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Abstract In this paper, the authors consider limit cycle bifurcations for a kind of non-
smooth polynomial differential systems by perturbing a piecewise linear Hamiltonian sys-
tem with a center at the origin and a heteroclinic loop around the origin. When the degree
of perturbing polynomial terms is n (n ≥ 1), it is obtained that n limit cycles can appear
near the origin and the heteroclinic loop respectively by using the first Melnikov function
of piecewise near-Hamiltonian systems, and that there are at most n + [n+1

2
] limit cycles

bifurcating from the periodic annulus between the center and the heteroclinic loop up to
the first order in ε. Especially, for n = 1, 2, 3 and 4, a precise result on the maximal number
of zeros of the first Melnikov function is derived.
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1 Introduction and Main Results

A large number of problems in mechanics, electrical engineering and the theory of automatic
control are described by non-smooth systems (see [1–3] and the references therein). The basic
methods of the qualitative theory were established or developed by Filippov in [4]. Due to the
variety of the forms of non-smoothness, piecewise smooth systems exhibit not only all kinds
of bifurcations that occur in smooth systems, but also complicated nonstandard bifurcation
phenomenon that are unique to piecewise smooth ones including grazing (see [5–6]), sliding
effects (see [7]), border collision (see [8]), etc. For limit cycle bifurcations of piecewise smooth
planar systems with two regions, Han and Zhang [9] proved that linear systems can have two
limit cycles near a focus of either the focus-focus, focus-parabolic or the parabolic-parabolic
type (see [10] for the definition). In [11–12], the authors constructed two different classes of
piecewise smooth quadratic planar systems with a focus of the focus-focus type, and showed
that 5 and 9 limit cycles can respectively appear in Hopf bifurcation. In [13], Liu and Han
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considered a piecewise polynomial system of the form

(ẋ, ẏ) =

{
(b+y + εp+

n (x, y, δ),−b+x + εq+
n (x, y, δ)), x ≥ 0,

(b−y + εp−n (x, y, δ),−b−x + εq−n (x, y, δ)), x < 0,

where b± > 0, and p±n and q±n are arbitrary polynomials of degree n (n ≥ 1). It was proved
that the maximal number of limit cycles of the above system is n up to the first order in ε.
Recently, in [14] we studied the following system:{

ẋ = −y + εp+
n (x, y),

ẏ = 1 − x + εq+
n (x, y),

x ≥ 0,

{
ẋ = −y + εp−n (x, y),

ẏ = x + εq−n (x, y),
x < 0, (1.1)

where p±n and q±n are also arbitrary polynomials of degree n (n ≥ 1). For the unperturbed
system of the above, there exists a family of the periodic orbits between the origin which is an
elementary center of parabolic-focus type and a compound homoclinic loop around the origin
having a saddle at (1, 0). We obtained that there exist systems of the form (1.1) having at least
n+ [n+1

2 ] limit cycles for ε small, and gained an upper bound 2n+ [n+1
2 ] of the number of limit

cycles for this system up to the first order in ε.
However, so far there have been few papers studying heteroclinic bifurcations inside the

class of piecewise polynomial differential systems in the literature obtained. In this paper, we
study this problem by using the first Melnikov function of piecewise near-Hamiltonian systems.

First, we recall the first-order Melnikov function for piecewise smooth near-Hamiltonian
systems deduced in [13]. Consider a general form of a piecewise near-Hamiltonian system on
the plane {

ẋ = Hy + εp(x, y, δ),

ẏ = −Hx + εq(x, y, δ),
(1.2)

where

H(x, y) =

{
H+(x, y), x ≥ 0,

H−(x, y), x < 0,

p(x, y, δ) =

{
p+(x, y, δ), x ≥ 0,

p−(x, y, δ), x < 0,

q(x, y, δ) =

{
q+(x, y, δ), x ≥ 0,

q−(x, y, δ), x < 0,

H±, p± and q± are C∞, ε > 0 is small, and δ ∈ D ⊂ R
m is a vector parameter with D compact.

We know that this system has two subsystems which are called the right subsystem and the
left subsystem respectively, i.e., {

ẋ = H+
y + εp+(x, y, δ),

ẏ = −H+
x + εq+(x, y, δ)

(1.2a)

and {
ẋ = H−

y + εp−(x, y, δ),

ẏ = −H−
x + εq−(x, y, δ).

(1.2b)

Suppose that (1.2)|ε=0 has a family of periodic orbits around the origin and satisfies the following
two assumptions.
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Assumption (I): There exists an interval J = (α, β) and two points A(h) = (0, a(h)) and
A1(h) = (0, a1(h)) such that for h ∈ J ,

H+(A(h)) = H+(A1(h)) = h, H−(A(h)) = H−(A1(h)) = h̃, a(h) < a1(h).

