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Abstract This paper deals with the approximate controllability of semilinear neutral
functional differential systems with state-dependent delay. The fractional power theory
and α-norm are used to discuss the problem so that the obtained results can apply to
the systems involving derivatives of spatial variables. By methods of functional analysis
and semigroup theory, sufficient conditions of approximate controllability are formulated
and proved. Finally, an example is provided to illustrate the applications of the obtained
results.
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1 Introduction

In this paper, we consider the approximate controllability of systems represented in the
following semilinear neutral functional differential systems with state-dependent delay:⎧⎨⎩

d
dt

[x(t) + F (t, xt)] = −Ax(t) +Bu(t) +G(t, xρ(t,xt)), t ∈ [0, T ],

x0 = φ ∈ Bα,
(1.1)

where the state variable x(·) takes values in a Hilbert space X and the control function u(·)
is given in the Banach space L2([0, T ];U), where U is also a Hilbert space. B is a bounded
linear operator from U into X . The (unbounded) linear operator −A : D(−A) → X generates
an analytic semigroup (S(t))t≥0, and F,G : [0, T ] × Bα → X are appropriate functions to be
specified later. Bα ⊂ B, and B is a phase space given in the next section. The notation xt

represents the history function defined by xt : (−∞, 0] → X, xt(θ) = x(t + θ), and belongs to
some abstract phase space Bα described axiomatically and ρ : [0, T ] × Bα → (−∞, T ] is a
continuous function.

The controllability theory for abstract linear control systems in an infinite-dimensional space
is well-developed, and the details can be found in various papers and monographs (see [4, 16]
and references therein). Several authors have extended the controllability concepts to infinite-
dimensional systems represented by nonlinear evolution equations (see [20–21, 35]). Most of
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the controllability results for nonlinear infinite-dimensional control systems concern the so-
called semilinear control system that consists of a linear part and a nonlinear part. Zhou [35]
studied approximate controllability of an abstract semilinear control system by assuming certain
inequality conditions that are dependent on the properties of the system components. Naito
[20–21] studied the approximate controllability of the same system. He showed that under a
range condition on the control action operator, the semilinear control system is approximately
controllable. Jeong et al. [14] and Wang [30] have extended the result to retarded systems with
finite delays. Yamamoto and Park [32] discussed the same problem for parabolic equations with
a uniformly bounded nonlinear part. Do [6], Joshi and Sukavanam [15] discussed approximate
controllability for a class of semilinear abstract equations, while Muthukumar and Rajivganthi
[19] investigated the controllability problem for a stochastic nonlinear third-order dispersion
equation.

Bashirov and Mahmudov [2] showed that under an appropriate condition on resolvent op-
erators, the approximate controllability of semilinear systems is implied by the approximate
controllability of its linear part. This resolvent condition is convenient for application and it
has been used in many papers to study the approximate controllability for nonlinear (functional)
differential equations (see, for instance, [5, 8, 24–25]). In [5], by using the Schauder fixed point
theorem and the resolvent condition, Dauer and Mahmudov studied the approximate control-
lability and complete controllability for the following semilinear abstract control system with
finite delay: ⎧⎨⎩

d
dt
x(t) = Ax(t) +Bu(t) + F (t, xt, u), t ∈ [0, T ],

x0 = φ.
(1.2)

In [9, 18, 24–27, 33–34], the authors investigated the approximate controllability for semilinear
impulsive systems and fractional order (stochastic) differential systems with (state-department)
delay also by using the resolvent condition.

On the other hand, neutral partial functional differential systems appear in a great many
practical mathematical models, such as some structured population models and systems of
lossless transmission line networks (see [11, 31]). In recent years, existence results, asymptotic
properties and controllability on this type of systems have been investigated by many authors
(see [3, 7, 12]). We are going to discuss the approximate controllability for neutral partial
functional differential systems with state-dependent delay. State-dependent delay differential
equations can be met in various practical models. Some recent applications can be found in
[1, 17]. In particular, the approximate controllability of fractional functionals and integro-
differential equations with state-dependent delay has been studied in [24, 26, 33–34].

A motivation of the present paper is the approximate controllability problem of the following
neutral partial differential control systems:⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂

∂t

[
z(t, x) + f

(
t, z(·, x), ∂z

∂x
(·, x)

)]
=
∂2z

∂x2
(t, x) +Bu(t) + g

(
t, z(·, x), ∂z

∂x
(·, x)

)
,

z(t, 0) = z(t, π) = 0, t ≥ 0,

z(θ, x) = φ(θ, x), 0 ≤ x ≤ π, θ ≤ 0.

(1.3)

System (1.3) arises as a model for nonlinear heat flow in materials with fading memory. Here
z(t, x) represents the temperature of a conduct of the point x and time t. Evidently, this
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system can be treated as the abstract equation (1.1), however, the results established in [5, 24–
25] become invalid for this situation, since the functions f, g in (1.3) involve spatial derivatives.
In fact, as one will see in Section 4, if we take X = L2([0, π]), then the third variables of f and
g are defined on Cg 1

2
(induced by X 1

2
) and so the solutions can not be discussed on X like in

[24–25].
In this paper, inspired by the work in [7, 28–29], we shall discuss this problem by using the

fractional power operators theory and α-norm techniques, that is, we shall restrict this equation
in a Banach spaceXα (⊂ X) induced by fractional power operators. We first present the induced
phase space Bα for infinite delay, through which we investigate the existence of mild solutions
and then we obtain the approximate controllability for (1.1) in space X . In this manner we
overcome the above mentioned difficulty successfully and the achieved controllability results can
be applied to the systems involving spatial derivatives (see the system (4.1) in Section 4). Hence
our obtained results are more general in applications than those of [5, 24–25]. In addition, it
can be seen that our techniques can also be adopted to study the approximate controllability
of other kinds of control systems (such as fractional order and stochastic systems with infinite
delay) to improve the existing results in, for instance, [9, 26, 33–34]. We would also like to
point out here that the resolvent condition (H0) employed in this paper is verified readily as
shown in the example in Section 4, which is more advantageous than the range condition used
in [14, 30], since it seems difficult to be verified for infinitely delayed control systems.

