2−1λ | c̃ = (c1, c2), c̃ ∈ M̃}.

This set is denoted by B′
Q(U̇1λ).

Lemma 4.1 The set B′
Q(U̇1λ) is a Q(v)-basis of U̇1λ.

Proof By Proposition 4.5, {F c | c ∈ M} is a basis of f . Remember that U̇ is a free
f ⊗ fopp-module with the basis (1λ)λ∈P (see [14, Theorem 23.2.1]). So the set

{F c1+ · F c2−1λ | c1 ∈ M, c2 ∈ M}
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is a Q(v)-basis of U̇1λ. By c̃ = (c1, c2), the set {F ′c̃
λ | c̃ ∈ M̃} is a Q(v)-basis of U̇1λ.

For any c̃ = (c1, c2), c̃′ = (c′1, c
′
2) ∈ M̃, if tr|F c1 | �= tr|F c′

1 | or tr|F c2 | �= tr|F c′
2 |, we

define c̃ < c̃′ if and only if tr|F c1 | ≤ tr|F c′
1 | and tr|F c2 | ≤ tr|F c′

2 |; if tr|F c1 | = tr|F c′
1 | and

tr|F c2 | = tr|F c′
2 |, we define c̃ < c̃′ if and only if c1 � c′1 and c2 � c′2 but c̃ �= c̃′, where ≺ is

the order on the set M defined in [10].

Lemma 4.2 The transition matrix from BQ(U̇1λ) to B′
Q(U̇1λ) under the order < defined

above is an invertible lower triangular matrix, whose diagonal entries are powers of v and
off-diagonal entries belong to A.

Proof For any x, y ∈ f homogeneous, write

(r ⊗ 1)r(x) =
∑

x1 ⊗ x2 ⊗ x3

with xk ∈ f homogeneous and

(r ⊗ 1)r(y) =
∑

y1 ⊗ y2 ⊗ y3

with yk ∈ f homogeneous, where r : f → f ⊗ f is defined by r(θi) = θi ⊗ 1 + 1 ⊗ θi and
r(x) = r(x). By Proposition 3.1.7 in [14], the following equality holds in U:

x−y+ =
∑

(−1)tr|x1|−tr|x3|v−tr|x1|+tr|x3|(x1, y1)K|x1|y
+
2 x−

2 {x3, y3}K−|x3|,

where {x, y} = (x, y). Since tr|x2| ≤ tr|x| and tr|x2| = tr|x| if and only if x1 = x3 = 1, or
tr|y2| ≤ tr|y| and tr|y2| = tr|y| if and only if y1 = y3 = 1, we have

x−y+1λ ≡ y+x−1λ mod P (tr|x| − 1, tr|y| − 1).

Let c̃ = (c1, c2). We have

F c̃
λ = 〈M(d1)〉−〈M(d2)〉+E+

π1c̃
E+

π2c̃
· · ·E+

πsc̃
S+

wc̃δ〈M(b′
1)〉+〈M(d′

2)〉−E−
π′
1c̃

E−
π′
2c̃
· · ·E−

π′
sc̃

S−
w′

c̃
δ1λ

= 〈M(d1)〉−F c1+〈M(d′
2)〉−E−

π′
1c̃

E−
π′
2c̃
· · ·E−

π′
sc̃

S−
w′

c̃
δ1λ

≡ F c1+〈M(d1)〉−〈M(d′
2)〉−E−

π′
1c̃

E−
π′
2c̃
· · ·E−

π′
sc̃

S−
w′

c̃
δ1λ mod P (m, n),

where

m = tr|F c1 |

and

n = tr|〈M(d1)〉 ∗ 〈M(d′
2)〉 ∗ Eπ′

1c̃
∗ Eπ′

2c̃
∗ · · · ∗ Eπ′

sc̃
∗ Sw′

c̃
δ| = tr|F c2 |.