Assumption (II): The subsystem (1.2a)|ε=0 has an orbital arc L+
h starting from A(h) and

ending at A1(h) defined by H+(x, y) = h, x ≥ 0; the subsystem (1.2b)|ε=0 has an orbital arc
L−

h starting from A1(h) and ending at A(h) defined by H−(x, y) = H−(A1(h)), x < 0.

Under assumptions (I) and (II), (1.2)|ε=0 has a family of piecewise smooth periodic orbits
Lh orientated anticlockwise with Lh = L+

h ∪ L−
h , h ∈ J (see Figure 1).

A

A1

Lh

+

Lh

–

Figure 1 The closed orbits of (1.2)|ε=0.

Lemma 1.1 (see [13]) Under the assumptions (I) and (II), for the first order Melnikov
function of system (1.2), we have

M(h, δ) =
H+

y (A)

H−
y (A)

[H−
y (A1)

H+
y (A1)

∫
L+

h

q+dx − p+dy +
∫

L−
h

q−dx − p−dy
]
, h ∈ J. (1.3)

Further, if M(h0) = 0 and M ′(h0) �= 0 for some h0 ∈ J , then for ε > 0 small, (1.2) has a
unique limit cycle near Lh0 . If h0 is a zero of M(h) having an odd multiplicity, then for ε > 0
small, (1.2) has at least one limit cycle near Lh0 . Also, if M(h) has at most k zeros in h on the
interval J , then (1.2) has at most k limit cycles bifurcating from the open annulus

⋃
α<h<β

Lh.

In this paper, we take

H+(x, y) =
1
2
((x − 1)2 − y2), x ≥ 0, (1.4)

H−(x, y) =
1
2
((x + 1)2 − y2), x < 0, (1.5)
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and suppose

p(x, y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
p+(x, y) =

n∑
i+j=0

a+
ijx

iyj , x ≥ 0,

p−(x, y) =
n∑

i+j=0

a−
ijx

iyj , x < 0,

q(x, y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
q+(x, y) =

n∑
i+j=0

b+
ijx

iyj, x ≥ 0,

q−(x, y) =
n∑

i+j=0

b−ijx
iyj, x < 0.

(1.6)

When (1.4) and (1.5) hold, the system (1.2) has the form{
ẋ = −y + εp+(x, y),
ẏ = 1 − x + εq+(x, y), x ≥ 0,

{
ẋ = −y + εp−(x, y),
ẏ = −(1 + x) + εq−(x, y), x < 0. (1.7)

For ε = 0, this system has a family of piecewise periodic orbits given by

Lh =
{
(x, y) | H+(x, y) =

h

2
, x ≥ 0

}⋃{
(x, y) | H−(x, y) =

h

2
, x < 0

}
, 0 < h < 1.

For the sake of convenience, here we use h
2 instead of h. The limit L0 of Lh as h → 0 is

a compound heteroclinic loop with two saddles S1(−1, 0) and S2(1, 0). And if h → 1, Lh

approaches the origin which is an elementary center of parabolic-parabolic type (see [9–10] for
the definition). See Figure 2.

A

A11

S 1 S 2

Figure 2 Phase portrait of system (1.7)|ε=0.

Noticing H+
y (0, y) ≡ H−

y (0, y) for −1 < y < 1, we have by Lemma 1.1 that the first-order
Melnikov function of system (1.7) satisfies

M
(h

2

)
=

∫
ÂA1

q+dx − p+dy +
∫

Â1A

q−dx − p−dy ≡ M(h), (1.8)

where 0 < h < 1, and

A = (0,−√
1 − h), A1 = (0,

√
1 − h),
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ÂA1 =
{

(x, y) | H+(x, y) =
h

2
, x ≥ 0

}
,

Â1A =
{

(x, y) | H−(x, y) =
h

2
, x < 0

}
.

Let Z(n) denote the maximal number of zeros of the non-zero function M(h) on the open
interval (0, 1) for all possible p and q satisfying (1.6), which is the maximal number of limit
cycles of (1.7) bifurcating from the periodic annulus

⋃
0<h<1

Lh for all possible p and q satisfying

(1.6). Let NHopf(n) and Nheteroc(n) denote respectively the maximal number of limit cycles
bifurcated in Hopf bifurcation near the origin and in heteroclinic bifurcation near L0 for all
possible p and q satisfying (1.6). Then our main results can be stated as follows.

