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Abstract This paper deals with the analytic Feynman integral of functionals on a Wiener
space. First the authors establish the existence of the analytic Feynman integrals of func-
tionals in a Banach algebra Sα. The authors then obtain a formula for the first variation
of integrals. Finally, various analytic Feynman integration formulas involving the first
variation are established.
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Let C0[0, T ] denote a one-parameter Wiener space; that is the space of continuous real-valued
functions x on [0, T ] with x(0) = 0. Let M denote the class of all Wiener measurable subsets
of C0[0, T ] and let m denote Wiener measure. (C0[0, T ],M, m) is a complete measure space,
and we denote the Wiener integral of a Wiener integrable functional F by

∫
C0[0,T ]

F (x)dm(x).
A subset B of C0[0, T ] is said to be scale-invariant measurable provided that ρB is M-

measurable for all ρ > 0, and a scale-invariant measurable set N is said to be a scale-invariant
null set provided that m(ρN) = 0 for all ρ > 0. A property that holds except on a scale-
invariant null set is said to hold scale-invariant almost everywhere (for short s-a.e.) (see [16]).
Throughout this paper we will assume that each functional F : C0[0, T ] → C that we consider
is scale-invariant measurable and that∫

C0[0,T ]

|F (ρx)|dm(x) < ∞

for each ρ > 0.
In 1948, Feynman assumed the existence of an integral over a space of paths, and he used

his integral in a formal way in his approach to quantum mechanics (see [15]). Many math-
ematicians have attempted to give rigorously meaningful definitions of the Feynman integral
with appropriate existence theorems and have expressed solutions of the Schrödinger equation
in terms of their integrals. One of these approaches was based on the similarity between the
Wiener and the Feynman integrals, and procedures were set up by many mathematicians to
obtain Feynman integrals from Wiener integrals by analytic extension from the real axis to
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the imaginary axis. For the procedure of analytic continuation to define the analytic Feynman
integral, see [15]. Since the analytic Feynman integral was introduced, many mathematicians
studied the analytic Feynman integral of functionals in several classes of functionals (see [1–5,
7, 13]). Also, they obtained various analytic Feynman integration formulas involving the first
variation. In particular, in [2], the authors introduced a Banach algebra S which contains
many functionals used in quantum mechanics, and then established analytic Feynman integrals
of functionals in S involving the first variation.

In this paper we first recall the Banach algebra Sα which was introduced in [11] and modified
in [9, 14]. We then obtain the existence of the analytic Feynman integral and the first variation
of a functional F in Sα. Also, we obtain analytic Feynman integration formulas involving the
first variation. The results in [2] are special case of this paper when α = i. The formulas and
results in this paper are more complicated and more generalized than the results and formulas
in [2]. In fact, when α = i, all conditions hold, so they could be omitted naturally.

1 Definitions and Preliminaries

In this section, we recall some definitions and properties from [1–5, 7, 13].

Definition 1.1 Let C denote the complex numbers, let C+ = {λ ∈ C : Re(λ) > 0} and let
C̃+ = {λ ∈ C : λ �= 0 and Re(λ) ≥ 0}. Let F : C0[0, T ] → C be a measurable functional such
that for each λ > 0, the Wiener integral

J(λ) =
∫

C0[0,T ]

F (λ− 1
2 x)dm(x)

exists. If there exists a function J∗(λ) analytic in C+ such that J∗(λ) = J(λ) for all λ > 0,
then J∗(λ) is defined to be the analytic Wiener integral of F over C0[0, T ] with parameter λ,
and for λ ∈ C+ we write

J∗(λ) =
∫ anwλ

C0[0,T ]

F (x)dm(x).

Let q �= 0 be a real number and let F be a functional such that J∗(λ) exists for all λ ∈ C+. If
the following limit exists, we call it the analytic Feynman integral of F with a parameter q and
we write ∫ anfq

C0[0,T ]

F (x)dm(x) = lim
λ→−iq

∫ anwλ

C0[0,T ]

F (x)dm(x)

where λ → −iq through values in C+.

For v ∈ L2[0, T ] and x ∈ C0[0, T ], let 〈v, x〉 denote the Paley-Wiener-Zygmund (for short
PWZ) stochastic integral. Then we have the following assertions:

(1) For each v ∈ L2[0, T ], 〈v, x〉 exists for a.e. x ∈ C0[0, T ].
(2) If v ∈ L2[0, T ] is a function of bounded variation on [0, T ], 〈v, x〉 equals the Riemann-

Stieltjes integral
∫ T

0
v(t)dx(t) for s-a.e. x ∈ C0[0, T ].

