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Abstract Let Fq be a finite field of characteristic p. In this paper, by using the index sum
method the authors obtain a sufficient condition for the existence of a primitive element
α ∈ Fqn such that α + α−1 is also primitive or α + α−1 is primitive and α is a normal
element of Fqn over Fq.

Keywords Finite field, Primitive element, Normal basis
2000 MR Subject Classification 11T30

1 Introduction and Background

Let Fq be a finite field of characteristic p and order q. Let n ≥ 2 and Fqn be a fixed
n-extension of Fq. An element α ∈ Fqn is called normal over Fq if {α, αq, αq2

, · · · , αqn−1} is a
basis of Fqn over Fq, called a normal basis. Normal bases are important in efficient arithmetic
computation for finite fields and have many applications in coding theory and cryptography
(see [16–17]). The basic facts on normal bases of finite fields are collected in the book [16].

An element α ∈ Fqn is called primitive if it is a generator of the multiplicative group F∗
qn .

It is a central problem in computational number theory to construct a primitive element in a
finite field. However, even determining a primitive element in a finite field is hard. Primitive
elements over finite fields are discussed by Carlitz [1], Davenport [10], et al., and are widely
used in cryptography system, coding theory and design theory.

An element is called primitive normal if it is both primitive and normal. The normal basis
generated by a primitive normal element is called a primitive normal basis. For any α ∈ Fqn ,
f(x) ∈ Fq[x] represents the monic minimal polynomial of α over Fq. f(x) is said to be a
primitive or normal polynomial over Fq if α is primitive or normal respectively. f(x) is called
a primitive normal polynomial over Fq when α is a primitive normal element over Fq.

The combination of primitivity and normality was first studied by Carlitz [1]. By using
properties for the additive character of Fqn , he proved that there are at most finitely many pairs
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(q, n) of finite fields, for which there does not exist an element in Fqn that is both primitive and
normal over Fq. He also proved in [1–2] that for all sufficiently large qn, there exists a primitive
normal elements of Fqn over Fq. In the case where the cardinality q is prime, the existence of a
primitive normal element was proved by Davenport [10]. For the general case, by improving the
method of Carlitz and Davenport, which handles all but finitely many pairs (q, n), Lenstra and
Schoof [15] affirmatively settled the existence of primitive normal elements for all finite fields
extensions Fqn over Fq and proved the following well-known primitive normal basis theorem.

Theorem 1.1 (see [15]) For any n ≥ 1 and any prime power q, there is a primitive normal
element in Fqn over Fq.

For a different proof of this theorem, see Cohen and Huczynska [8]. Cohen and Hachenberger
[7] strengthened the primitive normal basis theorem of Lenstra and Schoof [15] and the theorem
of Cohen on primitive elements with prescribed trace (see [6]). It established the conjecture of
Morgan and Mullen [18], who, by means of a computer search, verified the existence of such
elements for the cases in which q ≤ 97 and n ≤ 6, n being the degree of Fqn over Fq. Apart
from two pairs (q, n), Cohen and Hachenberger [7] settled the conjecture purely theoretically
and proved the following theorem.

Theorem 1.2 (see [7]) For any n ≥ 1, any prime power q and any nonzero element c in
Fq, there exists a primitive normal element α ∈ Fqn over Fq such that Tr(α) = c, where Tr is
the trace map from Fqn to Fq.

In recent years, some further improvements of the primitive normal basis theorem are given
(see [11–13]).

It is also interesting to note that Chou and Cohen [3] resolved completely the question
whether there exists a primitive element α ∈ Fqn such that both α and its reciprocal α−1 have
zero trace over Fq. Trivially, there was no such element when n < 5, and they established the
existence for all pairs (q, n) (n ≥ 5) except (4, 5), (2, 6) and (3, 6). In recent years, Fan and
Cohen, et al. [9, 19] further proved that for any prime power q and any integer n ≥ 2, there is
an element α ∈ Fqn such that both α and α−1 are primitive normal over Fq except when (q, n)
is one of the pairs (2, 3)–(2, 4), (3, 4), (4, 3) and (5, 4). Equivalently, with the same exceptions,
there is always a primitive polynomial p(x) of degree n over Fq whose coefficients of x and of
xn−1 are both zero. Their method employed Kloosterman sums and a sieving technique.