Theorem 1.1 For any n ≥ 1 we have
(1) NHopf(n) ≥ n.
(2) Nheteroc(n) ≥ n.

Theorem 1.2 For n = 1, 2, 3, 4, we have Z(n) = n.

Theorem 1.3 For any n ≥ 5 we have n ≤ Z(n) ≤ n + [n+1
2 ].

We conjecture that Z(n) = n for all n ≥ 5.

2 Preliminary Lemmas

In this section, we give an expression of the first-order Melnikov function M(h) in (1.8) for
0 < h < 1, and provide two expansions of M(h) near the origin and the heteroclinic loop L0

respectively. By (1.8) we set for 0 < h < 1,

M+
(h

2

)
=

∫
ÂA1

q+dx − p+dy =
∫

H+(x,y)= h
2 , x≥0

q+dx − p+dy,

M−
(h

2

)
=

∫
Â1A

q−dx − p−dy =
∫

H−(x,y)= h
2 , x<0

q−dx − p−dy.

(2.1)

Since (1.7) in this paper and (1.9) in [14] have the same right subsystems, we directly have from
(2.3)–(2.4) and (2.17) in [14] that

M+
(h

2

)
=

√
1 − hμ[ n

2 ](h) + μ[ n−1
2 ](h)I10(h)

= φ1(h)ln h + φ2(h), (2.2)

where μj(h) denotes a polynomial of h with degree j, φ2(h) ∈ Cω at h = 0, φ1(h) is a polynomial
in h with degree [n+1

2 ], φ1(0) = 0, and

I10(h) = hϕ0

(√
1 − h

h

)
, ϕ0(u) =

∫ u

0

√
1 + x2dx. (2.3)

We know that the function ϕ0(u) is analytic on R and odd in u.
By making a change of x = −u, y = v, we get from (2.1)–(2.2) that

M−
(h

2

)
=

∫
Â1A

q−dx − p−dy

=
∫

ÂA1

q−(−u, v, δ)du + p−(−u, v, δ)dv
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=
∫

ÂA1

( n∑
i+j=0

(−1)ib−iju
ivj

)
du −

( n∑
i+j=0

(−1)i+1a−
iju

ivj
)
dv

=
√

1 − hμ̃[ n
2 ](h) + μ̃[ n−1

2 ](h)I10(h)

= φ̃1(h)ln h + φ̃2(h), (2.4)

where μ̃j and φ̃i are similar to μj and φi in (2.2), i = 1, 2. Hence, from (2.2) and (2.4) we
obtain the following lemma.

Lemma 2.1 For the system (1.7), the first-order Melnikov function has the following form:

M(h) =
√

1 − hf[ n
2 ](1 − h) + g[ n−1

2 ](1 − h)I10(h), 0 < h < 1,

where f[ n
2 ](u) and g[ n−1

2 ](u) are polynomials in u of degrees [n
2 ] and [n−1

2 ] respectively.

In the following we study the expansions of M(h) near h = 0, 1. By (2.2) and (2.4), the
lemma below holds immediately.

Lemma 2.2 For the system (1.7), the first-order of Melnikov function M(h) has the fol-
lowing expansion: for 0 < h � 1

M(h) =
( [ n+1

2 ]∑
i=1

b∗i h
i
)

lnh +
∑
j≥0

bjh
j ,

where for n = 2,

b∗1 = − 1
2 ( a+

10 + b+
01 + 2a+

20 + b+
11 + a−

10 + b−01 − 2a−
20 − b−11),

b0 = −a+
10 − b+

01 −
2
3

a+
20 −

1
3

b+
11 − 2 a+

00 −
2
3

a+
02 − a−

10 − b−01 +
2
3

a−
20 +

1
3

b−11 + 2 a−
00 +

2
3

a−
02,

b1 =
(1

2
+ ln2

)
a+
10 +

(1
2

+ ln2
)
b+
01 + (2ln2 − 1)a+

20 +
(
ln2 − 1

2

)
b+
11 + a+

00 + a+
02

+
(1

2
+ ln2

)
a−
10 +

(1
2

+ ln2
)
b−01 + (1 − 2ln2)a−

20 +
(1

2
− ln2

)
b−11 − a−

00 − a−
02,

b2 =
1
4

a+
20 +

1
8

b+
11 −

1
4

a+
02 −

1
8

a+
10 −

1
8

b+
01 +

1
4

a+
00 −

1
4

a−
20 −

1
8

b−11 +
1
4

a−
02

− 1
8

a−
10 −

1
8

b−01 −
1
4

a−
00,

· · · · · ·
Next, we give the expansion of M(h) near h = 1. Noticing that in (2.3) ϕ0(u) ∈ Cw on R

and is odd in u, we can write for |u| small

ϕ0(u) =
∞∑

i=0

ςiu
2i+1,

where ςi is a constant, i ≥ 0. Then, it follows from (2.3), for 1 − h > 0 small, that

I10(h) = hϕ0

(√
1 − h

h

)
=

√
h(1 − h)

∞∑
i=0

ςi

(1 − h

h

)i

≡ √
1 − hφ3(1 − h), (2.5)
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where φ3(u) ∈ Cw at u = 0. Then by (2.5) and Lemma 2.1, we have the following lemma.