Hence

F c̃
λ = F c1+〈M(d1)〉−〈M(d′

2)〉−E−
π′
1c̃

E−
π′
2c̃
· · ·E−

π′
sc̃

S−
w′

c̃
δ1λ +

∑
c̃′<c̃

ẽc̃c̃′F ′c̃′
λ

for some ẽc̃c̃′ ∈ A.
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From the definition of the order ≺ on M,

F c1+〈M(d1)〉−〈M(d′
2)〉−E−

π′
1c̃

E−
π′
2c̃
· · ·E−

π′
sc̃

S−
w′

c̃
δ1λ

= vfF c1+
(
〈M(d′

2)〉−E−
π′
1c̃

E−
π′
2c̃
· · ·E−

π′
sc̃

S−
w′

c̃
δ〈M(d1)〉− +

∑
c′′
2 ≺c2

ec2c′′
2
F c′′

2 −
)
1λ

= vfF c1+
(
F c2− +

∑
c′′
2 ≺c2

ec2c′′
2
F c′′

2 −
)
1λ

= vfF c1+F c2−1λ +
∑

c′′
2 ≺c2

vf ec2c′′
2
F c1+F c′′

2 −1λ

= vfF ′c̃
λ +

∑
c′′
2 ≺c2

vfec2c′′
2
F c1+F c′′

2 −1λ

= vfF ′c̃
λ +

∑
c̃′′<c̃,c′′

1 =c1

ẽc̃c̃′′F ′c̃′′
λ ,

where c̃′′ = (c′′1 , c′′2 ), f = (|〈M(d1)〉|, |〈M(d′
2)〉∗Eπ′

1c̃
∗Eπ′

2c̃
∗· · ·∗Eπ′

sc̃
∗Sw′

c̃
δ|) and ẽc̃c̃′′ = vfec2c′′

2
.

Hence
F c̃

λ = vfF ′c̃
λ +

∑
c̃′<c̃

ẽc̃c̃′F ′c̃′
λ ,

where ẽc̃c̃′ ∈ A.
The proof is finished.

Then, we have the following proposition.

Proposition 4.6 The set BQ(U̇1λ) = {F c̃
λ | c̃ ∈ M̃} is a Q(v)-basis of U̇1λ.

Proof By Lemma 4.1, {F ′c̃
λ | c̃ ∈ M̃} is a Q(v)-basis of U̇1λ. By Lemma 4.2, the transition

matrix from BQ(U̇1λ) to B′
Q(U̇1λ) under the order < defined above is an invertible lower

triangular matrix, whose diagonal entries are powers of v and off-diagonal entries belong to A.
Hence, the set {F c̃

λ | c̃ ∈ M̃} is also a Q(v)-basis of U̇1λ.

4.3 A bar-invariant basis of U̇1λ

As before, let Q be a connected tame quiver without oriented cycles and R(Q) be the
corresponding root category. There is an order ≺ on the set M in [10]. For any c̃, c̃′ ∈ M̃,
define c̃ ≺ c̃′ if and only if c1 � c′1 and c2 � c′2 but c̃ �= c̃′, where c̃ = (c1, c2) and c̃′ = (c′1, c

′
2).

For any c ∈ M, there exists a monomial mc on Chevalley generators ui satisfying

mc = F c +
∑
c′≺c

acc′F c′
,

where acc′ ∈ A (see [10]). Note that the transition matrix a = (acc′ ) from {F c | c ∈ M} to
{mc | c ∈ M} satisfies that acc = 1 and acc′ = 0 unless c′ ≺ c. That is, a is a unipotent lower
triangular matrix.

Let a = (acc′). Since mc = mc, we have

mc = mc =
∑
c′

acc′F c′ ,
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and thus

F c =
∑
c′

a−1
cc′mc′ =

∑
c′

∑
c′′

a−1
cc′ac′c′′F c′′

.