For convenience, throughout this paper we denote ω(n) to be the number of distinct prime
factors of the integer n > 1.

In 2006, Tian and Qi [19] proved that there exists a primitive element α ∈ Fqn such that
both α and α−1 are normal elements of Fqn over Fq when n ≥ 32. Recently, Wang, et al. [21]
gave a sufficient condition on the existence of α such that α and α + α−1 are both primitive
or primitive normal for the case 2 | q. In the present paper, by using the index sum method
we generalize their results to the case that q is any prime power and prove the following main
results.

Theorem 1.3 Let q, n be positive integers such that gcd(n, q) = 1 and q
n
2 > 22ω(qn−1), and

then there exists α ∈ Fn
q such that α and α + α−1 are both primitive, where ω(qn − 1) is the

number of distinct prime divisors of qn − 1.

Corollary 1.1 Let q and n be positive integers such that gcd(n, q) = 1. If n ≥ 13 and
t ≥ 4, then (q, n) ∈ U1.
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Theorem 1.4 Let q and n be positive integers such that gcd(n, q) = 1. Suppose that
Ω = Φq(xn − 1), and q

n
2 > 22ω(qn−1)+Ω, so then there exists α ∈ Fn

q such that α is primitive
normal and α+α−1 is primitive, where Ω = Φq(xn − 1) is the Euler function of the polynomial
xn − 1.

2 Preliminaries

In this section, some necessary definitions and lemmas are given.

Definition 2.1 (see [4]) Let r > 1 be a positive integer and suppose r | q − 1. We call
α ∈ F∗

q an r-free element if gcd
(
r, q−1

ordq(α)

)
= 1.

Lemma 2.1 (see [5]) Let α ∈ F∗
q , and r > 1 be a positive integer such that r | q− 1. Then

∑
d|r

μ(d)
φ(d)

∑
ord(χ)=d

χ(α) =

⎧⎨
⎩

r

φ(r)
, α is r-free,

0, otherwise,
(2.1)

where φ is the Euler totient function, μ is the Möbius function and ord(χ) is the order of the
multiplicative character χ of Fq.

Let α ∈ Fqn and d be a positive integer. Define

P (d, α) =
μ(d)
φ(d)

∑
χd

χd(α), P (α) =
φ(qn − 1)

qn − 1

∑
d|qn−1

P (d, α),

where
∑
χd

ranges over all multiplicative characters of Fqn of order d. Thus (2.1) implies

P (α) =
{

1, α is a primitive element,
0, otherwise. (2.2)

Lemma 2.2 (see [14]) Suppose that χ is a multiplicative character of Fq with ord(χ) > 1.
Then

∑
x∈F∗

q

χ(x + x−1) ≤ 2q
1
2 .

Now for any g(x) ∈ Fq[x], g(x) � α = g(σ)(α), σ : α �→ αq. Then α ∈ Fqn if and only if
(xn − 1) �α = 0. The unique monic polynomial in Fq[x] generating this annihilator as an ideal
is called the order of α, denoted by ordq(α). Clearly, α ∈ Fqn ⇔ ordq(α) | xn − 1.

Definition 2.2 (see [14]) Let α ∈ Fqn and f(x) ∈ Fq[x] with f(x) | (xn − 1). We call α

an f(x)-free element if gcd
(
f(x), xn−1

ordq(α)

)
= 1.

By this definition, α ∈ Fqn is a normal element over Fq if and only if α is (xn − 1)-free.

Lemma 2.3 (see [15]) Let f(x) ∈ Fq[x] and f(x) | xn − 1, α ∈ Fqn . Then

∑
g|f

μ(g)
Φq(g)

∑
λg

λg(α) =

⎧⎨
⎩

qdeg f

Φq(g)
, α is f(x)-free,

0, otherwise,

where Φq(g) = �
(Fq [x]

f(x)

)∗ and λg is an additive character with ordqg(x).
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Similarly, for a monic polynomial g(x) ∈ Fq[x], let Ωq(g(x)) be the number of distinct monic
irreducible divisors of g(x) in Fq[x]. Define R(g, α) = μ(g)

Φq(g)

∑
λg

λg(α) and

R(α) =
Φq(xn − 1)

qn

∑
g(x)|xn−1

R(g, α).