Lemma 2.3 For the system (1.7), the first order of Melnikov function M(h) has the fol-
lowing expansion: for 0 < 1 − h � 1,

M(h) =
√

1 − h
∑
i≥0

ci(1 − h)i,

where for n = 2,

c0 = 2(a−
00 − a+

00), c1 =
2
3
(a−

02 − a−
10 − b−01 − a+

02 − a+
10 − b+

01),

c2 =
2
15

(2a−
20 + b−11 − a−

10 − b−01 − 2a+
20 − b+

11 − a+
10 − b+

01),

· · · · · ·

The following definition and lemma will be used in the proof of Theorem 1.2 in Section 3.

Definition 2.1 (see [15]) Let f0, f1, · · · , fm−1 be analytic functions on an open interval L

of R.
(a) (f0, f1, · · · , fm−1) is said to be a Chebyshev system, provided that any nontrivial linear

combination
α0f0(x) + α1f1(x) + · · · + αm−1fm−1(x)

has at most m − 1 isolated zeros on L.
(b) (f0, f1, · · · , fm−1) is said to be a complete Chebyshev system, provided that (f0, f1,

· · · , fk−1) is a Chebyshev system on L for all k = 1, 2, · · · , m.

(c) (f0, f1, · · · , fm−1) is said to be an extended complete Chebyshev system, provided that
any nontrivial linear combination

α0f0(x) + α1f1(x) + · · · + αk−1fk−1(x)

has at most k − 1 isolated zeros on L counting multiplicity of zeros for all k = 1, 2, · · · , m.

(d) The continuous Wronskian of (f0, f1, · · · , fk−1) at x ∈ L is defined to be

W [f0, f1, · · · , fk−1](x) = det
(
f

(i)
j (x)

)
0≤i,j≤k−1

=

∣∣∣∣∣∣∣∣∣
f0(x) f1(x) · · · fk−1(x)
f ′
0(x) f ′

1(x) · · · f ′
k−1(x)

...
...

...
f

(k−1)
0 (x) f

(k−1)
1 (x) · · · f

(k−1)
k−1 (x)

∣∣∣∣∣∣∣∣∣ .

Lemma 2.4 (see [15]) (f0, f1, · · · , fm−1) is an extended complete Chebyshev system on
L, if and only if for each k = 1, 2, · · · , m,

W [f0, f1, · · · , fk−1](x) �= 0 for all x ∈ L.

3 Proof of the Main Results

Proof of Theorem 1.1 (1) For simplicity, we let p± and q± in (1.6) satisfy

p+(x, y) =
n∑

i=0

a+
i xi, q+(x, y) ≡ p−(x, y) ≡ q−(x, y) ≡ 0, (3.1)
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where p+(x, y) is independent of y. By Lemma 2.3, the first-order Melnikov function M(h) has
the following expansion:

M(h) =
√

1 − h
∑
j≥0

cj(1 − h)j , 0 < 1 − h � 1. (3.2)

Next, we give the formulas of coefficients ci for i ≥ 0. Comparing conditions (3.1) above and
(3.1) in [14], we have from the proof of Theorem 1.1(1) in [14] that

M+
(h

2

)
=

√
1 − h

∑
j≥0

c̃j(1 − h)j , 0 < 1 − h � 1,

with

c̃j =
{−2a+

0 , j = 0,
−pjBj , j ≥ 1,

p1 =
1
2
a+
1 , p2 =

1
4
a+
2 +

1
8
a+
1 , · · · , pn =

a+
n

2n
+ L(a+

1 , · · · , a+
n−1), · · · ,

where L(·) denotes a linear combination, Bj is a positive constant for j ≥ 1. Under (3.1) we
know M−(

h
2

) ≡ 0 for 0 < h < 1. Hence, by (1.8) we have ci = c̃i for i ≥ 0. Further, it is easy
to get that

∂(c0, c1, · · · , cn)
∂(a+

0 , a+
1 , · · · , a+

n )
=

⎛⎜⎜⎜⎜⎜⎝
−2 0 0 · · · 0
0 −B1

2 0 · · · 0
0 −B2

8 −B2
4 · · · 0

...
...