The whole article is organized as follows: We initially present some preliminaries about
analytic semigroups and phase spaces for infinite delay in Section 2. Particularly, to make them
still valid in our situation, we introduce the axioms of phase spaces on the space Xα. In Section
3, we first discuss the existence of mild solutions for System (1.1) by applying the fixed point
theorem, and then we study the approximate controllability of (1.1) using limit arguments.
Finally, in Section 4, an example is provided to show the applications of the obtained results.

2 Preliminaries

Throughout this paper, X is a Hilbert space with norm ‖ · ‖. And −A : D(−A) → X is the
infinitesimal generator of a compact analytic semigroup (S(t))t≥0 of uniformly bounded linear
operators. Let 0 ∈ ρ(A). Then it is possible to define the fractional power Aα, for 0 < α ≤ 1,
as a closed linear operator on its domain D(Aα) . Furthermore, the subspace D(Aα) is dense
in X and the expression

‖x‖α = ‖Aαx‖, x ∈ D(Aα)

defines a norm on D(Aα). Hereafter we denote by Xα the Banach space D(Aα) normed with
‖x‖α. Then for each α > 0, Xα is a Banach space, Xα ↪→ Xβ for 0 < β < α and the imbedding
is compact whenever the resolvent operator of A is compact.

For the analytic semigroup (S(t))t≥0 , the following properties will be used (see [22]): There
exist constants M ≥ 1, Mα > 0 such that, for t ∈ [0, T ],

‖S(t)‖ ≤M, (2.1)

‖AαS(t)‖ ≤ Mα

tα
. (2.2)
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To study the system (1.1), we assume that the histories xt : (−∞, 0] → X , xt(θ) = x(t+ θ)
belong to some abstract phase space B, which is defined axiomatically. In this article, we
employ an axiomatic definition of the phase space B introduced by Hale and Kato [10] and
follow the terminology used in [13]. Thus, B will be a linear space of functions mapping (−∞, 0]
into X endowed with a seminorm ‖·‖B. We assume that B satisfies the following axioms:

(A) If x : (−∞, σ + a) → X , a > 0, is continuous on [σ, σ + a) and xσ ∈ B, then for every
t ∈ [σ, σ + a) the followings hold:

(i) xt is in B;
(ii) ‖x(t)‖ ≤ H‖xt‖B;
(iii) ‖xt‖B ≤ K(t− σ) sup{‖x(s)‖ : σ ≤ s ≤ t} +M(t− σ)‖xσ‖B.

Here H ≥ 0 is a constant, K,M : [0,+∞) → [0,+∞), K(·) is continuous and M(·) is locally
bounded, and H , K(·), M(·) are independent of x(t).

(A1) For the function x(·) in (A), xt is a B-valued continuous function on [σ, σ + a].
(B) The space B is complete.
We denote by Bα the set of all the elements in B that takes values in space Xα, that is,

Bα := {φ ∈ B : φ(θ) ∈ Xα for all θ ≤ 0}.

Then Bα becomes a subspace of B endowed with the seminorm ‖ · ‖Bα which is induced
by ‖ · ‖B through ‖ · ‖α. More precisely, for any φ ∈ Bα, the seminorm ‖ · ‖Bα is defined
by ‖Aαφ(θ)‖, instead of ‖φ(θ)‖. For example, let the phase space B = Cr × Lp(g : X),
r ≥ 0, 1 ≤ p < ∞ (see [13]), which consists of all classes of functions φ ∈ (−∞, 0] → X such
that φ is continuous on [−r, 0], Lebesgue-measurable, and g‖φ(·)‖p is Lebesgue integrable on
(−∞,−r), where g : (−∞,−r) → R is a positive Lebesgue integrable function. The seminorm
in B is defined by

‖φ‖B = sup{φ(θ) : −r ≤ θ ≤ 0} +
(∫ −r

−∞
g(θ)‖φ(θ)‖pdθ

) 1
p

.

Then the seminorm in Bα is defined by

‖φ‖Bα = sup{‖Aαφ(θ)‖ : −r ≤ θ ≤ 0} +
( ∫ −r

−∞
g(θ)‖Aαφ(θ)‖pdθ

) 1
p

.

See also the space Cg, 1
2

presented in Section 4. Hence, since Xα is still a Hilbert space, we will
assume that the subspace Bα also satisfies the following conditions:

(A′) If x : (−∞, σ + a) → Xα, a > 0 is continuous on [σ, σ + a) (in α-norm) and xσ ∈ Bα,
then for every t ∈ [σ, σ + a) the followings hold:

(i) xt is in Bα;
(ii) ‖x(t)‖α ≤ H‖xt‖Bα ;
(iii) ‖xt‖Bα ≤ K(t− σ) sup{‖x(s)‖α : σ ≤ s ≤ t} +M(t− σ)‖xσ‖Bα .

Here H , K(·) and M(·) are as in (A)(iii) above.
(A′

1) For the function x(·) in (A′), xt is a Bα-valued continuous function on [σ, σ + a].
(B′) The space Bα is complete.
For any φ ∈ Bα, the notation φt, t ≤ 0, represents the function φt(θ) = φ(t+θ), θ ∈ (−∞, 0].

Then, if the function x(·) in axiom (A′) with x0 = φ, we may extend the mapping t → xt to
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the whole interval (−∞, T ] by setting xt = φt as t ≤ 0. On the other hand, for the function
ρ : [0, T ]× Bα → (−∞, T ], we introduce the set

Z(ρ−) = {ρ(s, ψ) : ρ(s, ψ) ≤ 0, (s, ψ) ∈ [0, T ]× Bα}

and give the following hypothesis on φt: The function t→ φt is continuous from Z(ρ−) into Bα

and there exists a continuous and bounded function Hφ : Z(ρ−) → (0,+∞) such that, for each
t ∈ Z(ρ−),

‖φt‖Bα ≤ Hφ(t)‖φ‖Bα .

Then we have the following lemma, which plays an important role in our proofs in the next
section.

Lemma 2.1 (see [12]) Let x : (−∞, T ] → Xα be a function such that x0 = φ and the
restriction of x(·) to the interval [0, T ] is continuous. Then

‖xs‖Bα ≤ (H3 +H)‖φ‖Bα +H2 sup{‖x(θ)‖α; θ ∈ [0,max{0, s}]}, s ∈ Z(ρ−) ∪ [0, T ],

where
H1 = sup

t∈Z(ρ−)

Hφ(t), H2 = sup
t∈[0,T ]

K(t), H3 = sup
t∈[0,T ]

M(t).

