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Abstract This work is devoted to studying a quasilinear elliptic boundary value problem
with superlinear nonlinearities in a weighted Sobolev space in a domain of R

N . Based on the
Galerkin method, Brouwer’s theorem and the weighted compact Sobolev-type embedding
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1 Introduction

Let Ω ∈ R
N (N ≥ 1) be open (possibly unbounded) and consider a weak solution in

H1
p,q,ρ(Ω, Γ) (see Section 2) to the following quasilinear elliptic problem:

{Qu = [λj0u + f(x, u)]ρ − G, x ∈ Ω,
u ∈ H1

p,q,ρ(Ω, Γ), (1.1)

where λj0 is the j0th eigenvalue of L ((2.3) below) of multiplicity J0, and Q is a singular

quasilinear elliptic operator defined by

Qu = −
N∑

i=1

Di[p
1
2
i (x)Ai(x, u, Du)] + qB0(x)u. (1.2)

The nonlinear part f(x, u) in (1.1) satisfies certain superlinear conditions.

In fact, there have been many results about quasilinear elliptic equations, under the condi-

tions of which the nonlinearities satisfy sublinear or linear growth in weighted Sobolev spaces.

One can refer to [1–8]. For example, Shapiro [7] investigated the problem (1.1) aiming at the

first eigenvalue λ1 whose corresponding eigenfunction space has better characters with superlin-

ear nonlinearities. In [8], Jia and Huang proved the existence of solutions to elliptic equations

similar to (1.1) for the semilinear operator with superlinear nonlinearities. Compared with the
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previous work, this paper is supposed to gain an existence result of (1.1) for any eigenvalue

λj0(j0 ≥ 1), where the nonlinearties of quasilinear elliptic equations satisfy certain superlinear

growth conditions. Therefore we have to overcome the difficulties that the eigenvalue λj0 may

be of multiplicity J0 and that the corresponding eigenfunctions may be sign-changing.

(1.1) is one of the most useful sets of p-Laplacian equations (see [9]). In fact, there are

some serious ones. It appears that certain nonlinear mathematical models lead to differential

equations with the p-Laplacian. One of them describing the behavior of compressible fluid in a

homogeneous isotropic rigid porous medium is presented below. But some purely mathematical

properties of the p-Laplacian also seem to be a challenge for nonlinear analysis and their study

leads to the development of new methods and approaches.

Our main ideas prove the existence of {un} in the finite dimensional space Sn spanned

by {φ1, φ2, · · · , φn} via Brouwer’s fixed point theorem at first. Then we obtain the uniform

boundedness of {un} under the norm of ‖ · ‖p,q,ρ by virtue of a new compactly embedding

theorem established by Shapiro in [7]. Finally, by the projective technique, the conclusion

for existence of solutions to (1.1) in Sn could be extended to H1
p,q,ρ(Ω, Γ). To overcome the

difficulties brought by λj0 , �-relationship is put forward in Definition 2.3 between the operators

Q and L, which is different from [7] and [8].

This paper is organized as follows. In Section 2, we introduce some necessary assumptions

and the main results. In Section 3, four fundamental lemmas are established. In Section 4, the

proofs of main results are given. Section 5 illustrates an example to cover Definition 2.3.

2 Assumptions and Main Results

In this section, we introduce some assumptions and give the main results in this paper.

Let Γ ⊂ ∂Ω be a fixed closed set (it may be an empty set) and ρ(x), pi(x) (i = 1, · · · , N),

q(x) ∈ C0(Ω) be weight functions. q(x) is nonnegative (maybe identically zero). Denote by

p(x) the vector function (p1(x), p2(x), · · · , pN (x)).

Consider the following pre-Hilbert spaces

C0
ρ(Ω) =

{
u ∈ C0(Ω)

∣∣∣ ∫
Ω

|u|2ρ < ∞
}

with inner product 〈u, v〉ρ =
∫
Ω uvρ, ∀u, v ∈ C0

ρ(Ω), and

C1
p,q,ρ(Ω, Γ) =

{
u ∈ C0(Ω) ∩ C2(Ω)

∣∣∣u(x) = 0, ∀x ∈ Γ;
∫

Ω

[ N∑
i=1

|Diu|2pi + u2(q + ρ)
]

< ∞
}

with inner product

〈u, v〉p,q,ρ =
∫

Ω

( N∑
i=1

piDiuDiv + (q + ρ)uv
)

(2.1)