...
...

0 ∗ ∗ · · · −Bn

2n

⎞⎟⎟⎟⎟⎟⎠ . (3.3)

Since the rank of this matrix is n + 1, we can choose cj , 0 ≤ j ≤ n as free parameters such
that 0 < |c0| � |c1| � · · · � |cn| � 1 and cici+1 < 0, 0 ≤ i ≤ n − 1. Then by (3.2), M(h) has
n positive simple zeros satisfying 0 < 1 − h � 1. Consequently, system (1.7) can have n limit
cycles near the origin, which means NHopf(n) ≥ n.

(2) Here, we suppose that p± and q± in (1.6) satisfy

p+(x, y) =
n∑

i=0

a+
i yi, q+(x, y) =

n∑
i=0

b+
i yi, p−(x, y) ≡ q−(x, y) ≡ 0, (3.4)

where p+(x, y) and q+(x, y) are univariate polynomials of the variable y. Since (1−h)−
1
2 ∈ Cω

at h = 0, we can write by Lemma 2.2 that

M(h)
−2

√
1 − h

=
∞∑

k=0

vkhk +
∞∑

k=0

v∗khk+1ln h for 0 < h � 1. (3.5)

Under (3.4), we know M−(
h
2

) ≡ 0. Then M(h) = M+
(

h
2

)
for this case. Notice that p+(x, y)

and q+(x, y) in (3.4) are the same as those in (3.7) of [14]. Hence, by (3.9) and (3.11) in [14]
we have

v0 = a+
0 + L(a+

2 , a+
4 , · · · , a+

2[ n
2 ], b

+
1 , b+

3 , · · · , b+

2[ n−1
2 ]+1

),

v1 = −a+
2

3
+ L(a+

4 , · · · , a+
2[ n

2 ], b
+
1 , b+

3 , · · · , b+

2[ n−1
2 ]+1

),
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v2 =
a+
4

5
+ L(a+

6 , · · · , a+
2[ n

2 ], b
+
1 , b+

3 , · · · , b+

2[ n−1
2 ]+1

),

· · · · · ·

v[ n
2 ] =

a+
2[ n

2 ]

2[n
2 ] + 1

(−1)[
n
2 ] + L(b+

1 , b+
3 , · · · , b+

2[ n−1
2 ]+1

),

v∗0 =
1
4
b+
1 ,

v∗1 =
3
4
b+
3 β∗

1 + L(b+
1 ),

v∗2 =
5
4
b+
5 β∗

2 + L(b+
1 , b+

3 ),

· · · · · ·

v∗
[ n−1

2 ]
=

2[n−1
2 ] + 1
4

b+

2[ n−1
2 ]+1

β∗
[ n−1

2 ]
+ L(b+

1 , b+
3 , · · · , b+

2[ n−1
2 ]−1

),

and β∗
i is a nonzero constant for 1 ≤ i ≤ [n−1

2 ].
It follows that

A ≡
∂(v0, v1, · · · , v[ n

2 ], v
∗
0 , v∗1 , · · · , v∗

[ n−1
2 ]

)

∂(a+
0 , a+

2 , · · · , a+
2[ n

2 ], b
+
1 , b+

3 , · · · , b+

2[ n−1
2 ]+1

)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ∗ ∗ · · · ∗ ∗ ∗ · · · ∗
0 − 1

3 ∗ · · · ∗ ∗ ∗ · · · ∗
0 0 1

5 · · · ∗ ∗ ∗ · · · ∗
...

...
...

...
...

...
...

0 0 0 · · · (−1)[
n
2 ]

2[ n
2 ]+1 ∗ ∗ · · · ∗

0 0 0 · · · 0 1
4 0 · · · 0

0 0 0 · · · 0 ∗ 3
4β∗

1 · · · 0
...

...
...

...
...

...
...

0 0 0 · · · 0 ∗ ∗ · · · 2[ n−1
2 ]+1

4 β∗
[ n−1

2 ]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

By (3.5) we write

M(h)
−2

√
1 − h

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

v0 + v∗0hln h + v1h + v∗1h2ln h + · · · + v∗
[ n−1

2 ]
h[ n−1

2 ]+1ln h + v[ n
2 ]h

[ n
2 ]

+ O(h[ n
2 ]+1ln h), n even,

v0 + v∗0hln h + v1h + v∗1h2ln h + · · · + v[ n
2 ]h

[ n
2 ] + v∗

[ n−1
2 ]

h[ n−1
2 ]+1ln h

+ O(h[ n−1
2 ]+1), n odd.