(3) The PWZ stochastic integral 〈v, x〉 has the expected linearity property.
(4) The PWZ stochastic integral 〈v, x〉 is a Gaussian process with mean 0 and variance ‖v‖2

2.
For a more detailed study of the PWZ stochastic integral, see [5–6, 8–12].
The following is a well-known integration formula which is used several times in this paper.
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For each α ∈ C and for v ∈ L2[0, T ],∫
C0[0,T ]

exp{α〈v, x〉}dm(x) = exp
{α2

2
‖v‖2

2

}
. (1.1)

Now we recall a modified Banach algebra Sα of functionals which was introduced in [11]
and used in [9, 14].

For each complex number α with Re(α2) ≤ 0, let Sα be the class of functionals of the form

F (x) =
∫

L2[0,T ]

exp{α〈v, x〉}df(v) (1.2)

for s-a.e. x ∈ C0[0, T ], where f is in M(L2[0, T ]), the class of all complex valued countably
additive Borel measures on L2[0, T ].

Remark 1.1 Using the techniques similar to those used in [2], we can show that for each
α ∈ C with Re(α2) ≤ 0, the class Sα is a Banach algebra with the norm

‖F‖ = ‖f‖ =
∫

L2[0,T ]

|df(v)|, f ∈ M(L2[0, T ]).

One can show that the correspondence f → F is injective, and carries convolution into pointwise
multiplication and that for each complex number α with Re(α2) ≤ 0, the space Sα is a Banach
algebra. In particular, if α = i, then Si is the Banach algebra S introduced by Cameron and
Storvick in [2]. For more details, see [9, 11, 14].

2 Analytic Feynman Integrals of Functionals in Sα

In this section, we establish the analytic Feynman integral of functionals in Sα.

Remark 2.1 (1) Let γ1 = a + ib and γ2 = c + id be nonzero complex numbers with a ≤ 0
and c ≥ 0. First, we note that

Re
(γ1

γ2

)
=

ac + bd

c2 + d2
≤ 0

implies that ac + bd ≤ 0. This tells us that there are many nonzero complex numbers γ1 and
γ2 so that Re

(
γ1
γ2

) ≤ 0. For example, if we take γ1 = −1 + i and γ2 = 1 + i, then Re
(

γ1
γ2

)
= 0.

Also, if we take γ1 = −3 + 2i and γ2 = 4 + 3i, then Re
(

γ1
γ2

)
= −6 ≤ 0.

(2) Let α be a complex number with Re(α2) ≤ 0 and let λ be an element of C+. Throughout
this paper, we will consider a subregion Γα of C+, where

Γα =
{

λ ∈ C+ : Re
(α2

λ

)
≤ 0

}
. (2.1)

In view of (1), the region Γα has sufficiently many complex numbers λ.
(3) Now we describe the region Γα for each α. Let α2 = a + ib and λ = c + id be complex

numbers with a ≤ 0 and c > 0. Then for each α, we can describe the region Γα as follows:
(i) When d = 0 or b = 0, Γα = C+.
(ii) When d �= 0 and b �= 0, for a given α, if b > 0, then the region Γα is given by

{λ : d ≤ −a
b c} and if b < 0, then the region Γα is given by {λ : d ≥ −a

b c}.
(iii) The region Γα always contains all positive real numbers.
In particular, when α is pure imaginary, Γα = C+.
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In our first lemma, we establish the existence of the analytic Wiener integral of a functional
F in Sα.

Lemma 2.1 Let F ∈ Sα be given by (1.2). Then the analytic Wiener integral∫ anwλ

C0[0,T ]

F (x)dm(x)

of functional F exists for each λ ∈ Γα and is given by the formula∫
L2[0,T ]

exp
{α2

2λ
‖v‖2

2

}
df(v). (2.2)

Proof First, we note that for all λ > 0, using formula (1.1), it follows that

J(λ) ≡
∫

C0[0,T ]

∫
L2[0,T ]

exp{λ− 1
2 α〈v, x〉}df(v)dm(x)

=
∫

L2[0,T ]

exp
{α2

2λ
‖v‖2

2

}
df(v).