Similarly,

R(α) =
{

1, α is a mormal element,
0, otherwise. (2.3)

Lemma 2.4 (see [15]) Let n > 1, l > 1 be integers and Λ be a set of primes ≤ l. Set
L =

∏
r∈Λ

r. Assume that every prime factor r < l of n is contained in Λ. Then

ω(n) ≤ log n − log L

log l
+ |Λ|.

Let m be a positive integer and pm be the m-th prime. Later we will take l = pm, and
then Λ is the set of primes no more than pm, and |Λ| = m, so we have the following inequality
instead of

ω(N) ≤
log N −

m∑
i=1

log pi

log pm
+ m. (2.4)

For our proof, we need the Weil’s character sum estimate in the following form (see [20]).

Lemma 2.5 (see [20]) Let f1(T ) and f2(T ) be two monic pairwise prime polynomials in
Fq[T ] whose largest square-free divisors have degree d1 and d2 respectively. Let χ1 and χ2 be
two multiplicative nontrivial characters of the finite field Fq. Assume that none of fi(T ) is
of the form g(T )ordχi for i = 1, 2, where g(T ) ∈ Fq[T ] with degree at least 1. Then we have∣∣ ∑

a∈Fq

χ1(f1(a))χ2(f2(a))
∣∣ ≤ (d1 + d2 − 1)

√
q.

3 Proofs of the Main Results

Proof of Theorem 1.3 Denote P to be the set of primitive elements of Fqn and N
to be the set of normal elements of Fqn over Fq. Define U1 = {(q, n) |α, α + α−1 ∈ P}, U2

= {(q, n) |α, α + α−1 ∈ P and α ∈ N}. By Definition 2.1 and (2.2) one has

|U1| =
∑

α∈F∗
qn

P (α)P (α + α−1)

=
(φ(qn − 1)

qn − 1

)2 ∑
α∈F∗

qn

∑
d,h|qn−1

P (d, α)P (h, α + α−1)

=
(φ(qn − 1)

qn − 1

)2

(A1 + A2 + A3 + A4),

where A1 =
∑

α∈F∗
qn

P (1, α)P (1, α + α−1), A2 =
∑

α∈F∗
qn

∑
1�=d|qn−1

P (d, α)P (1, α + α−1), A3 =
∑

α∈F∗
qn

∑
1�=h|qn−1

P (1, α)P (h, α+α−1) and A4 =
∑

α∈F∗
qn

∑
1�=d,h|qn−1

P (d, α)P (h, α+α−1). It is clear

that

A1 =
∑

α∈F∗
qn

μ(1)
φ(1)

∑
χ1

χ1(α)
∑
χ1

χ1(α + α−1) =
∑

α∈F∗
qn

1 = qn − 1 (3.1)



On the Existence for Some Special Primitive Elements in Finite Fields 263

and

|A2| =
∣∣∣ ∑

α∈F∗
qn

μ(1)
φ(1)

∑
χ1

χ1(α + α−1)
∑

1�=d|qn−1

μ(d)
φ(d)

∑
χd

χd(α)
∣∣∣

=
∣∣∣ ∑

α∈F∗
qn

∑
1�=d|qn−1

μ(d)
φ(d)

∑
χd

χd(α)
∣∣∣

≤
∑

1�=d|qn−1

1
φ(d)

∑
χd

∣∣∣ ∑
α∈F∗

qn

χd(α)
∣∣∣.

If d 
= 1, then
∣∣ ∑

α∈F∗
qn

χd(α)
∣∣ = 0 and thus

|A2| = 0. (3.2)

Similar to A2, one shows that |A3| ≤
∑

1�=h|qn−1

1
φ(h)

∑
χh

∣∣ ∑
α∈F∗

qn

χh(α + α−1)
∣∣. From Lemma 2.2,

we have |A3| ≤
∑

1�=h|qn−1

1
φ(h)

∑
χh

2q
n
2 =

∑
1�=h|qn−1

2q
n
2

φ(h)

∑
χh

1, namely,

|A3| ≤ 2q
n
2

∑
1�=h|qn−1

1
φ(h)

φ(h) = 2q
n
2 (2ω(qn−1) − 1). (3.3)