(3.6)

Note that β∗
i �= 0, 1 ≤ i ≤ [n−1

2 ], which means rank(A) = n+1. Therefore, v0, · · · , v[ n
2 ], v

∗
0 , · · · ,

v∗
[ n−1

2 ]
can be chosen as free parameters such that

0 < v0 � v∗0 � · · · � v∗
[ n−1

2 ]
� v[ n

2 ] � 1 or 0 < −v0 � −v∗0 � · · · � −v∗
[ n−1

2 ]
� −v[ n

2 ] � 1,

if n is even; or

0 < v0 � v∗0 � · · · � v[ n
2 ] � v∗

[ n−1
2 ]

� 1 or 0 < −v0 � −v∗0 � · · · � −v[ n
2 ] � −v∗

[ n−1
2 ]

� 1,
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if n is odd. Thus by (3.6), M(h) has n positive simple zeros near h = 0. This means that the
system (1.7) can have n limit cycles near the heteroclinic loop L0. That is, Nheteroc(n) ≥ n.
The proof ends.

Proof of Theorem 1.2 By the proof of Theorem 1.1, it suffices to prove that Z(n) ≤ n

for n = 1, 2, 3 and 4.
First, for n = 1, by Lemma 2.1 and (2.3),

M(h) = A
√

1 − h + Bhϕ0

(√
1 − h

h

)
,

where A and B are constants. Letting λ =
√

1 − h ∈ (0, 1) yields

M(h) = (1 − λ2)
[
A

λ

1 − λ2
+ Bϕ0

( λ√
1 − λ2

)]
≡ (1 − λ2)M1(λ), (3.7)

where M1(λ) = A λ
1−λ2 + Bϕ0

(
λ√

1−λ2

)
. Denote

f0 =
λ

1 − λ2
, f1 = ϕ0

( λ√
1 − λ2

)
.

For λ ∈ (0, 1), we know that f0 and f1 are analytic. Moreover, by Definition 2.1(d), W [f0] =
λ

1−λ2 > 0 and

W [f0, f1] =

∣∣∣∣∣∣∣∣
λ

1 − λ2
ϕ0

( λ√
1 − λ2

)
1 + λ2

(1 − λ2)2
1

(1 − λ2)2

∣∣∣∣∣∣∣∣
= − 1 + λ2

(1 − λ2)2
[
ϕ0

( λ√
1 − λ2

)
− λ

1 − λ4

]
≡ − 1 + λ2

(1 − λ2)2
M2(λ).

Note that M2(0) = 0 and M ′
2(λ) = [ϕ0

(
λ√

1−λ2

) − λ
1−λ4 ]′ = 2λ2(1−λ2)

(1−λ4)2 > 0. Then it follows
that W [f0, f1] < 0, and further by Lemma 2.4, (f0, f1) is an extended complete Chebyshev
system on the interval (0, 1). Hence, M1(λ) has at most one isolated zero in (0, 1) counted with
multiplicities, which together with (3.7) means M(h) has at most one zero in the interval (0, 1).
That is, Z(1) ≤ 1.

For the case of n = 2, it follows from Lemma 2.1 and (2.3) that

M(h) =
√

1 − h[A0 + A1λ
2 + B0ϕ1(λ)], (3.8)

where ϕ1(λ) = 1−λ2

λ ϕ0

(
λ√

1−λ2

)
, λ =

√
1 − h ∈ (0, 1), and A0, A1 and B0 are constants. Set

f0 = 1, f1 = λ2 and f2 = ϕ1(λ). We get by Definition 2.1(d)

W [f0] = 1, W [f0, f1] = 2λ > 0,

and

W [f0, f1, f2] =

∣∣∣∣∣∣
1 λ2 ϕ1(λ)
0 2λ ϕ′

1(λ)
0 2 ϕ′′

1 (λ)

∣∣∣∣∣∣
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=
2(λ2 + 3)

λ2

[
ϕ0

( λ√
1 − λ2

)
− 3λ

(1 − λ2)(3 + λ2)

]
≡ 2(λ2 + 3)

λ2
M3(λ) < 0,

since

M3(0) = 0, M ′
3(λ) =

[
ϕ0

( λ√
1 − λ2

)
− 3λ

(1 − λ2)(3 + λ2)

]′
=

−8λ4

(1 − λ2)2(3 + λ2)2
< 0.

Hence, by Lemma 2.4 (f0, f1, f2) is an extended complete Chebyshev system on (0, 1). This
means, by (3.8), M(h) has at most two zeros in the interval (0,1), i.e., Z(2) ≤ 2.