The mild solution to (1.1) expressed by the semigroup is defined as the following definition.

Definition 2.1 The function x(· ;φ, u) : (−∞, T ] → D(Aα), T > 0 is said to be a mild
solution to (1.1) with initial value φ ∈ Bα (under control u(t)), if it is continuous in Xα-norm
on [0, T ] and satisfies on (−∞, T ] that

x(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
S(t)[φ(0) + F (0, φ)] − F (t, xt) +

∫ t

0

AS(t− s)F (s, xs)ds

+
∫ t

0

S(t− s)[Bu(s) +G(s, xρ(s,xs))]ds, t ∈ [0, T ],

φ(t), −∞ < t ≤ 0.

(2.3)

Definition 2.2 The system (1.1) is said to be approximately controllable on the interval
[0, T ], if R(T, φ) is dense in X, i.e.,

R(T, φ) = X,

where R(T, φ) = {xT (φ, u)(0), u(·) ∈ L2([0, T ], U)}.
We shall study the approximate controllability for (1.1) by applying the results established

in [2]. For this purpose, we need to introduce the following relevant operator:

ΓT =
∫ T

0

S(T − s)BB∗S∗(T − s)ds,

R(λ,ΓT ) = (λI + ΓT )−1,

where B∗ denotes the adjoint of the operator B and S∗(t) denotes the adjoint semigroup of
S(t). Because the operator ΓT is positive, R(λ,ΓT ) is well defined. Assume that

(H0) λR(λ,ΓT ) → 0 as λ→ 0 in the strong operator topology.
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From Theorem 2 of [2], the hypothesis (H0) is equivalent to the fact that the following linear
control system {

x′(t) = −Ax(t) +Bu(t), t ∈ [0, T ],

x(0) = φ(0)
(2.4)

is approximately controllable on [0, T ].
We now end this section by stating some well-known theorems which will be used in the

next section.

Theorem 2.1 (Lebesgue′s Dominated Convergence Theorem) Let {fn} be a sequence in
space L1(Ω, X). Suppose that the sequence converges almost everywhere to a function f and is
dominated by some function g ∈ L1(Ω, X) in the sense that ‖fn(x)‖ ≤ g(x), for all n ∈ N and
almost all points x ∈ Ω. Then f ∈ L1(Ω, X) and

lim
n→∞

∫
D

‖fn − f‖dμ = 0 for any D ⊂ Ω.

Theorem 2.2 (Infinite-Dimensional Version of Ascoli-Arzela Theorem) Let

F ⊂ C([a, b];X)

satisfy that
(i) the family {f(t) : f ∈ F} is uniformly bounded on X, that is, there is an M > 0 such

that ‖f(t)‖ ≤M for all f ∈ F and t ∈ [a, b];
(ii) F is equicontinuous on the interval [a, b], that is, for any ε > 0 and any t ∈ [a, b], there

exists δ > 0 such that

‖f(t) − f(s)‖ < ε for any s ∈ [a, b] satisfying |t− s| < δ, and all f ∈ F ;

(iii) for any t ∈ [a, b], the set {f(t) : f ∈ F} is relatively compact in X.
Then F is relatively compact in space C([a, b];X).

Theorem 2.3 (see [23]) Let P be a condensing operator on a Banach space X, i.e., P is
continuous and takes bounded sets into bounded sets, and α(P (B)) ≤ α(B) for every bounded
set B of X with α(B) > 0. If P (H) ⊂ H for a convex, closed and bounded set H of X, then P

has a fixed point in H (where α(·) denotes Kuratowski’s measure of non-compactness).

3 Approximate Controllability

In this section we discuss the approximate controllability for (1.1). We firstly show that, for
any xT ∈ X , by choosing proper control uλ (for any given λ ∈ (0, 1)), there is a mild solution
xλ(·;φ, u) : (−∞, T ] → D(Aα) to (1.1), and then we prove that xλ(T ) → xT in X .

To guarantee the existence of mild solutions, we impose the following restrictions on (1.1).
Assume α ∈ (0, 1).

(H1) B ∈ L (U, X), i.e., B is a bounded linear operator from U to X . Let ‖B‖ = N .
(H2) The function F : [0, T ] × Bα → D(Aα+β) is a continuous function for some β ∈ (0, 1)

with α+ β ≤ 1, and there exists L > 0 such that the function AβF satisfies

‖AβF (s1, φ1) −AβF (s2, φ2)‖α ≤ L (|s1 − s2| + ‖φ1 − φ2‖Bα) (3.1)
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for any 0 ≤ s1, s2 ≤ T , φ1, φ2 ∈ Bα. Moreover, there exist L1 > 0 and γ1 ∈ (0, 1) such that the
inequality

‖F (t, φ)‖α+β ≤ L1(‖φ‖γ1
Bα

+ 1) (3.2)

holds for any t ∈ [0, T ] and φ ∈ Bα.
(H3) The function G : [0, T ]× Bα → X satisfies the following conditions:
(a) Let x : (−∞, T ] → Xα be such that x0 = φ and the restriction of x(·) to the interval [0, T ]

is continuous. The function t→ G(s, xρ(t,xt)) is strongly measurable on [0, T ] and t→ G(s, xt)
is continuous on Z(ρ−) ∪ [0, T ] for every s ∈ [0, T ].

(b) For each r > 0, there exists a function gr ∈ C([0, T ],R+) such that

sup
‖φ‖Bα≤r

‖G(t, φ)‖ ≤ gr(t), t ∈ [0, T ], φ ∈ Bα.