∀u, v ∈ C1
p,q,ρ(Ω) and Diu =

∂u

∂xi
, i = 1, · · · , N . Let L2

ρ(Ω) be the Hilbert space obtained

through the completion of C0
ρ(Ω) by using the method of Cauchy sequences with respect to the
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norm ‖u‖ρ = 〈u, u〉 1
2
ρ , and H1

p,q,ρ(Ω, Γ) be the completion of the space C1
p,q,ρ(Ω, Γ) with the norm

‖u‖p,q,ρ = 〈u, u〉 1
2
p,q,ρ. Similarly, we may have L2

pi
(Ω) (i = 1, · · ·, N) and L2

q(Ω). Consequently,

(2.1) may lead to

〈u, v〉p,q,ρ =
N∑

i=1

〈Diu, Div〉pi + 〈u, v〉ρ + 〈u, v〉q. (2.2)

Definition 2.1 For the quasilinear differential operator Q, the two-form is

Q(u, v) =
∫

Ω

N∑
i=1

p
1
2
i Ai(x, u, Du)Div + 〈B0u, v〉q, ∀u, v ∈ H1

p,q,ρ(Ω, Γ). (2.3)

For the linear differential operator

Lu = −
N∑

i=1

Di(piDiu) + qu, (2.4)

the two-form is

L(u, v) =
∫

Ω

N∑
i=1

piDiuDiv + 〈u, v〉q, ∀u, v ∈ H1
p,q,ρ(Ω, Γ). (2.5)

Remark 2.1 Observing (2.2) and the two-form of L, we get

L(u, v) + 〈u, v〉ρ = 〈u, v〉p,q,ρ. (2.6)

Definition 2.2 (Ω, Γ) is a new-VL region if the following conditions (VL-1)–(VL-5) hold:

(VL-1) There exists a complete orthonormal system {ϕn}∞n=1 in L2
ρ. Also ϕn ∈ H1

p,q,ρ(Ω, Γ)

∩C2(Ω), ∀n.

(VL-2) There exists a sequence of eigenvalues {λn}∞n=1, corresponding to the orthonormal

sequence {ϕn}∞n=1, and satisfying 0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · ≤ λn → ∞ as n → ∞, such that

L(ϕn, v) = λn〈ϕn, v〉ρ, ∀v ∈ H1
p,q,ρ(Ω, Γ).

(VL-3) Ω = Ω1 × · · · × ΩN , where Ωi ⊂ R is an open set for i = 1, · · · , N .

(VL-4) For each pi(x) and ρ(x) in (VL-1)–(VL-2), associated with each Ωi there are positive

functions p∗i (s), ρ
∗
i (s) ∈ C0(Ωi) satisfying

∫
Ωi

[p∗i (s)+ρ∗i (s)]ds<∞, and ρ(x)=ρ∗1(x1)· · ·ρ∗N (xN ),

pi(x) = ρ∗1(x1) · · · ρ∗i−1(xi−1)p∗i (xi)ρ∗i+1(xi+1) · · · ρ∗N(xN ) for i = 1, · · · , N .

(VL-5) For each Ωi, p∗i , ρ
∗
i (i = 1, · · · , N), there exists hi ∈ C0(Ωi)∩Lθ

ρ∗
i
(Ωi) for 2 < θ < ∞

with the property

|Φ(t)| ≤ hi(t)‖Φ‖p∗
i ,ρ∗

i
, ∀Φ ∈ C1(Ωi), ∀t ∈ Ωi,

where ‖Φ‖2
p∗

i ,ρ∗
i

=
∫
Ωi

[
p∗i (t)

∣∣ dΦ(t)
dt

∣∣2 + ρ∗i (t)Φ
2(t)

]
dt.

There are many examples to illustrate new-VL region. One can refer to [7] and [10].

Remark 2.2 From (VL-3) and (VL-4), it is easy to see that ρ(x), pi(x) are positive and∫
Ω

ρ(x) < ∞,

∫
Ω

pi(x) < ∞, i = 1, · · · , N. (2.7)
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Definition 2.3 Q is �-related to L if the following condition is satisfied:

lim
‖u‖p,q,ρ→∞

Q(u, v) − Λj0L(u, v)
‖u‖p,q,ρ

= 0, uniformly for ‖v‖p,q,ρ ≤ 1,

where Λj0 = λj0
λ†

. Here λ† is a positive constant not greater than the first eigenvalue of L.

We make the following assumptions concerning Ai (i = 1, · · · , N) and B0:

(Q-1) Ai(x, s, ξ) : Ω × R × R
N → R satisfies the Caratheodory conditions (i.e., Ai(x, s, ξ)

is measurable about x in Ω for every fixed (s, ξ) ∈ R × R
N and is continuous in (s, ξ) for

a.e. x ∈ Ω).