For n = 3, we also have by Lemma 2.1 and (2.3),

M(h) =
√

1 − h[(A0 + A1λ
2) + (B0 + B1λ

2)ϕ1(λ)]. (3.9)

For λ ∈ (0, 1), let
f0 = 1, f1 = λ2, f2 = ϕ1(λ), f3 = λ2ϕ1(λ).

In this case, W [f0], W [f0, f1] and W [f0, f1, f2] are equal to those in the case n = 2. In order to
prove that (f0, f1, f2, f3) is an extended complete Chebyshev system on (0, 1), we only need to
check

W [f0, f1, f2, f3] �= 0, λ ∈ (0, 1).

In fact,

W [f0, f1, f2, f3] =

∣∣∣∣∣∣∣∣
1 λ2 ϕ1(λ) λ2ϕ1(λ)
0 2λ ϕ′

1(λ) λ2ϕ′
1(λ) + 2λϕ1(λ)

0 2 ϕ′′
1(λ) λ2ϕ′′

1 (λ) + 4λϕ′
1(λ) + 2ϕ1(λ)

0 0 ϕ′′′
1 (λ) λ2ϕ′′′

1 (λ) + 6λϕ′′
1 (λ) + 6ϕ′

1(λ)

∣∣∣∣∣∣∣∣
≡ −12(λ4 + 6λ2 + 1)

λ4
M4(λ),

where

M4(λ) = ϕ2
0

( λ√
1 − λ2

)
+

22λ7 − 30λ5 + 2λ3 + 6λ

3(λ4 + 6λ2 + 1)(λ2 − 1)3
ϕ0

( λ√
1 − λ2

)
+

7λ4 − 3λ2

3(λ4 + 6λ2 + 1)(λ2 − 1)3
.

Notice that

M ′
4(λ) =

4λ2(15λ8 + 12λ6 + 10λ4 + 12λ2 + 15)
3(λ4 + 6λ2 + 1)2(1 − λ2)3

[
ϕ0

( λ√
1 − λ2

)
+

λ(5λ6 + 5λ4 + 7λ2 + 15)
(λ2 − 1)(15λ8 + 12λ6 + 10λ4 + 12λ2 + 15)

]
≡ 4λ2(15λ8 + 12λ6 + 10λ4 + 12λ2 + 15)

3(λ4 + 6λ2 + 1)2(1 − λ2)3
M5(λ)

and

M ′
5(λ) =

256(λ4 + 6λ2 + 1)λ6

(15λ8 + 12λ6 + 10λ4 + 12λ2 + 15)2(1 − λ2)
> 0.

It is direct from M4(0) = 0 and M5(0) = 0 and the above that

W [f0, f1, f2, f3] < 0.
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Hence, by Lemma 2.4 and (3.9), M(h) has at most 3 zeros in the interval (0, 1) for this case.
It follows that Z(3) ≤ 3.

For n = 4, by using the same method as above, we have

M(h) =
√

1 − h[(A0 + A1λ
2 + A2λ

4) + (B0 + B1λ
2)ϕ1(λ)]. (3.10)

Let
f0 = 1, f1 = λ2, f2 = λ4, f3 = ϕ1(λ), f4 = λ2ϕ1(λ).

Then
W [f0] = 1, W [f0, f1] = 2λ > 0, W [f0, f1, f2] = 16λ3 > 0

and

W [f0, f1, f2, f3] =

∣∣∣∣∣∣∣∣
1 λ2 λ4 ϕ1(λ)
0 2λ 4λ3 ϕ′

1(λ)
0 2 12λ2 ϕ′′

1 (λ)
0 0 24λ ϕ′′′

1 (λ)

∣∣∣∣∣∣∣∣
= −48(λ2 + 5)

λ

[
ϕ0

( λ√
1 − λ2

)
+

λ(17λ2 − 15)
3(1 − λ2)2(5 + λ2)

]

≡ −48(λ2 + 5)
λ

M6(λ).

In view of M6(0) = 0 and M ′
6(λ) = 16λ6

(5+λ2)2(1−λ2)3 > 0, we have W [f0, f1, f2, f3] < 0.