And there exist L2 > 0 and γ2 ∈ (0, 1) such that

‖gr(·)‖ ≤ L2(rγ2 + 1). (3.3)

For any given xT ∈ X and λ ∈ (0, 1), we take the control function uλ(t), simply denoted by
u(t), as

u(t) := B∗S∗(T − t)R(λ,ΓT )
{
xT − S(T )[φ(0) + F (0, φ)] + F (T, xT )

−
∫ T

0

AS(T − τ)F (τ, xτ )dτ −
∫ T

0

S(T − τ)G(τ, xρ(τ,xτ ))dτ
}
. (3.4)

Using this control, we define the operator Qλ : (−∞, T ] → Xα as follows:

(Qλx)(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
S(t)[φ(0) + F (0, φ)] − F (t, xt) +

∫ t

0

AS(t− s)F (s, xs)ds

+
∫ t

0

S(t− s)[Bu(s) +G(s, xρ(s,xs))]ds, t ∈ [0, T ],

φ(t), t ∈ (−∞, 0],

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S(t)[φ(0) + F (0, φ)] − F (t, xt) +
∫ t

0

AS(t− s)F (s, xs)ds

+
∫ t

0

S(t− s)
{
BB∗S∗(T − s)R(λ,ΓT )

[
xT − S(T )[φ(0) + F (0, φ)]

+ F (T, xT ) −
∫ T

0

AS(T − τ)F (τ, xτ )dτ

−
∫ T

0

S(T − τ)G(τ, xρ(τ,xτ ))dτ
]

+G(s, xρ(s,xs))
}

ds, t ∈ [0, T ],

φ(t), t ∈ (−∞, 0].

(3.5)

At first we prove the following theorem.

Theorem 3.1 Let φ ∈ Bα. Suppose that assumptions (H0)–(H3) are satisfied. Then for
each 0 < λ < 1, the equation (1.1) admits one mild solution on (−∞, T ] provided that

L0 := LH2

(
‖A−β‖ +

1
β
M1−βT

β
)
< 1. (3.6)
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Proof Let y(·) : (−∞, T ] → Xα be the function defined by

y(t) :=
{
S(t)φ(0), t ≥ 0,
φ(t), −∞ < t < 0,

so then y0 = φ, yt ∈ Bα for any t ∈ [0, T ]. It is easy to see that the map t→ y(t) is continuous
in α-norm on [0, T ], and hence t→ yt is also continuous in seminorm ‖ · ‖Bα .

We define the set

B(r) := {z ∈ C([0, T ];Xα) : z(0) = 0, ‖z(t)‖α ≤ r, 0 ≤ t ≤ T }.

Then B(r) is clearly a non-empty bounded, closed and convex subset of C([0, T ];Xα). For each
z ∈ B(r), we denote by z the function defined by

z(t) :=
{
z(t), 0 ≤ t ≤ T,
0, −∞ < t < 0.

Clearly, if x(·) satisfies the equation (1.1), we can decompose it as x(t) = z(t)+y(t), 0 ≤ t ≤ T ,
which implies xt = zt + yt for every 0 ≤ t ≤ T and the function z(·) satisfies

z(t) = S(t)F (0, φ) − F (t, zt + yt) +
∫ t

0

AS(t− s)F (s, zs + ys)ds

+
∫ t

0

S(t− s)[Bu(s) +G(s, zρ(s,zs+ys) + yρ(s,zs+ys))]ds, 0 ≤ t ≤ T.

Let Pλ, Pλ
1 , Pλ

2 be the operators on B(r) defined, respectively, by

(Pλz)(t) := S(t)F (0, φ) − F (t, zt + yt) +
∫ t

0

AS(t− s)F (s, zs + ys)ds

+
∫ t

0

S(t− s)[Bu(s) +G(s, zρ(s,zs+ys) + yρ(s,zs+ys))]ds,

(Pλ
1 z)(t) := S(t)F (0, φ) − F (t, zt + yt) +

∫ t

0

AS(t− s)F (s, zs + ys)ds,

(Pλ
2 z)(t) :=

∫ t

0

S(t− s)[Bu(s) +G(s, zρ(s,zs+ys) + yρ(s,zs+ys))]ds.

Then, the assertion that (1.1) admits a mild solution is equivalent to the fact that the operator
Qλ has a fixed point. Obviously, the fact that the operator Qλ has a fixed point is equivalent
to that Pλ = Pλ

1 + Pλ
2 has a fixed point. Next we prove that Pλ has a fixed point by using

Theorem 2.1. For this purpose, we will show that Pλ maps B(r) into itself, and Pλ
1 verifies a

contraction condition while Pλ
2 is a completely continuous operator.

Step 1 For 0 < λ < 1, there exists an r(λ) > 0, such that Pλ(B(r)) ⊂ B(r). If this is
not true, then, for every r > 0, there exist z ∈ B(r) and t ∈ [0, T ] such that ‖(Pλz)(t)‖α > r.
Then, noting that (by (2.1)–(2.2) and H2),

‖u(t)‖ =
∥∥∥B∗S∗(T − t)R(λ,ΓT )

{
xT − S(T )[φ(0) + F (0, φ)] + F (T, xT )

−
∫ T

0

AS(T − τ)F (τ, xτ )dτ −
∫ T

0

S(T − τ)G(τ, xρ(τ,xτ ))dτ
}∥∥∥
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=
∥∥∥B∗S∗(T − t)R(λ,ΓT )

{
xT − S(T )[φ(0) + F (0, φ)] +A−(α+β)Aα+βF (T, xT )

−
∫ T

0

A1−(α+β)S(T − τ)Aα+βF (τ, xτ )dτ −
∫ T

0

S(T − τ)G(τ, xρ(τ,xτ ))dτ
}∥∥∥

≤ 1
λ
MN

[
‖xT ‖ +M‖φ(0) + F (0, φ)‖ +

(
‖A−(α+β)‖ +

M1−(α+β)T
α+β

α+ β

)
L1(r1γ1 + 1)

+M

∫ T

0

‖G(τ, xρ(τ,xτ ))‖dτ
]
,

where r1 := (H2r +H2M)‖φ(0)‖α +H3‖φ‖Bα , we have

r < ‖(Pλz)(t)‖α =
∥∥∥S(t)F (0, φ) − F (t, zt + yt) +

∫ t

0

AS(t− s)F (s, zs + ys)ds

+
∫ t

0

S(t− s)[Buz+y(s) +G(s, zρ(s,zs+ys) + yρ(s,zs+ys))]ds
∥∥∥

α

≤M‖F (0, φ)‖α + ‖A−β‖ ‖F (t, zt + yt)‖α+β +
∫ t

0

‖A1−βS(t− s)‖ ‖F (s, zs + ys)‖α+βds

+
∫ t

0

‖AαS(t− s)‖[N‖u‖ + ‖G(s, zρ(s,zs+ys) + yρ(s,zs+ys))‖]ds.