(Q-2) There exist h∗
i ∈ L2

pi
, i = 1, · · · , N, and a positive constant c1 so that a.e. x ∈

Ω, |Ai(x, s, ξ)| ≤ c1

N∑
j=1

p
1
2
j (|ξj | + |h∗

j |).

(Q-3) There exists a positive constant c2 such that
N∑

i=1

p
1
2
i (x)Ai(x, s, ξ)ξi ≥ c2

N∑
i=1

pi(x)ξ2
i for

a.e. x ∈ Ω and ∀(s, ξ) ∈ R × R
N .

(Q-4)
N∑

i=1

p
1
2
i (x)[Ai(x, s, ξ)−Ai(x, s, ξ′)](ξi − ξ′i) > 0 for a.e. x ∈ Ω, ∀s ∈ R, and ∀ξ, ξ′ ∈ R

N

with ξ 
= ξ′.

(Q-5) B0(x) ∈ C0(Ω) ∩ L∞(Ω) with B0(x) ≥ σ0 (a positive constant).

It is assumed throughout this paper that f(x, s) meets:

(f-1) f(x, s) satisfies the Caratheodory conditions.

(f-2) (Superlinear growth condition) There exists θ with 2 < θ < 2N
N−1 such that

|f(x, s)| ≤ h0(x) + K|s|θ−1, ∀s ∈ R, a.e. x ∈ Ω,

where h0(x) ∈ Lθ∗
ρ (Ω), K is a nonnegative constant and θ∗ = θ

θ−1 .

(f-3) There exists a nonnegative function h1(x) ∈ Lθ∗
ρ (Ω) and a constant β > 0 such that

sf(x, s) ≤ −β|s|2 + h1(x)|s|, ∀s ∈ R, a.e. x ∈ Ω.

Remark 2.3 Observing that for N = 2, f(x, s) = −g(x)s|s| 53 − βs, where g(x) ∈ C0(Ω)∩
L∞(Ω) is a positive function, meets both (f-2) and (f-3).

Now we state our main results in this paper.

Theorem 2.1 Assume that (Ω, Γ) is a new-VL region, the operator Q satisfies (Q-1)–(Q-5)

and is �-related to the operator L, f meets (f-1)–(f-3), and G ∈ [H1
p,q,ρ(Ω, Γ)]′ (the dual of

H1
p,q,ρ(Ω, Γ)). λj0 is the j0th eigenvalue of L. Then the problem (1.1) has at least one nontrivial

weak solution, that is, there exists a u∗ ∈ H1
p,q,ρ(Ω, Γ) such that

Q(u∗, v) = λj0 〈u∗, v〉ρ +
∫

Ω

f(x, u∗)vρ − G(v) ∀v ∈ H1
p,q,ρ(Ω, Γ).
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To derive out Theorem 2.1, we first discuss the problem in Sn which is the subspace of

H1
p,q,ρ(Ω, Γ) spanned by ϕ1, · · · , ϕn. Then by virtue of Galerkin method, the results will be

extended to H1
p,q,ρ(Ω, Γ).

3 Fundamental Lemmas

In this section, we introduce and establish four fundamental lemmas. Lemmas 3.1–3.2 give

two useful embedding theorems. Lemma 3.3 constructs some approximation solutions in Sn.

Lemma 3.4 studies the properties of the approximation solutions.

Lemma 3.1 (see [7]) Assume that L is given by (2.4) and (Ω, Γ) is a new-VL region. For

N ≥ 2, then H1
p,q,ρ(Ω, Γ) is compactly embedded in Lθ

ρ(Ω) ∀θ (2 < θ < 2N
N−1 ); for N = 1, then

H1
p,q,ρ(Ω, Γ) is compactly embedded in Lθ

ρ(Ω) ∀θ (2 < θ < ∞).

Lemma 3.2 (see [7]) Assume that L is given by (2.4) and (Ω, Γ) is a new-VL region. Then

H1
p,q,ρ(Ω, Γ) is compactly embedded in L2

ρ(Ω).