Let h = a−1a. The matrix h is again a unipotent lower triangular matrix and h = h−1. Similar
to the case of finite type, there exists a unique unipotent lower triangular matrix d = (dcc′ )
with off-diagonal entries in v−1Q[v−1], such that d = dh. Then the canonical basis of f is

Ec = F c +
∑
c′≺c

dcc′F c′

with dcc′ ∈ v−1Q[v−1] (see [10]).
Similarly, we can get a bar-invariant basis of U̇1λ from

B′
Q(U̇1λ) = {F c1+ · F c2−1λ | c̃ ∈ M̃, c̃ = (c1, c2)}

and

{m+
c1 · m−

c21λ | c̃ ∈ M̃, c̃ = (c1, c2)}

under the order ≺ on M̃ defined above.
First, define mc̃λ = m+

c1 · m−
c21λ, where c̃ = (c1, c2). Since

mc = F c +
∑
c′≺c

acc′F c′
,

we have

m+
c1

= F c1+ +
∑

c′
1≺c1

ac1c′
1
F c′

1+

and

m−
c2

= F c2− +
∑

c′
2≺c2

ac2c′
2
F c′

2−

in U± respectively. Hence, we have

mc̃λ = m+
c1

·m−
c2

1λ

=
(
F c1 +

∑
c′
1≺c1

ac1c′
1
F c′

1

)+

·
(
F c2 +

∑
c′
2≺c2

ac2c′
2
F c′

2

)−
1λ

= F c1+ · F c2−1λ + F c1+ ·
∑

c′
2≺c2

ac2c′
2
F c′

2−1λ

+
∑

c′
1≺c1

ac1c′
1
F c′

1+ · F c2−1λ +
∑

c′
1≺c1

ac1c′
1
F c′

1+ ·
∑

c′
2≺c2

ac2c′
2
F c′

2−1λ

= F ′c̃
λ +

∑
c̃′≺c̃

ãc̃c̃′F ′c̃′
λ ,

where c̃ = (c1, c2), c̃′ = (c′1, c′2) and ãc̃c̃′ = ac1c′
1
ac2c′

2
∈ A.
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As before, the transition matrix ã = (ãc̃c̃′) from {F ′c̃
λ | c̃ ∈ M̃} to {mc̃λ | c̃ ∈ M̃} satisfies

that ãc̃c̃ = 1 and ac̃c̃′ = 0 unless c̃′ ≺ c̃. That is, ã is a unipotent lower triangular matrix with
off-diagonal entries in A.

Let ã = (ãc̃c̃′). Since mc̃λ = mc̃λ, we have

mc̃λ = mc̃λ =
∑
c̃′

ac̃c̃′F ′c̃′
λ ,

and thus

F ′c̃
λ =

∑
c̃′

ã
−1

c̃c̃′mc̃′λ =
∑
c̃′

∑
c̃′′

ã
−1

c̃c̃′ ãc̃′c̃′′F ′c̃′′
λ .

Let h̃ = ã
−1

ã. The matrix h̃ is again a unipotent lower triangular matrix and h̃ = h̃−1.
There exists a unique unipotent lower triangular matrix d̃ = (d̃c̃c̃′) with off-diagonal entries in

v−1Q[v−1], such that d̃ = d̃h̃. Then we get a bar-invariant basis of U̇1λ

E c̃
λ = F ′c̃

λ +
∑
c̃′≺c̃

d̃c̃c̃′F ′c̃′
λ

with d̃c̃′c̃ ∈ v−1Q[v−1]. We denote this basis by BQ(U̇1λ).

Theorem 4.1 BQ(U̇1λ) = {E c̃
λ | c̃ ∈ M̃} = {b+b′−1λ | b, b′ ∈ B}.

Proof We use the above notations.
First, by the definition of ã, we have

ãc̃c̃′ = ac1c′
1
ac2c′

2
,

where c̃ = (c1, c2), c̃′ = (c′1, c
′
2). Hence, we have

ãc̃c̃′ = ac1c′
1
ac2c′

2
.

Note that ∑
c′

a−1
cc′ac′c = 1.