For any z ∈ B(r), it follows from Lemma 2.1 that,

‖zρ(s,xs)‖Bα ≤ H2r,

and then,

‖xρ(s,xs)‖Bα = ‖zρ(s,zs+ys) + yρ(s,zs+ys)‖Bα ≤ ‖zρ(s,zs+ys)‖Bα + ‖yρ(s,zs+ys)‖Bα

≤ H2r + (H3 +H1) ‖φ‖Bα +H2M‖φ(0)‖α := r2.

Hence we obtain by axiom (A′), (3.2)–(3.3) that

r < M‖A−β‖L(‖φ‖Bα + 1) +
(
‖A−β‖ +

M1−βT
β

β

)
L1(r1γ1 + 1)

+
MαT

1−α

1 − α

{ 1
λ
MN2

[
‖xT ‖ +M‖φ(0) + F (0, φ)‖

+
(
‖A−(α+β)‖ +

M1−(α+β)T
α+β

α+ β

)
L1(r1γ1 + 1) +MT ‖gr2(·)‖

]
+ ‖gr2(·)‖

}
= K1r1

γ1 +K2r2
γ2 +K3,

where K1,K2,K3 > 0 are constants independent of r. Thus,

r −K1r1
γ1 −K2r2

γ2 < K3. (3.7)

However, the left side of (3.7) may go to +∞ as long as r → +∞ since γ1, γ2 < 1 by our
assumption. This is an contradiction. Therefore, there is an r(λ) > 0 such that Pλ maps B(r)
into itself.

Step 2 To prove that Pλ
1 satisfies a contraction condition, we take z1, z2 ∈ B(r), and then,

for each t ∈ [0, T ], by axiom A′(iii) and (3.1),

‖(Pλ
1 z1)(t) − (Pλ

1 z2)(t)‖α
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≤ ‖F (t, z1,t + yt) − F (t, z2,t + yt)‖α +
∥∥∥ ∫ t

0

AS(t− s)[F (s, z1,s + ys) − F (s, z2,s + ys)]ds
∥∥∥

α

≤ ‖A−β‖ L ‖z1,t − z2,t‖Bα +
∫ t

0

M1−β

(t− s)1−β
L ‖z1,s − z2,s‖Bαds

≤ LH2

(
‖A−β‖ +

1
β
M1−βT

β
)

sup
0≤s≤T

‖z1(s) − z2(s)‖α

= L0 sup
0≤s≤T

‖z1(s) − z2(s)‖α.

Thus
‖(Pλ

1 z1)(·) − (Pλ
1 z2)(·)‖C([0,T ]; Xα) ≤ L0‖z1(·) − z2(·)‖C([0,T ]; Xα),

and so from (3.6) Pλ
1 satisfies the contraction condition.

Step 3 In order to prove that the operator Pλ
2 is completely continuous, we firstly show

that it is continuous on B(r).
Let {zn}n∈N+ be a sequence in B(r) such that zn → z (n → +∞), and then, we have that

zn
ρ(s,zn

s ) → zρ(s,zs) as n→ +∞ for every s ∈ Z(ρ−) ∪ [0, T ].
Then for all s ∈ Z(ρ−) ∪ [0, T ], by (A′),

‖zn
s − zs‖Bα ≤ H2 sup

0≤s+θ≤T
‖(zn(s+ θ) − z(s+ θ))‖α ≤ H2‖zn − z‖ → 0, n→ ∞.

Hence,

‖G(s, zn
ρ(s,zn

s +ys)
+ yρ(s,zn

s +ys)) −G(s, zρ(s,zs+ys) + yρ(s,zs+ys))‖
≤ ‖G(s, zn

ρ(s,zn
s +ys)

+ yρ(s,zn
s +ys)) −G(s, zρ(s,zn

s +ys) + yρ(s,zn
s +ys))‖

+ ‖G(s, zρ(s,zn
s +ys) + yρ(s,zn

s +ys)) −G(s, zρ(s,zs+ys) + yρ(s,zs+ys))‖
→ 0, n→ ∞.

As above it is easy to calculate that

‖(Pλ
2 z

n)(t) − (Pλ
2 z)(t)‖α ≤

∥∥∥ ∫ t

0

AαS(t− s)B[un(s) − u(s)]ds
∥∥∥

+
∥∥∥∫ t

0

AαS(t− s)
[
G(s, zn

ρ(s,zn
s +ys) + yρ(s,zn

s +ys))

−G(s, zρ(s,zs+ys) + yρ(s,zs+ys))
]
ds

∥∥∥
≤ 2

MαT
1−α

1 − α

{ 1
λ
MN2

[
‖xT ‖ +M‖φ(0) + F (0, φ)‖

+
(
‖A−(α+β)‖ +

M1−(α+β)T
α+β

α+ β

)
L1(r1γ1 + 1)

+MT ‖gr2(·)‖
]

+ ‖gr2(·)‖
}
,

where un, u are the corresponding controls to zn, z, respectively (determined by (3.4)). Hence
from Theorem 2.1 it follows that

‖(Pλ
2 z

n)(t) − (Pλ
2 z)(t)‖α → 0 as n→ +∞,

i.e., Pλ
2 is continuous.
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Step 4 We show that the operator Pλ
2 mapsB(r) into a relatively compact subset of C([0,T ];

Xα). Firstly, we prove that the set V (t)={(Pλ
2 z)(t), z ∈ B(r)} is relatively compact in Xα for

every t ∈ [0, T ]. Indeed, the case when t = 0 is trivial. Now let t ∈ (0, T ] be fixed, and then

(Pλ
2 z)(t) =

∫ t

0

S(t− s)
{
BB∗S∗(T − s)R(λ,ΓT )

[
xT − S(T )[φ(0) + F (0, φ)]

−
∫ T

0

AS(T − τ)F (τ, zτ + yτ )dτ −
∫ T

0

S(T − τ)G(τ, zρ(τ,zτ +yτ) + yρ(τ,zτ+yτ ))dτ
]

+G(s, zρ(s,zs+ys) + yρ(s,zs+ys))
}

ds, z ∈ B(r).