Now we compute A4:

|A4| =
∣∣∣ ∑

α∈F∗
qn

∑
1�=d,h|qn−1

P (d, α)P (h, α + α−1)
∣∣∣

=
∣∣∣ ∑
1�=d,h|qn−1

μ(d)μ(h)
φ(d)φ(h)

∑
χd,χh

∑
α∈F∗

qn

χd(α)χh(α + α−1)
∣∣∣

≤
∑

1�=d=h|qn−1

1
φ(d)φ(h)

∑
χd,χh

∣∣∣ ∑
α∈F∗

qn

χd(α)χh(α + α−1)
∣∣∣

=
∑

1�=d,h|qn−1

1
φ(d)φ(h)

∑
χd=χh

∣∣∣ ∑
α∈F∗

qn

χd(α2 + 1)
∣∣∣

+
∑

1�=d,h|qn−1

1
φ(d)φ(h)

∑
χd �=χh

∣∣∣ ∑
α∈F∗

qn

χdχ
−1
h (α)χh(α2 + 1)

∣∣∣

≤
∑

1�=d,h|qn−1

1
φ(d)φ(h)

∑
χd=χh

q
n
2 +

∑
1�=d,h|qn−1

1
φ(d)φ(h)

∑
χd �=χh

2q
n
2 .

The last inequality follows from Lemma 2.5 and thus

|A4| ≤
∑

1�=d|qn−1

q
n
2

φ(d)φ(h)

∑
χd

1 +
∑

1�=d,h|qn−1

1
φ(d)φ(h)

∑
χd �=χh

2q
n
2 ≤ q

n
2 (2ω(qn−1) − 1)2. (3.4)

From (3.1)–(3.4) we now have
∣∣|U1|− (φ(qn−1))2

qn−1

∣∣ ≤ (φ(qn−1)
qn−1

)2(2q
n
2 (2ω(qn−1)−1)+q

n
2 (2ω(qn−1)−

1)2
)
. In order to have |U1| > 0, it is sufficient to have qn − 1 > 2q

n
2 (2ω(qn−1)−1)+q

n
2 (2ω(qn−1)−

1)2), namely, q
n
2 − 1

q
n
2

> 22ω(qn−1) − 22+ω(qn−1) − 1, and it is sufficient to have q
n
2 > 22ω(qn−1)

as desired. The proof is complete.
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Proof of Corollary 1.1 By (2.4) we have

ω(qn − 1) ≤
log(qn − 1) −

m∑
i=1

log pi

log pm
+ m <

n log q −
m∑

i=1

log pi

log pm
+ m.

From q
n
2 > 22ω(qn−1) we have

n log q

log 16
− n log q

log pm
> m −

m∑
i=1

log pi

log pm
. (3.5)

If the left of (3.5) is positive, we have 1
log 16 − 1

log pm
> 0, i.e., m ≥ 7. So we can choose a

suitable m with m ≥ 7. Thus we complete the proof of Corollary 1.1.

Example 3.1 Let p = 3, when q < 32, that is, t ≤ 3. We can find the (q, n) such that
(q, n) ∈ U1.

t = 1 2 3
n ≥ 7 4 5

Proof of Theorem 1.4 Similarly, by (2.3) one has

|U2| =
∑

α∈F∗
qn

P (α)P (α + α−1)R(α)

=
(φ(qn − 1)

qn − 1

2
φq(xn − 1)

qn

) ∑
α∈F∗

qn

∑
d,h|qn−1

∑
g|(xn−1)

P (d, α)P (h, α + α−1)R(g, α)

=
(φ(qn − 1)

qn − 1

2
φq(xn − 1)

qn

)
(D1 + D2 + D3 + D4 + D5 + D6),

where

D1 =
∑

α∈F∗
qn

P (1, α)P (1, α + α−1)R(1, α)

D2 =
∑

α∈F∗
qn

∑
1�=d|qn−1

P (d, α)P (1, α + α−1)R(1, α),

D3 =
∑

α∈F∗
qn

∑
1�=h|qn−1

P (1, α)P (h, α + α−1)R(1, α),

D4 =
∑

α∈F∗
qn

∑
1�=d,h|qn−1

P (d, α)P (h, α + α−1)R(1, α),

D5 =
∑

α∈F∗
qn

∑
1�=g|xn−1

P (1, α)P (1, α + α−1)R(g, α),

D6 =
∑

α∈F∗
qn

∑
1�=d,h|qn−1

∑
1�=g|xn−1

P (d, α)P (h, α + α−1)R(g, α).