Therefore, for all λ > 0,

|J(λ)| ≤
∫

L2[0,T ]

exp
∣∣∣{α2

2λ
‖v‖2

2

}∣∣∣|df(v)| ≤ ‖f‖

because the real part of α2

2λ is nonpositive. Next let

J∗(λ) =
∫

L2[0,T ]

exp
{α2

2λ
‖v‖2

2

}
df(v),

where λ ∈ Γα is given by (2.1). Moreover, the function J∗(λ) is well-defined on the region Γα.
In fact, |J∗(λ)| ≤ ‖f‖ for all λ ∈ Γα. Also, J∗(λ) = J(λ) for all λ > 0. At last, we will show
that J∗(λ) is analytic on Γα. To do this, let Λ be any simple closed contour in Γα. Then using
the Fubini theorem and the Cauchy theorem, we have∫

Λ

J∗(λ)dλ =
∫

Λ

∫
L2[0,T ]

exp
{α2

2λ
‖v‖2

2

}
df(v)dλ

=
∫

L2[0,T ]

∫
Λ

exp
{α2

2λ
‖v‖2

2

}
dλdf(v)

= 0

because the function
{

α2

2λ‖v‖2
2

}
is analytic on Γα for each α ∈ C with Re(α2) ≤ 0. Hence using

the Morera’s theorem, J∗(λ) is analytic on Γα, so we complete the proof of Lemma 2.1.

The following theorem is the first main theorem in this paper.

Theorem 2.1 Let F and f be as in Lemma 2.1 and let q be a nonzero real number such
that {

sign(q) = −sign(Im(α2)), if Im(α2) �= 0,
q ∈ R, if Im(α2) = 0,

(2.3)
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where sign denotes the signum function defined by sign(a) =

{
1, if a > 0
−1, if a < 0

and R is the set

of all real numbers. Assume that∫
L2[0,T ]

exp
{
− Im(α2)

2|q| ‖v‖2
2

}
|df(v)| < ∞. (2.4)

Then the analytic Feynman integral
∫ anfq

C0[0,T ] F (x)dm(x) of F exists and is given by the formula

∫
L2[0,T ]

exp
{ iα2

2q
‖v‖2

2

}
df(v). (2.5)

Proof From Lemma 2.1, the analytic Wiener integral
∫ anwλ

C0[0,T ] F (x)dm(x) of F exists for
each λ ∈ Γα. To complete the proof of Theorem 2.1, we have to show that

lim
λ→−iq

J∗(λ) =
∫

L2[0,T ]

exp
{ iα2

2q
‖v‖2

2

}
df(v). (2.6)

To do this, we recall the region Γα as in Remark 2.1. Note that for a given nonzero real number
q which satisfies the condition (2.3), there exists a sequence {λn}∞n=1 in Γα so that λn → −iq
as n → ∞. In fact, if we let λn = 1

n − iq, n = 1, 2, · · · , then {λn}∞n=1 in Γα and λn → −iq as
n → ∞. By Remark 2.1 and Lemma 2.1, |J∗(λl)| ≤ ‖f‖ for all l = 1, 2, · · · . Hence using the
dominated convergence theorem, for every nonzero real number q which satisfies the condition
(2.3) above,

lim
λl→−iq

J∗(λ) = lim
λl→−iq

∫
L2[0,T ]

exp
{ α2

2λl
‖v‖2

2

}
df(v)

=
∫

L2[0,T ]

exp
{ α2

2(−iq)
‖v‖2

2

}
df(v)

=
∫

L2[0,T ]

exp
{ iα2

2q
‖v‖2

2

}
df(v),

which establishes Equations (2.5) and (2.6) as desired. Furthermore,

∣∣∣ ∫ anfq

C0[0,T ]

f(x)dm(x)
∣∣∣ ≤ ∫

L2[0,T ]

exp
{
− Im(α2)

2|q| ‖v‖2
2

}
|df(v)| < ∞.

Hence we complete the proof of Theorem 2.1.

The result in [2, Theorem 5.1] is obtained immediately from Theorem 2.1.

Corollary 2.1 When α = i, Γα = C+ and Equation (2.4) holds, for every nonzero real
number q, the analytic Feynman integral

∫ anfq

C0[0,T ] F (x)dm(x) of F ∈ S exists and is given by the
formula ∫

L2[0,T ]

exp
{
− i

2q
‖v‖2

2

}
df(v).
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3 The First Variation and Analytic Feynman Integrals

In this section we establish the existence of first variation of F in Sα and establish various
analytic Feynman integrals involving first variations of F .