Lemma 3.3 Let all the assumptions in Theorem 2.1 hold. Then for n ≥ j0 + J0, there

exists a un ∈ Sn such that

Q(un, v) =
(
λj0 −

1
n

)
〈un, v〉ρ +

∫
Ω

f(x, un)vρ − G(v), ∀v ∈ Sn. (3.1)

Proof For fixed n (n ≥ j0 + J0) and ∀α = (α1, · · · , αn) ∈ R
n, set u =

n∑
k=1

αkϕk. From

new-VL conditions, we obtain

L(u, u) =
n∑

k=1

λkα2
k, ‖u‖2

ρ =
n∑

k=1

α2
k = |α|2. (3.2)

And from Remark 2.1,

‖u‖2
p,q,ρ = L(u, u) + ‖u‖2

ρ ≤ (λn + 1)‖u‖2
ρ. (3.3)

For m ≥ 2, a positive integer, we put

fm(x, s) =

⎧⎨
⎩

f(x, m), m ≤ s;
f(x, s), −m ≤ s ≤ m;
f(x,−m), s ≤ −m.

(3.4)

Note from (f-2) that |fm(x, s)| ≤ h0(x) + K|m|θ−1 ∀s ∈ R, a.e. x ∈ Ω. Also from h0(x) ∈
Lθ∗

ρ , Hölder inequality, Minkowski inequality and (2.7), we get ∀v ∈ Sn,

∫
Ω

|fm(x, u)vρ| ≤ ‖fm(x, u)‖Lθ∗
ρ
‖v‖Lθ

ρ
≤ Tm‖v‖Lθ

ρ
, (3.5)

where Tm is a positive constant depending on m.
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The remaining proof is separated into two parts. The first part is to prove the claim (3.6)

for fm(x, s). The second part is to get the conclusion by leaving m → ∞ based on (3.6).

Part 1 Fix m (m ≥ 2). We are to show that there exists u∗
n,m such that

Q(u∗
n,m, v) =

(
λj0 −

1
n

)
〈u∗

n,m, v〉ρ +
∫

Ω

fm(x, u∗
n,m)vρ − G(v), ∀v ∈ Sn. (3.6)

For u =
n∑

k=1

αkϕk, we set

Fk(α) = Q(u, ϕk) −
(
λj0 −

1
n

)
〈u, ϕk〉ρ −

∫
Ω

fm(x, u)ϕkρ + G(ϕk), k = 1, · · · , n.

It is clear that
n∑

k=1

Fk(α)αk = I(α) + II(α), where

I(α) = Q(u, u)− Λj0L(u, u) −
∫

Ω

fm(x, u)uρ + G(u), (3.7)

II(α) = Λj0L(u, u) −
(
λj0 −

1
n

)
〈u, u〉ρ. (3.8)

For (3.7), observing the fact that the operator Q is �-related to L, G ∈ [H1
p,q,ρ(Ω, Γ)]′, by

(3.2)–(3.3), (3.5) and Lemma 3.1 we conclude that

lim
|α|→∞

Q(u, u) − Λj0L(u, u)
|α|2 = 0, lim

|α|→∞
| ∫

Ω
fm(x, u)uρ|
|α|2 = 0, lim

|α|→∞
|G(u)|
|α|2 = 0,

and lim
|α|→∞

|I(α)|
|α|2 = 0.

For (3.8), considering Λj0 = λj0
λ†

and λ† ≤ λ1, it is clear that Λj0λk ≥ λj0 (k = 1, · · · , n).

By (3.2), we obtain

II(α) =
n∑

k=1

(
Λj0λk − λj0 +

1
n

)
α2

k ≥ 1
n
|α|2. (3.9)

Consequently,
n∑

k=1

Fk(α)αk ≥ |α|2
2n

, where |α| ≥ s0 (here s0 is a large enough constant). By

virtue of generalized Brouwer’s theorem (see [11]), there exists γn,m = (γ(1)
n,m, · · · , γ

(n)
n,m) such

that Fk(γn,m) = 0, k = 1, · · · , n. Taking u∗
n,m =

n∑
k=1

γ
(k)
n,mϕk, then (3.6) holds.

Part 2 We claim that {‖u∗
n,m‖ρ}∞m=2 (n fixed) is uniformly bounded according to m.

Arguing by contradiction, and without loss of generality, we suppose that

lim
m→∞ ‖u∗

n,m‖ρ = ∞. (3.10)

Taking v = u∗
n,m in (3.6),

Λj0L(u∗
n,m, u∗

n,m) − λj0 〈u∗
n,m, u∗

n,m〉ρ +
1
n
〈u∗

n,m, u∗
n,m〉ρ
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=
∫

Ω

fm(x, u∗
n,m)u∗

n,mρ − G(u∗
n,m) + Λj0L(u∗

n,m, u∗
n,m) −Q(u∗

n,m, u∗
n,m) (3.11)

holds, that is,

n∑
k=1

(Λj0λk − λj0 )|û∗
n,m(k)|2 +

1
n
‖u∗

n,m‖2
ρ

=
∫

Ω

fm(x, u∗
n,m)u∗

n,mρ − G(u∗
n,m) + Λj0L(u∗

n,m, u∗
n,m) −Q(u∗

n,m, u∗
n,m), (3.12)

where û∗
n,m(k) = 〈ϕk, u∗

n,m〉ρ.
On the other hand, using (f -3), for s ≥ m, we have

sfm(x, s) =
s

m
· mf(x, m) ≤ h1(x)|s|, a.e. x ∈ Ω. (3.13)