Similar to the proof of Theorem 1.3, we have |D1| = qn − 1, |D2| = 0, |D3| ≤ 2q
n
2 (2ω(qn−1) −

1), |D4| ≤ q
n
2 (2ω(qn−1) − 1)2,

|D5| =
∣∣∣ ∑

α∈F∗
qn

μ(1)
φ(1)

∑
χ1

χ1(α + α−1)
μ(1)
φ(1)

∑
χ1

χ1(α)
∑

g|xn−1

∑
λg

λg(α)
∣∣∣
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=
∣∣∣ ∑

α∈F∗
qn

∑
g|xn−1

μ(g)
φ(g)

∑
λg

λg(α)
∣∣∣

=
∣∣∣ ∑

g|xn−1

μ(g)
φ(g)

∑
λg

(−1)
∣∣∣

=
∣∣∣ ∑

g|xn−1

μ(g)
φ(g)

φ(g)
∣∣∣

≤ 2Ω − 1

and

|D6| =
∣∣∣ ∑

α∈F∗
qn

∑
1�=d,h|qn−1

∑
g|xn−1

P (d, α)P (h, α + α−1)R(g, α)
∣∣∣

=
∣∣∣ ∑
1�=d,h|qn−1

μ(d)μ(h)
φ(d)φ(h)

∑
α∈F∗

qn

∑
χd,χh

χd(α)χh(α + α−1)
∑

1�=g|xn−1

μ(g)
φ(g)

∑
λg

λg(α)
∣∣∣

≤
∣∣∣ ∑

α∈F∗
qn

∑
1�=g|xn−1

μ(g)
φ(g)

∑
λg

λg(α)
∣∣∣( ∑

1�=d,h|qn−1

1
φ(d)φ(h)

∑
χd=χh

∣∣∣ ∑
α∈F∗

qn

χd(α2 + 1)
∣∣∣

+
∑

1�=d,h|qn−1

1
φ(d)φ(h)

∑
χd �=χh

∣∣∣ ∑
α∈F∗

qn

χdχ
−1
h (α)χh(α2 + 1)

∣∣∣)

≤
∣∣∣ ∑

α∈F∗
qn

∑
1�=g|xn−1

μ(g)
φ(g)

∑
λg

λg(α)
∣∣∣( ∑

1�=d,h|qn−1

1
φ(d)φ(h)

∑
χd=χh

q
n
2

+
∑

1�=d,h|qn−1

1
φ(d)φ(h)

∑
χd �=χh

2q
n
2

)

≤ (2Ω − 1)q
n
2 (2ω(qn−1) − 1)2.

Obviously, in order to get |U2| > 0, it is sufficient to have q
n
2 > 22ω(qn−1)+Ω.

Thus we complete the proof of Theorem 1.4.

4 Concluding Remark

For the set Ui (i = 1, 2), Wang, et al. considered the case that q is a power of 2. In this
paper, we consider the general case and obtain the similar estimate. By the same proof of our
main results, one can get a sufficient condition for the set U3 = {(q, n) |α, α + α−1 ∈ P ∩ N}
to be not empty, which is left to readers.

In fact, the main difference between the proofs in [21] and the present paper is to compute
|A4|. In detail, the key is to estimate the value of

∣∣ ∑
α∈F

∗
qn

χd(α)χh(α+α−1)
∣∣. This can be reduced

to the Jacobi sum J(χdχ̄h, χh) or J((χdχ̄h)
1
2 , χh) in the case 2 | q, which can be bounded by

using the techniques of Jacobi sums. In the case that q is odd, this approach does not work.
In [21] the authors pointed out that similar results could be obtained through certain slight
modification. To make it more exact, the difficulty of estimating the related exponential sums
could be overcome to obtain similar results in finite fields with general characteristics. In this
paper, we completely solve the problem and our proof looks briefer than that in [21] by using
the Weil’s character sum estimate (see [20]). With our method, all results in [21] for the case
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2 | q can be paralleled to the general case. For the time being, we omit it here and leave it to
readers.

Acknowledgement The authors would like to thank the reviewers for some helpful sug-
gestions.
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