Observe that, for 0 < α < α′ < 1,

‖Aα′
(Pλ

2 z)(t)‖ ≤
∫ t

0

‖Aα′
S(t− s)[Bu(s) +G(s, zρ(s,zs+ys) + yρ(s,zs+ys))]‖ds

≤
∫ t

0

Mα′(t− s)−α′
ds · [N‖u‖+ ‖gr2(·)‖]

≤ Mα′T 1−α′

1 − α′
( 1
λ
MN2

[
‖xT ‖ +M‖φ(0) + F (0, φ)‖

+
(
‖A−(α+β)‖ +

M1−(α+β)T
α+β

α+ β

)
L1(r1γ1 + 1)

]
+

1
λ
M2N2T ‖gr2(·)‖ + ‖gr2(·)‖

)
,

which implies that {Aα′
V (t)} is bounded in X . Hence we infer that V (t) is relatively compact

in Xα by the compactness of operator A−α′
: X → Xα (the imbedding Xα′ ↪→ Xα is compact).

Hence for each t ∈ [0, T ], V (t) is relatively compact in Xα.
Next we prove that the family of functions V = {Pλ

2 (z)(·) : z ∈ B(r)} is equi-continuous on
interval (0, T ]. Let 0 < t1 < t2 ≤ T , and then

‖(Pλ
2 z)(t2) − (Pλ

2 z)(t1)‖α

=
∥∥∥ ∫ t1

0

[S(t2 − s) − S(t1 − s)][Bu(s) +G(s, zρ(s,zs+ys) + yρ(s,zs+ys))]ds

+
∫ t2

t1

S(t2 − s)[Bu(s) +G(s, zρ(s,zs+ys) + yρ(s,zs+ys))]ds
∥∥∥

α

≤
∫ t1−ε

0

‖[S(t2 − s) − S(t1 − s)][Bu(s) +G(s, zρ(s,zs+ys) + yρ(s,zs+ys))]‖αds

+
∫ t1

t1−ε

‖[S(t2 − s) − S(t1 − s)][Bu(s) +G(s, zρ(s,zs+ys) + yρ(s,zs+ys))]‖αds

+
∫ t2

t1

‖AαS(t2 − s)[Bu(s) +G(s, zρ(s,zs+ys) + yρ(s,zs+ys))]‖ds

or

‖(Pλ
2 z)(t2) − (Pλ

2 z)(t1)‖α

≤ ‖S(t2 − t1 + ε) − S(ε)‖
∫ t1−ε

0

‖AαS(t1 − s− ε)‖
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· ‖Bu(s) +G(s, zρ(s,zs+ys) + yρ(s,zs+ys))‖ds

+
∫ t1

t1−ε

‖Aα[S(t2 − s) − S(t1 − s)][Bu(s) +G(s, zρ(s,zs+ys) + yρ(s,zs+ys))]‖ds

+
Mα

1 − α
[N‖u‖ + ‖gr2(·)‖](t2 − t1)1−α

≤ Mα

1 − α
[N‖u‖ + ‖gr2(·)‖](t1 − ε)1−α‖S(t2 − t1 + ε) − S(ε)‖

+
Mα

1 − α
[N‖u‖ + ‖gr2(·)‖][(t2 − t1 − ε)1−α − (t2 − t1)1−α + ε1−α]

+
Mα

1 − α
[N‖u‖ + ‖gr2(·)‖](t2 − t1)1−α,

where ε > 0 is sufficiently small. Since {S(t)}t≥0 is strongly continuous, and the compactness of
S(t), t > 0 implies the continuity in the uniform operator topology, it follows that ‖(Pλ

2 z)(t2)−
(Pλ

2 z)(t1)‖α tends to zero as t2−t1 → 0, and hence V = {(Pλ
2 z)(·), z ∈ B(r)} is equicontinuous.

Accordingly, from Theorem 2.2, Pλ
2 is a completely continuous operator on Bα.

These arguments enable us to infer that Pλ = Pλ
1 + Pλ

2 is a condense mapping on B(r),
and by Theorem 2.3, we conclude that there exists a fixed point zλ for Pλ on B(r). Let
xλ(t) = zλ(t) + y(t), t ∈ (−∞, T ], and then xλ(·) is a fixed point of the operator Qλ, which
implies that equation (1.1) admits a mild solutions xλ(·) on (−∞, T ]. The proof is completed.

Theorem 3.2 Assume that the assumptions of Theorem 3.1 are satisfied with functions
F (·, ·) and G(·, ·) uniformly bounded, and additionally suppose that the hypothesis (H0) holds.
Then (1.1) is approximately controllable on [0, T ].

Proof Let xλ(·) be a fixed point of Qλ on B(r), and then, as one can see above, xλ is a
mild solution to (1.1) on (−∞, T ] under the control

uλ(t) =B∗S∗(T − t)R(λ,ΓT )
[
xT − S(T )[φ(0) + F (0, φ)] + F (T, xλ

T )

−
∫ T

0

AS(T − τ)F (τ, xλ
τ )dτ −

∫ T

0

S(T − τ)G(τ, xλ
ρ(τ,xλ

τ ))dτ
]

and satisfies

xλ(T ) = S(T )[φ(0) + F (0, φ)] − F (T, xλ
T ) +

∫ T

0

AS(T − s)F (s, xλ
s )ds

+
∫ T

0

S(T − s)[Buλ(s) +G(s, xλ
ρ(s,xλ

s ))]ds

= S(T )[φ(0) + F (0, φ)] − F (T, xλ
T ) +

∫ T

0

AS(T − s)F (s, xλ
s )ds

+
∫ T

0

S(T − s)
{
BB∗S∗(T − s)R(λ,ΓT )

[
xT − S(T )[φ(0) + F (0, φ)] + F (T, xλ

T )

−
∫ T

0

AS(T − τ)F (τ, xλ
τ )dτ −

∫ T

0

S(T − τ)G(τ, xλ
ρ(τ,xλ

τ ))dτ
]

+G(s, xλ
ρ(s,xλ

s ))
}
ds

= xT + [ΓTR(λ,ΓT ) − I]
{
xT − S(T )[φ(0) + F (0, φ)] + F (T, xλ

T )