Similarly we can also obtain the same conclusion, where −m ≤ s ≤ m or s ≤ −m. As a result,

sfm(x, s) ≤ h1(x)|s|, ∀s ∈ R, a.e. x ∈ Ω. (3.14)

(3.12) and (3.14) imply that

1
n
‖u∗

n,m‖2
ρ ≤ ‖h1‖Lθ∗

ρ
‖u∗

n,m‖Lθ
ρ
+ |G(u∗

n,m)|
+ Λj0L(u∗

n,m, u∗
n,m) −Q(u∗

n,m, u∗
n,m). (3.15)

Dividing both sides of (3.15) by ‖u∗
n,m‖2

ρ and leaving m → ∞, we obtain from the fact that Q
is �-related to L, G ∈ [H1

p,q,ρ(Ω, Γ)]′, h1(x) ∈ Lθ∗
ρ (Ω) together with Lemma 3.1 and (3.3) that

1
n ≤ 0. However, n is a positive integer. So we have arrived at a contradiction. (3.10) does not

hold, i.e.,

∃K1 > 0, ‖u∗
n,m‖ρ ≤ K1, ∀m ≥ 2. (3.16)

(3.3) and (3.16) imply that there is a subsequence of {u∗
n,m}∞m=2 (for easy notation, take

the full sequence) and a un ∈ Sn (see [12]) such that

⎧⎪⎨
⎪⎩

lim
m→∞ ‖u∗

n,m − un‖p,q,ρ = 0,

lim
m→∞u∗

n,m(x) = un(x), a.e. x ∈ Ω,

lim
m→∞Diu

∗
n,m(x) = Diun(x), a.e. x ∈ Ω, i = 1, · · · , N.

(3.17)

Therefore from (3.17) with (Q-1)–(Q-5), we obtain

lim
m→∞Q(u∗

n,m, v) = Q(un, v), ∀v ∈ Sn. (3.18)

And recall from Lemma 3.1 that

lim
m→∞

∫
Ω

|u∗
n,m − un|θρ = 0. (3.19)
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Moreover, we can get that there exists W (x) ∈ Lθ
ρ and a subsequence {u∗

n,mj
}∞j=1 ⊂

{u∗
n,m}∞m=2 such that |u∗

n,mj
(x)| ≤ W (x), a.e. x ∈ Ω ∀j.

By virtue of Hölder inequality, (f-1)–(f-2) and Lebesgue-dominated convergence theorem,

we get

lim
j→∞

∫
Ω

fmj (x, u∗
n,mj

)vρ =
∫

Ω

f(x, un)vρ, ∀v ∈ Sn.

Now replacing m by mj in (3.6) and taking the limit as j → ∞ on both sides of the equation,

we consequently obtain that (3.1) holds and Lemma 3.3 is established.

Lemma 3.4 Let all the assumptions in Theorem 2.1 hold. Then the sequence {un} obtained

in Lemma 3.3 is uniformly bounded in H1
p,q,ρ(Ω, Γ).

Based on Lemma 3.3 and �-relationship, for the proofs of Lemma 3.4, one can refer to [7]

or [8].

4 Proof of Theorem 2.1

Since H1
p,q,ρ(Ω, Γ) is a separable Hilbert space, from Lemmas 3.1–3.2, we conclude that

there exists a subsequence of {un}∞n=j0+J0
(for easy notation, we take the full sequence) and a

function u∗ ∈ H1
p,q,ρ(Ω, Γ) with the following properties (see [12]):

lim
n→∞

[
‖un − u∗‖ρ +

∫
Ω

|un − u∗|θρ
]

= 0, (4.1)

∃W ′(x) ∈ L2
ρ(Ω) ∩ Lθ

ρ(Ω), s.t. |un(x)| ≤ W ′(x), a.e. x ∈ Ω, (4.2)

lim
n→∞un(x) = u∗(x), a.e. x ∈ Ω; (4.3)

lim
n→∞〈Diun, v〉pi = 〈Diu

∗, v〉pi , ∀v ∈ L2
pi

, i = 1, · · · , N ; (4.4)

lim
n→∞〈un, v〉q = 〈u∗, v〉q, ∀v ∈ L2

q; (4.5)

lim
n→∞G(un) = G(u∗). (4.6)

We prove the theorem through three steps.