We start this section by giving the definition of the first variation of a functional F on
C0[0, T ].

Definition 3.1 Let F be a functional defined on C0[0, T ]. Then the first variation of F is
defined by the formula

δF (x|u) =
∂

∂k
F (x + ku)

∣∣∣
k=0

, x, u ∈ C0[0, T ], (3.1)

if it exists.

Let

A =
{

u ∈ C0[0, T ] : u(t) =
∫ t

0

z(s)ds for some z ∈ L2[0, T ]
}
.

Note that for all w, v ∈ L2[0, T ], we have

|(w, v)2| ≤ ‖w‖2‖v‖2.

Furthermore, for u ∈ A and v ∈ L2[0, T ], the PWZ integral 〈v, u〉 exists and is given by the
formula

〈v, u〉 =
∫ T

0

v(s)z(s)ds = (v, z)2

and hence |〈v, u〉| ≤ ‖v‖2‖z‖2.

The following observation will be very useful in our study. For F ∈ Sα, we will assume that
the associated measure f in M(L2[0, T ]) of F always satisfies the following inequality:∫

L2[0,T ]

‖v‖2|df(v)| < ∞. (3.2)

We state an interesting observation involving the first variation.

Remark 3.1 First we could consider the following integral:∫
L2[0,T ]

α〈v, u〉 exp{α〈v, x〉}df(v). (3.3)

Since Re(α2) ≤ 0, by assumption (3.2),∫
L2[0,T ]

α〈v, u〉df(v) < ∞ (3.4)

and ∫
L2[0,T ]

exp{α〈v, x〉}df(v)

exists for s-a.e. x ∈ C0[0, T ]. However, the integral (3.3) might not exist because the product
of L1-functionals might not be in L1. Hence we should give a condition for f as follows: If
Re(α2) ≤ 0 and Equation (3.2) holds, then the integral (3.3) always exists.



Analytic Feynman Integrals of Functionals in a Banach Algebra Involving the First Variation 287

In our next theorem, we obtain the formula for the first variation of functionals from Sα

into Sα.

Theorem 3.1 Let F and f be as in Lemma 2.1 and let u ∈ A. Assume that∣∣∣ ∂

∂k
exp{α〈v, x + ku〉}

∣∣∣ ≤ L(x), (3.5)

where L(x) is integrable on C0[0, T ]. Then the first variation δF (x|u) of F exists and is given
by the formula

δF (x|u) =
∫

L2[0,T ]

α〈v, u〉 exp{α〈v, x〉}df(v) (3.6)

for s-a.e. x ∈ C0[0, T ]. Furthermore, as a function of x, δF is an element of Sα. In fact,

δF (x|u) =
∫

L2[0,T ]

exp{α〈v, x〉}dφ(v),

where φ is an element of M(L2[0, T ]).

Proof Using Equation (3.1), it follows that for s-a.e. x ∈ C0[0, T ],

δF (x|u) =
∂

∂k
F (x + ku)

∣∣∣
k=0

=
∂

∂k

(∫
L2[0,T ]

exp{α〈v, x〉 + αk〈v, u〉}df(v)
)∣∣∣

k=0

=
∫

L2[0,T ]

α〈v, u〉 exp{α〈v, x〉}df(v). (3.7)

The second equality in (3.7) follows from the condition (3.5) and thus by using Remark 3.1,
the last expression in Equation (3.7) exists. Thus we have established Equation (3.6). Now let
φ be a set function defined by

φ(E) =
∫

E

α〈v, u〉df(v)

for E ∈ B(L2[0, T ]). Then we see that φ is an element of M(L2[0, T ]) by using Equation (3.2)
and the last expression in Equation (3.7) becomes∫

L2[0,T ]

exp{α〈v, x〉}dφ(v).

Hence δF is an element of Sα.

The following theorem is the second main result in this paper.

Theorem 3.2 Let F, f and q be as in Theorem 2.1, and let u and φ be as in Theorem 3.1.
Then the analytic Feynman integral

∫ anfq

C0[0,T ]
δF (x|u)dm(x) of δF (x|u) exists and is given by the

formula ∫
L2[0,T ]

α〈v, u〉 exp
{ iα2

2q
‖v‖2

2

}
df(v). (3.8)

Furthermore, the expression (3.8) can be expressed by the formula∫
L2[0,T ]

exp
{ iα2

2q
‖v‖2

2

}
dφ(v).