Next, we consider W [f0, f1, f2, f3, f4]. By some computations, we get

W [f0, f1, f2, f3, f4] =

∣∣∣∣∣∣∣∣∣∣
1 λ2 λ4 ϕ1(λ) λ2ϕ1(λ)
0 2λ 4λ3 ϕ′

1(λ) λ2ϕ′
1(λ) + 2λϕ1(λ)

0 2 12λ2 ϕ′′
1 (λ) λ2ϕ′′

1 (λ) + 4λϕ′
1(λ) + 2ϕ1(λ)

0 0 24λ ϕ′′′
1 (λ) λ2ϕ′′′

1 (λ) + 6λϕ′′
1 (λ) + 6ϕ′

1(λ)
0 0 24 ϕ

(4)
1 (λ) λ2ϕ

(4)
1 (λ) + 8λϕ′′′

1 (λ) + 12ϕ′′
1(λ)

∣∣∣∣∣∣∣∣∣∣
= −288(λ4 + 10λ2 + 5)

λ4

[
ϕ2

0

( λ√
1 − λ2

)
− 2λ(21λ6 − 15λ4 − 5λ2 + 15)

3(1 − λ2)3(λ4 + 10λ2 + 5)
ϕ0

( λ√
1 − λ2

)
+

λ2(41λ4 − 30λ2 + 45)
9(1 − λ2)4(λ4 + 10λ2 + 5)

]
≡ −288(λ4 + 10λ2 + 5)

λ4
M7(λ),

M ′
7(λ) = −8λ4(15λ8 + 36λ6 + 58λ4 + 100λ2 + 175)

3(1 − λ2)4(λ4 + 10λ2 + 5)2
[
ϕ0

( λ√
1 − λ2

)
− λ(15λ6 + 39λ4 + 125λ2 + 525)

3(1 − λ2)(15λ8 + 36λ6 + 58λ4 + 100λ2 + 175)

]
≡ −8λ4(15λ8 + 36λ6 + 58λ4 + 100λ2 + 175)

3(1 − λ2)4(λ4 + 10λ2 + 5)2
M8(λ)

and

M ′
8(λ) = − 2048λ8(λ4 + 10λ2 + 5)

(1 − λ2)2(15λ8 + 36λ6 + 58λ4 + 100λ2 + 175)2
< 0.
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Then, by M7(0) = 0 and M8(0) = 0, it is clear that W [f0, f1, f2, f3, f4] < 0. Thus, (f0, f1, f2, f3,

f4) is also an extended complete Chebyshev system on (0, 1). Therefore, by Definition 2.1(c)
and (3.10), M(h) has at most 4 zeros in the interval (0, 1), which yields Z(4) ≤ 4. The proof
ends.

Proof of Theorem 1.3 Following Theorem 1.1, we only need to prove Z(n) ≤ n +
[n+1

2 ], n ≥ 5. Similar to the method used in [19] for instance, we give the proof bellow. By
(2.3) and Lemma 2.1, it follows that

M(h) =
√

1 − hf[ n
2 ](1 − h) + g[ n−1

2 ](1 − h)I10(h)

=
√

1 − hf̃[ n
2 ](h) + g̃[ n−1

2 ](h)hϕ0

(√
1 − h

h

)
≡ u0

√
1 − h + u1ϕ0

(√
1 − h

h

)
,

where f̃[ n
2 ] and g̃[ n−1

2 ] are polynomials in h with degrees [n
2 ] and [n−1

2 ] respectively, h ∈ (0, 1),

u0 = f̃[ n
2 ](h) and u1 = hg̃[ n−1

2 ](h). Thus,

F ≡ d
dh

(M(h)
u1

)
=

(u0

u1

√
1 − h + ϕ0

(√
1 − h

h

))′

=
2h2(1 − h)(u′

0u1 − u0u
′
1) − h2u0u1 − u2

1

2h2
√

1 − hu2
1

=
2(1 − h)(u′

0u1 − u0u
′
1) − u0u1 − g̃2

[ n−1
2 ]

(h)

2
√

1 − hu2
1

≡ ϑ(h)
2
√

1 − hu2
1

,

where
ϑ(h) = 2(1 − h)(u′

0u1 − u0u
′
1) − u0u1 − g̃2

[ n−1
2 ]

(h).

Set I = (0, 1). Introducing a notation �{h ∈ I | f(h) = 0} to indicate the number of zeros
of the function f in the interval I and taking into account their multiplicities, we have by
degree(ϑ(h)) = n

�{h ∈ I | u1(h) = 0} ≤
[n − 1

2

]
, �{h ∈ I | ϑ(h) = 0} ≤ n.

Therefore,

�{h ∈ I | M(h) = 0} ≤ �{h ∈ I | u1 = 0} + �{h ∈ I | F = 0, u1 �= 0} + 1

≤ �{h ∈ I | u1 = 0} + �{h ∈ I | ϑ(h) = 0} + 1

≤ n +
[n + 1

2

]
.

The proof is completed.
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