Step 1 We intend to show the following that there exists a subsequence {unj}∞j=1 such that

lim
j→∞

Dunj (x) = Du∗(x), a.e. x ∈ Ω. (4.7)

Before establishing (4.7), we prefer to show the following two facts first.

(1) There exists a subsequence {unj}∞j=1 such that

lim
j→∞

N∑
i=1

p
1
2
i (x)[Ai(x, unj , Dunj ) − Ai(x, unj , Du∗)][Diunj (x) − Diu

∗(x)] = 0 (4.8)

for a.e. x ∈ Ω.
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(2) With {unj}∞j=1 designating the same subsequence as in (1),

{|Dunj(x)|}∞j=1 is pointwise bounded for a.e. x ∈ Ω. (4.9)

Firstly, to show (4.8), we observe from (Q-2), (4.3) and Lebesgue dominated convergence

theorem that

lim
n→∞

∫
Ω

N∑
i=1

|Ai(x, un, Du∗) − Ai(x, u∗, Du∗)|2 = 0. (4.10)

Using (4.4), we obtain

lim
n→∞

∫
Ω

Ai(x, u∗, Du∗)(Diun − Diu
∗)p

1
2
i = 0, i = 1, · · · , N. (4.11)

It follows from Lemma 3.4 , (4.10)–(4.11) that

lim
n→∞

∫
Ω

N∑
i=1

Ai(x, un, Du∗)(Diun − Diu
∗)p

1
2
i = 0, i = 1, · · · , N. (4.12)

In addition, from (4.5) and (Q-5), we have

lim
n→∞

∫
Ω

B0(x)u∗(un − u∗)q = 0. (4.13)

Now if we can show that

lim
n→∞Q(un, un − u∗) = 0, (4.14)

then it will follow from (2.3), (4.12)–(4.13) that

lim
n→∞

∫
Ω

( N∑
i=1

[Ai(x, un, Dun) − Ai(x, un, Du∗)](Diun − Diu
∗)p

1
2
i

+ B0(x)(un − u∗)(un − u∗)q
)

= 0. (4.15)

Observing (Q-4) and (Q-5), we have that the integrand in (4.15) is nonnegative almost every-

where in Ω. Hence the integrand in (4.15) converges to zero in L1(Ω). However, from [13],

we have a subsequence of the integrand converging to zero almost everywhere in Ω. And from

(4.3), B0(x)|un − u∗|2 converges to zero almost everywhere in Ω. We conclude that (4.8) is

indeed true. So it remains to establish (4.14).

Observing u∗ ∈ H1
p,q,ρ, we define a projection Pn : H1

p,q,ρ → Sn, i.e.,

Pnu∗ =
n∑

k=1

û∗(k)ϕk ∈ Sn. (4.16)

From the definition, we get

lim
n→∞ ‖Pnu∗ − u∗‖p,q,ρ = 0. (4.17)
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It is easy to know

Q(un, Pnu∗ − u∗) =
∫

Ω

N∑
i=1

Ai(x, un, Dun)Di(Pnu∗ − u∗)p
1
2
i + 〈B0un, Pnu∗ − u∗〉q. (4.18)

From (Q-2), (Q-5), Lemma 3.4, (4.17)–(4.18), we have

lim
n→∞Q(un, Pnu∗ − u∗) = 0. (4.19)

In view of (4.19), (4.14) will follow once we can show that

lim
n→∞Q(un, un − Pnu∗) = 0. (4.20)

From Lemma 3.3 and (4.16), we obtain

Q(un, un − Pnu∗) =
(
λj0 −

1
n

)
〈un, un − Pnu∗〉ρ

+
∫

Ω

f(x, un)(un − Pnu∗)ρ − G(un − Pnu∗). (4.21)

Observing

〈un, un − Pnu∗〉ρ = 〈un, un − u∗〉ρ + 〈un, u∗ − Pnu∗〉ρ, (4.22)

from (4.1)–(4.2) and (4.17), we see
(
λj0 − 1

n

)〈un, un −Pnu∗〉ρ → 0 as n → ∞. Also from (f -2),∫
Ω

|f(x, un)(un − Pnu∗)ρ| ≤ ‖h0(x)‖Lθ∗
ρ
‖un − Pnu∗‖Lθ

ρ
+ ‖un‖

θ
θ∗
Lθ

ρ
‖un − Pnu∗‖Lθ

ρ
. (4.23)

Recall Lemma 3.1, Lemma 3.4 and (4.17),
∫
Ω f(x, un)(un − Pnu∗)ρ → 0 as n → ∞. It is also

clear from (4.17) that G(un − Pnu∗) → 0 as n → ∞. Therefore (4.20) holds and hence (4.8) is

established.