−
∫ T

0

AS(T − s)F (s, xλ
s )ds−

∫ T

0

S(T − s)G(s, xλ
ρ(s,xλ

s ))ds
}
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= xT − λR(λ,ΓT )
{
xT − S(T )[φ(0) + F (0, φ)] + F (T, xλ

T ) −
∫ T

0

AS(T − s)F (s, xλ
s )ds

−
∫ T

0

S(T − s)G(s, xλ
ρ(s,xλ

s ))ds
}
. (3.8)

From the assumption we see that the sequences {F (s, xλ
s ) : λ ∈ (0, 1)} and

{
G(s, xλ

ρ(s,xλ
s )) :

λ ∈ (0, 1)
}

are bounded (uniformly in λ) in X . Hence there are subsequences, still denoted by
F (s, xλ

s ) and G(s, xλ
ρ(s,xλ

s )), that weakly converge to, say, f(s) and g(s) in X for each s ∈ [0, T ],
respectively.

Then, by the compactness of the semigroup again, it follows immediately that

‖S(T − s)[G(s, xλ
ρ(s,xλ

s )) − g(s)]‖ → 0 for all s ∈ [0, T ),

which implies ∥∥∥ ∫ T

0

S(T − s)[G(s, xλ
ρ(s,xλ

s )) − g(s)]ds
∥∥∥ → 0

as λ → 0+. On the other hand, it is not difficult to show that the map f(t) → ∫ t

0
AS(t −

s)f(s)ds : L2([0, T ], Xα+β) → C([0, T ], X) is compact, and we hence obtain∥∥∥ ∫ T

0

AS(T − s)[F (s, xλ
s ) − f(s)]ds

∥∥∥
=

∥∥∥ ∫ T

0

A1−(α+β)S(T − s)[Aα+βF (s, xλ
s ) −Aα+βf(s)]ds

∥∥∥ → 0

as λ→ 0+. In addition, because the map t→ F (t, xt) : [0, T ] → C([0, T ], X) is also compact, we
may assume that there is an FT ∈ X such that

F (T, xλ
T ) → FT , λ→ 0+.

Thus by (3.8) we have that

‖xλ(T ) − xT ‖
=

∥∥∥λR(λ,ΓT )
{
xT − S(T )[φ(0) + F (0, φ)] + F (T, xλ

T )

−
∫ T

0

AS(T − s)F (s, xλ
s )ds−

∫ T

0

S(T − s)G(s, xλ
ρ(s,xλ

s ))ds
}∥∥∥

≤
∥∥∥λR(λ,ΓT )

{
xT − S(T )[φ(0) + F (0, φ)] + FT −

∫ T

0

AS(T − s)f(s)ds

−
∫ T

0

S(T − s)g(s)ds
}∥∥∥ + ‖λR(λ,ΓT )[F (T, xλ

T ) − FT ]‖

+
∥∥∥λR(λ,ΓT )

∫ T

0

AS(T − s)[F (s, xλ
s ) − f(s)]ds

∥∥∥
+

∥∥∥λR(λ,ΓT )
∫ T

0

S(T − s)[G(s, xλ
ρ(s,xλ

s )) − g(s)]ds
∥∥∥ → 0 as λ→ 0+. (3.9)

So there holds xλ(T ) → xT in X , and consequently we obtain the approximate controllability
of (1.1). The proof is completed.
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4 An Example

In order to apply Theorem 3.1 and Theorem 3.2, we consider the following system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t

[
z(t, x) +

∫ t

−∞

∫ π

0

a
(
s− t, x, z(s, y) +

∂

∂y
z(s, y)

)
dyds

]
=

∂2

∂x2
z(t, x) +Bu(t)

+ b
(
s− t, x, z(t− σ(‖z(t, x)‖), x), ∂z

∂x
(t− σ(‖z(t, x)‖), x)

)
,

0 ≤ t ≤ T, 0 ≤ x ≤ π,

z(t, 0) = z(t, π) = 0, 0 ≤ t ≤ T,

z(θ, x) = φ(θ, x), θ ≤ 0, 0 ≤ x ≤ π,

(4.1)

where the functions a and b will be described below.
Let X = L2([0, π]) and operator A be defined by

Af = −f ′′

with the domain

D(A) = H2
0 ([0, π]) = {f(·) ∈ X : f ′, f ′′ ∈ X, f(0) = f(π) = 0}.

Then −A generates a strongly continuous semigroup (S(t))t≥0 which is analytic, compact and
self-adjoint. Furthermore, −A has a discrete spectrum, and the eigenvalues are −n2, n ∈
N

+, with the corresponding normalized eigenvectors zn(x) =
√

2
π sin(nx). Then the following

properties hold:
(a) If f ∈ D(A), then

Af =
∞∑

n=1

n2〈f, zn〉zn.

(b) For every f ∈ X ,

S(t)f =
∞∑

n=1

e−n2t〈f, zn〉zn,

A− 1
2 f =

∞∑
n=1

1
n
〈f, zn〉zn.

In particular, ‖S(t)‖ ≤ e−t, ‖A−1‖ = ‖A− 1
2 ‖ = 1.

(c) The operator A
1
2 is given by

A
1
2 f =

∞∑
n=1

n〈f, zn〉zn

on the space D(A
1
2 ) =

{
f(·) ∈ X,

∞∑
n=1

n〈f, zn〉zn ∈ X
}
.

Define an infinite-dimensional space U by

U =
{
u =

+∞∑
n=2

unzn(x)
∣∣∣ +∞∑

n=2

un <∞
}
,
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and the norm in U is defined by ‖u‖ =
( +∞∑

n=2
u2

n

) 1
2 . Now define the linear continuous mapping

B from U to X as

Bu = 2u2z1(x) +
+∞∑
n=2

unzn(x) for u =
+∞∑
n=2

unzn(x) ∈ U.

From [4], the linear system corresponding to (4.1) is approximately controllable.
Here we take α = β = 1

2 and the phase space B = Cg, where the space Cg is defined as: Let
g be a continuous function on (−∞, 0] with g(0) = 1, lim

θ→−∞
g(θ) = ∞, and g is decreasing on

(−∞, 0], so then

Cg =
{
φ ∈ C((−∞, 0];X) : sup

s≤0

‖φ(s)‖
g(s)

<∞
}
,

and the norm is defined by, for φ ∈ Cg,

|φ|g = sup
s≤0

‖φ(s)‖
g(s)

.