288 H. S. Chung, V. K. Tuan and S. J. Chang

Proof From Theorem 3.1, the first variation δF (x|u) as a function of x is an element of
Sα. Hence using Equation (2.5), we have∫ anfq

C0[0,T ]

δF (x|u)dm(x) =
∫

L2[0,T ]

exp
{ iα2

2q
‖v‖2

2

}
dφ(v).

From the definition of φ, we can rewrite the above expression in the following way:∫
L2[0,T ]

α〈v, u〉 exp
{ iα2

2q
‖v‖2

2

}
df(v).

The existence of the last expression comes from Remark 3.1. Hence we have the desired results.

Let F and G be elements of Sα whose associated measures f and g satisfy∫
L2[0,T ]

‖v‖2[|df(v)| + |dg(v)|] < ∞. (3.9)

Then using Remark 3.1, for each u ∈ A,

L(x) ≡ F (x)δG(x|u) + δF (x|u)G(x)

is an element of Sα. In addition, the condition∫
L2[0,T ]

exp
{
− Im(α2)

2|q| ‖v‖2
2

}
[|df(v)| + |dg(v)|] < ∞

implies the existence of the analytic Feynman integral∫ anfq

C0[0,T ]

L(x)dm(x) =
∫ anfq

C0[0,T ]

[F (x)δG(x|u) + δF (x|u)G(x)]dm(x)

for every nonzero real numbers q as in Theorem 3.2.
The following lemma was established in [1].

Lemma 3.1 Let u ∈ A and let F be a Wiener integrable functional. Furthermore, as-
sume that F (x) has a first variation δF (x|u) for all x ∈ C0[0, T ] such that for some η > 0,
sup
|h|≤η

|δF (x + hu|u)| is Wiener integrable. Then

∫
C0[0,T ]

δF (x|u)dm(x) =
∫

C0[0,T ]

F (x)〈z, x〉dm(x). (3.10)

In addition, for any nonzero real number q,∫ anfq

C0[0,T ]

δF (x|u)dm(x) = −iq
∫ anfq

C0[0,T ]

F (x)〈z, x〉dm(x). (3.11)

Equation (3.11) is called the Cameron-Storvick formula on C0[0, T ].

In the last main result, we obtain the Cameron-Storvick formula for analytic Feynman
integral of functionals F and G in Sα.
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Theorem 3.3 Let F and G be elements of Sα whose associated measures f and g satisfy
the condition (3.9) and let q be as in Theorem 3.2. Then∫ anfq

C0[0,T ]

[F (x)δG(x|u) + δF (x|u)G(x)]dm(x)

= −iq
∫ anfq

C0[0,T ]

F (x)G(x)〈z, x〉dm(x). (3.12)

Proof For F and G in Sα, let L(x) = F (x)G(x). Then using Equation (3.11) with F being
replaced by L, we obtain Equation (3.12). In fact, the left-hand side of Equation (3.12) always
exists because the associated measures f and g satisfy the condition (3.9).

The following corollaries immediately follow from Theorem 3.3.

Corollary 3.1 Let F, f and q be as in Theorem 3.3. Then

2
∫ anfq

C0[0,T ]

F (x)δF (x|u)dm(x) = −iq
∫ anfq

C0[0,T ]

F 2(x)〈z, x〉dm(x). (3.13)

Proof We easily obtain Equation (3.13) by replacing G with F in Equation (3.12).

Corollary 3.2 Let F, f and q be as in Theorem 3.3. Then∫ anfq

C0[0,T ]

[F (x)δFn−1(x|u) + δF (x|u)Fn−1(x)]dm(x)

= −iq
∫ anfq

C0[0,T ]

Fn(x)〈z, x〉dm(x). (3.14)

Proof We easily obtain Equation (3.14) by replacing G with Fn in Equation (3.12) above
and using the mathematical induction for n.

Remark 3.2 (1) As mentioned in Section 2, if α = i, then Sα is the Banach algebra S
introduced in [2]. Furthermore, all conditions in the previous sections and this section hold, so
all results and formulas in [2] are corollaries of our results and formulas in this paper.

(2) In [2], the authors obtained the existence of the analytic Wiener integral of F in S on
C+. We obtained the existence of the analytic Wiener integral of F in Sα on Γα which is a
subset of C+ because α may not be a pure imaginary number. In fact, if α is a pure imaginary
number, then we can obtain the existence of the analytic Wiener integral of F in Sα on C+.
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