Secondly, to establish (4.9), set Ω1 to be the set meeting the following three conditions

simultaneously:

(O1) u∗(x), |Du∗(x)|, h∗
j (x), unj (x), Ai(x, unj (x), Dunj (x)) and Ai(x, unj (x), Du∗(x)) are

finite-valued for i = 1, · · · , N and j = 1, · · · ;

(O2) (Q-2) and (Q-3) hold;

(O3) the limits in (4.3) and (4.8) exist.

Then

meas(Ω − Ω1) = 0. (4.24)

Suppose, to the contrary, that {|Dunj (x)|}∞j=1 is not pointwise bounded in Ω1. Then there

exists x0 ∈ Ω1 and a subsequence {|Dunjk
(x0)|}∞k=1 such that

lim
k→∞

|Dunjk
(x0)| = ∞. (4.25)
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Set c5 = min{p1(x0), · · · , pN (x0)}, and then c5 > 0. From (Q-3), we get

N∑
i=1

p
1
2
i (x0)Ai(x0, unjk

, Dunjk
)Diunjk

(x0) ≥ c2c5|Dunjk
(x0)|2. (4.26)

Considering the left side of (4.26), we have

N∑
i=1

p
1
2
i (x0)Ai(x0, unjk

, Dunjk
)Diunjk

(x0)

=
N∑

i=1

p
1
2
i (x0)Ai(x0, unjk

, Dunjk
)Diu

∗(x0)

+
N∑

i=1

p
1
2
i (x0)Ai(x0, unjk

, Du∗)[Diunjk
(x0) − Diu

∗(x0)]

+
N∑

i=1

p
1
2
i (x0)[Ai(x0, unjk

, Dunjk
) − Ai(x0, unjk

, Du∗)][Diunjk
(x0) − Diu

∗(x0)]. (4.27)

Divide both sides of (4.26) by |Dunjk
(x0)| 32 and leave k → ∞. From (4.27), (Q-2), (4.3), (4.8)

and the definition of Ω1, we obtain

0 ≥ c2c5|Dunjk
(x0)| 12 . (4.28)

It is clear that c2c5 > 0. Therefore lim
k→∞

|Dunjk
(x0)| = 0 which contradicts (4.28).

Consequently, {|Dunj(x)|}∞j=1 is pointwise bounded in Ω1. This fact in conjunction with

(4.24) establishes (4.9).

Now we have that (4.8)–(4.9) hold which will imply (4.7). Let Ω2 be the subset of Ω, where

(Q-1), (Q-4), (4.8) and (4.9) hold simultaneously. Consequently,

meas(Ω − Ω2) = 0. (4.29)

Suppose that there exists x0 ∈ Ω2 such that (4.7) does not hold. Hence by (4.9) there exists

a further sequence {Dunjk
(x0)}∞k=1 and a ξ� ∈ R

N with

Du∗(x0) 
= ξ� (4.30)

such that lim
k→∞

Dunjk
(x0) = ξ�. From (4.3), we have

lim
k→∞

N∑
i=1

p
1
2
i (x0){[Ai(x0, unjk

, Dunjk
) − Ai(x0, unjk

, Du∗)][Diunjk
(x0) − Diu

∗(x0)]}

=
N∑

i=1

p
1
2
i (x0){[Ai(x0, u

∗(x0), ξ�) − Ai(x0, u
∗(x0), Du∗(x0))][ξ� − Diu

∗(x0)]}.

Observing x0 ∈ Ω2 and (4.8), the limit on the left side of (4.31) is zero. But from (Q-4), the

right side of (4.31) is strictly greater than zero, which has led to a contradiction. Hence (4.7)
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holds at every point in Ω2, and consequently by (4.26), it holds almost everywhere in Ω. So

the statement (4.7) is fully established.