We have ∑
c̃′

(a−1
c1c′

1
a−1
c2c′

2
)(ãc̃′c̃) =

∑
c̃′

(a−1
c1c′

1
a−1
c2c′

2
)(ac′

1c1ac′
2c2)

=
∑
c′
1

(a−1
c1c′

1
)(ac′

1c1)
∑
c′
2

(a−1
c2c′

2
)(ac′

2c2)

= 1.

Hence, we have

ã
−1

c̃c̃′ = a−1
c1c′

1
a−1
c2c′

2
.
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Then

h̃c̃c̃′′ =
∑
c̃′

ã
−1

c̃c̃′ ãc̃′c̃′′

=
∑
c̃′

a−1
c1c′

1
a−1
c2c′

2
ac′

1c
′′
1
ac′

2c
′′
2

=
∑
c′
1

a−1
c1c′

1
ac′

1c
′′
1

∑
c′
2

a−1
c2c′

2
ac′

2c
′′
2

= hc1c′′
1
hc2c′′

2
.

Next, we will check that

d̃c̃c̃′ = dc1c′
1
dc2c′

2
.

By the uniqueness of d̃, we only need to show

dc1c′′
1
dc2c′′

2
=

∑
c̃′

dc1c′
1
dc2c′

2
h̃c̃′c̃′′ .

We can calculate it directly:∑
c̃′

dc1c′
1
dc2c′

2
h̃c̃′c̃′′ =

∑
c̃′

dc1c′
1
dc2c′

2
hc′

1c
′′
1
hc′

2c
′′
2

=
∑
c′
1

dc1c′
1
hc′

1c
′′
1

∑
c′
2

dc2c′
2
hc′

2c
′′
2

= dc1c′′
1
dc2c′′

2
.

Hence, we have

d̃c̃c̃′ = dc1c′
1
dc2c′

2
.

Now, by definition,

E c̃
λ = F ′c̃

λ +
∑
c̃′≺c̃

d̃c̃c̃′F ′c̃′
λ

= F ′c̃
λ +

∑
c̃′≺c̃

dc1c′
1
dc2c′

2
F ′c̃′

λ

= F c1+ · F c2−1λ +
∑
c̃′≺c̃

dc1c′
1
dc2c′

2
F c′

1+ · F c′
2−1λ

=
(
F c1 +

∑
c′
1≺c1

dc1c′
1
F c′

1

)+

·
(
F c2 +

∑
c′
2≺c2

dc2c′
2
F c′

2

)−
1λ

= Ec1+ · Ec2−1λ.

The proof is finished.

Remark 4.1 Although we use the embedding of mod-kQ into R(Q) to construct the basis
BQ(U̇1λ), this theorem shows that this basis is independent of the choice of the orientation of
Q in fact.
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4.4 A parameterization of the canonical basis of U̇1λ

Let U̇ =
⊕

λ∈P

U̇1λ be the modified quantized enveloping algebra corresponding to the quiver

Q and Ḃλ be the canonical basis of U̇1λ.

Theorem 4.2 We have a bijection

ΨQ : M̃ → Ḃλ

given by

c̃ �→ Ec1♦λEc2 ,

which is the composition of the following two bijections:

M̃ → BQ(U̇1λ),

c̃ �→ E c̃
λ

and

BQ(U̇1λ) → Ḃλ,

b+b′−1λ �→ b♦λb′.

Proof The first bijection from M̃ to BQ(U̇1λ) comes from our construction of E c̃
λ and the

second bijection from BQ(U̇1λ) to Ḃλ comes from (2.1). By Theorem 4.1, E c̃
λ = Ec1+Ec2−1λ.

Hence, ΨQ : M̃ → Ḃλ is a bijection.

Note that the set M̃ depends only on the root category R(Q), instead of on the embedding
of mod-kQ into R(Q). Then all elements in M̃ give a parameterization of the canonical basis
of the modified quantized enveloping algebra by Theorem 4.2.
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