It is known that Cg satisfies the axioms (A), (A1), and (B) (see [13]). Further, the subspace
Cg, 1

2
is defined by

Cg, 1
2

=
{
φ ∈ C((−∞, 0];X 1

2
) : sup

s≤0

‖A 1
2φ(s)‖
g(s)

<∞
}
,

endowed with the norm |φ|g, 1
2

= sup
s≤0

‖A
1
2 φ(s)‖
g(s) . Clearly, Cg 1

2
satisfies correspondingly the axioms

(A′), (A′
1), and (B′), and we may choose a proper g such that H,K(·),M(·) ≤ 1 ( see [13]).

Thus we can obtain H2 ≤ 1, H3 ≤ 1.
We assume that the following conditions hold:
(i) The function a(·, ·, ·) ∈ C2 with a(·, 0, ·) = a(·, π, ·) ≡ 0, and there is a function a1(·, ·) ∈

L1((−∞, 0] × R, R
+) and a constant γ1 ∈ (0, 1) such that, for θ ∈ (−∞, 0], x, y ∈ R,∣∣∣ ∂2

∂x2
a(θ, x, y2) − ∂2

∂x2
a(θ, x, y1)

∣∣∣ < a1(θ, x)|y2 − y1|,∣∣∣ ∂2

∂x2
a(θ, x, y)

∣∣∣ < a1(θ, x)|y|γ1

and ∫ π

0

∫ 0

−∞
(g(θ))γ1a1(θ, x)dθdx <∞.

(ii) The functions b : [0, T ] × R × R → R and σ : [0,∞) → [0,∞) are continuous and there
is a constant γ2 ∈ (0, 1) such that, for any φ1, φ2 ∈ Cg 1

2
,(∫ π

0

|b(θ, φ1(θ)(x), φ1(θ)(x))|2dx
) 1

2 ≤ l2(‖φ1‖γ2
C

g 1
2

+ ‖φ1‖γ2
C

g 1
2

+ 1).

(iii) The function φ defined by φ(θ)(x) = φ(θ, x) belongs to Cg, 1
2
.

Now define the abstract functions F on Cg, 1
2
, G on [0, T ] × Cg, 1

2
and the state-dependent

function ρ(·, ·) : [0, T ]× Cg, 1
2
→ (−∞, T ] by

F (φ)(x) =
∫ 0

−∞

∫ π

0

a
(
θ, x, φ(θ)(y) + φ(θ)′(y)

)
dydθ,
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G(t, φ)(x) = b(t, φ(x), φ′(x)),

ρ(t, φ) = t− σ(‖φ(0)‖.

Then the system (4.1) is rewritten in the abstract form (1.1), and condition (i) implies that
R(F ) ⊂ D(A), since

〈F (φ), zn〉 = − 1
n

〈 ∫ 0

−∞

∫ π

0

∂

∂x
a(θ, x, φ(θ)(y) + φ(θ)′(y))dydθ, z̃n(x)

〉
=

1
n2

〈 ∫ 0

−∞

∫ π

0

∂2

∂x2
a(θ, x, φ(θ)(y) + φ(θ)′(y))dydθ, zn(x)

〉
,

where z̃n(x) =
√

2
π cos(nx), n = 1, 2, · · · . Noting that, for any θ ∈ (−∞, 0],

‖φ2(θ)(x) − φ1(θ)(x)‖2 =
∞∑

n=1

〈φ2 − φ1, zn〉2

≤
∞∑

n=1

n2〈φ2 − φ1, zn〉2

≤ ‖φ2(θ)(x) − φ1(θ)(x)‖ 1
2

2

and

‖φ2(θ)′(x) − φ1(θ)′(x)‖2 =
∞∑

n=1

〈φ′2 − φ′1, zn〉2

=
∞∑

n=1

〈φ2 − φ1, z
′
n〉2

=
∞∑

n=1

∞∑
m=1

n2〈φ2 − φ1, zn〉〈φ2 − φ1, zm〉〈−z′′n, z′m〉

≤ ‖φ2(θ)(x) − φ1(θ)(x)‖ 1
2

2
,

we see

|φ2(·) − φ1(·)|g ≤ |φ2(·) − φ1(·)|g, 1
2
,

|φ2(·)′ − φ1(·)′|g ≤ |φ2(·) − φ1(·)|g, 1
2
.

Thus, the condition (i) ensures that AF (·) satisfies the Lipschitz continuous on Cg, 1
2
. In fact,

one has

‖AF (φ2) −AF (φ1)‖2

=
∫ π

0

∣∣∣ ∫ 0

−∞

∫ π

0

[∂2a

∂x2
(θ, x, φ2(θ)(y) + φ2(θ)′(y)) − ∂2a

∂x2
(θ, x, φ1(θ)(y) + φ1(θ)′(y))

]
dydθ

∣∣∣2dx
≤

∫ π

0

[ ∫ 0

−∞

∫ π

0

a(θ, x)(|φ2(θ)(y) − φ(θ)(y)| + |φ2(θ)′(y)) − φ1(θ)′(y))|)dydθ
]2

dx

≤
∫ π

0

[ ∫ 0

−∞
g(θ)a(θ, x)

(‖φ2(θ) − φ1(θ)‖
g(θ)

+
‖φ2(θ)′) − φ1(θ)′)‖

g(θ)

)
dθ

]2

dx
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≤ π

∫ π

0

[ ∫ 0

−∞
g(θ)a(θ, x)dθ

]2

dx(|φ2 − φ1|g + |φ′2 − φ′1|g)2

≤ 2π
∫ π

0

[ ∫ 0

−∞
g(θ)a(θ, x)dθ

]2

dx |φ2 − φ1|2g, 1
2
,

which shows the claim. Observing that F and G also verify (3.2) and (3.3) due to the assump-
tions (i) and (ii), we see that hypotheses (H2) and (H3) are satisfied respectively. Consequently,
Theorem 3.2 is now well applied and the system (4.1) is approximate controllable on [0, T ]
provided that (3.6) is satisfied.
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