Step 2 We proceed with the proof and let vJ ∈ SJ , where J ≥ j0 + J0 is a fixed but

arbitrary positive integer. From (4.3), (4.7) and (Q-1) we can get

lim
j→∞

|Ai(x, unj , Dunj ) − Ai(x, u∗, Du∗)| = 0, a.e. x ∈ Ω. (4.31)

Recalling Lemma 3.4, (Q-2) and by virtue of the Lebesgue-dominated convergence theorem, we

obtain

lim
j→∞

∫
Ω

|Ai(x, unj , Dunj) − Ai(x, u∗, Du∗)|2 = 0. (4.32)

Also from DivJ ∈ L2
pi

, and by applying Schwarz’s inequality, we have

lim
j→∞

∫
Ω

[Ai(x, unj , Dunj ) − Ai(x, u∗, Du∗)]DivJp
1
2
i = 0. (4.33)

Observing (4.5) and (4.34), we get

lim
j→∞

Q(unj , vJ ) = Q(u∗, vJ). (4.34)

From (f-2), (4.1) and (4.2), using the Lebesgue-dominated convergence theorem, we obtain

lim
j→∞

∫
Ω

f(x, unj )vJρ =
∫

Ω

f(x, u∗)vJρ. (4.35)

Replacing v by vJ , n by nj in (3.1) and leaving j → ∞, from (4.1), (4.6), (4.35)–(4.36), we

have

Q(u∗, vJ) = λj0 〈u∗, vJ〉ρ +
∫

Ω

f(x, u∗)vJρ − G(vJ ). (4.36)

Step 3 Given v ∈ H1
p,q,ρ(Ω, Γ), from the definition of projection Pn, we see

PJv =
J∑

k=1

v̂(k)ϕk ∈ SJ , (4.37)

where v̂(k) = 〈ϕk, v〉ρ. It is easy to get lim
J→∞

‖PJv − v‖p,q,ρ = 0. As a result, there hold

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

lim
J→∞

Q(u∗, PJv) = Q(u∗, v),

lim
J→∞

〈u∗, PJv〉ρ = 〈u∗, v〉ρ,
lim

J→∞
∫
Ω

f(x, u∗)PJvρ =
∫
Ω

f(x, u∗)vρ,

lim
J→∞

G(PJv) = G(v).

(4.38)

Replacing vJ by PJv in (4.36), passing to the limit as J → ∞ on both sides, and using

(4.38), we can obtain

Q(u∗, v) = λj0〈u∗, v〉ρ +
∫

Ω

f(x, u∗)vρ − G(v), ∀v ∈ H1
p,q,ρ(Ω, Γ).

Hence the proof of Theorem 2.1 is complete.
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5 An Example for �-related

Now we give an example of Q which is �-related to L.

Take N = 1, Ω = (−1, 1), Γ = the empty set, p(s) = 1 − s2, ρ(s) = 1, q(s) = (1 − s2)−1.

From the definition of L, we get

Lu = −D1(1 − s2)D1u + (1 − s2)−1u. (5.1)

Then

LΦn,1(s) = n(n + 1)Φn,1(s), n = 1, 2, · · · , (5.2)

where Φn,1(s) is the first-order associated Legendre function of degree n (see [14]). And

{Φn,1(s)
an

}∞j=1 properly normalized forms a CONS on Ω with respect to the weight ρ(s), where

a2
n = 2n(n+1)

2n+1 . Since Ω is 1-dimensional, (Ω, Γ) is a new-VL region.

Set F (t) = t2

1+t2 . F (t) is a real-valued function with the following properties:

(i) F (t) ∈ C0([0,∞)) is nondecreasing and positive; (ii) lim
t→∞ t[1 − F (t)] = 0.

Given j0, observing 0 < λ† ≤ λ1, we take λ† = 1 and Λj0 = n(n + 1), n = 1, 2, · · · . Then

the Ai(x, s, ξ) of Q in (1.2) are defined to be

A1(x, s, ξ) =
Λj0

2
[1 + F (|ξ1|)]p 1

2 ξ1, B0(x) = Λj0 .

With this definition, it is clear that Q meets (Q-1)–(Q-5) and that

Qu = −Λj0

2
D1[1 + F (|D1u|)]pD1u + Λj0qu. (5.3)

As a consequence,

Q(u, v) − Λj0L(u, v) =
Λj0

2

∫
Ω

p[F (|D1u|) − 1]D1uD1v.

Now it follows from (ii) that there is a constant K3 such that |1 − F (t)|t ≤ K3, ∀t ∈ (0,∞).

Consequently, if ‖v‖p,q,ρ ≤ 1, we obtain that

|Q(u, v) − Λj0L(u, v)| ≤ K3Λj0

2

( ∫
Ω

p
) 1

2 ≤ K4, ∀u ∈ H1
p,q,ρ,

where K4 is a constant.

That Q is �-related to L then follows immediately from this last inequality.
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