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Abstract Using the complete lift on tangent bundles, the authors construct the complete
lift on cotangent bundles of tensor fields with the aid of a musical isomorphism. In this
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1 Introduction

Let (M, g) be a smooth pseudo-Riemannian manifold of dimension n. We denote by

TM =
⋃

x∈Mn

TxM and T ∗M =
⋃

x∈Mn

T ∗
x M the tangent and cotangent bundles over M with

local coordinates (xi, xi) = (xi, yi) and (xi, x̃i) = (xi, pi), i = 1, · · · , n; i = n + 1, · · · , 2n,

respectively, where yx = yi ∂
∂xi ∈ TxM and px = pidxi ∈ T ∗

xM, ∀x ∈ M .

A very important feature of any pseudo-Riemannian metric g is that it provides musical

isomorphisms g� : TM → T ∗M and g� : T ∗M → TM between the tangent and cotangent

bundles. Some properties of geometric structures on cotangent bundles with respect to the

musical isomorphisms are proved in [1–5].

The musical isomorphisms g� and g� are expressed by

g� : xI = (xi, xi) = (xi, yi) → x̃K = (xk, x̃k) = (δk
i xi, pk = gkiy

i)

and

g� : x̃K = (xk, x̃k) = (xk, pk) → xI = (xi, xi) = (δi
kxk, yi = gikpk)

with respect to the local coordinates, respectively. The Jacobian matrices of g� and g� are given

by

(g�
∗) = (ÃK

I ) =
(∂x̃K

∂xI

)
=
(

δk
i 0

ys∂igks gki

)
(1.1)
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and

(g�
∗) = (AI

K) =
( ∂xI

∂x̃K

)
=
(

δi
k 0

ps∂kgis gik

)
, (1.2)

respectively, where δ is the Kronecker delta.

We denote by �p
q(M) the set of all differentiable tensor fields of type (p, q) on M . Let

CXT ∈ �1
0(TM), CϕT ∈ �1

1(TM) and CST ∈ �1
2(TM) be complete lifts of tensor fields X ∈

�1
0(M), ϕ ∈ �1

1(M) and S ∈ �1
2(M) to the tangent bundle TM .

The aim of this paper is to study the lift properties of cotangent bundles of Riemannian

manifolds. The results are significant for a better understanding of the geometry of the cotan-

gent bundle of a Riemannian manifold. In this paper, we transfer via the differential g�∗ the

complete lifts CXT ∈ �1
0(TM), CϕT ∈ �1

1(TM) and CST ∈ �1
2(TM) from the tangent bundle

TM to the cotangent bundle T ∗M. The transferred lifts g�
∗

CXT , g�
∗

CϕT and g�
∗

CST are

compared with the complete lifts CXT∗ ∈ �1
0(T

∗M), CϕT∗ ∈ �1
1(T

∗M) and CST∗ ∈ �1
2(T

∗M)

in the cotangent bundle and we show that (a) g�∗CXT =CXT∗ if and only if the vector field X

is a Killing vector field, (b) g�
∗
CϕT =CϕT∗ if and only if the triple (M, g, ϕ), ϕ2 = −IdM is

an anti-Kähler manifold, (c) g�
∗
CST =CST∗ if and only if the metric g satisfies the Yano-Ako

equations. Also we give a new interpretation of the Riemannian extension ∇g ∈ �0
2(T ∗M), i.e.,

∇g should be considered as the pullback: ∇g = (g�)∗ Cg, where Cg is the complete lift of g to

the tangent bundle TM .

2 Transfer of Complete Lifts of Vector Fields

Let X = X i∂i be the local expression in U ⊂ M of a vector field X ∈ �1
0(M). Then the

complete lift CXT of X to the tangent bundle TM is given by

CXT = X i∂i + ys∂sX
i∂i (2.1)

with respect to the natural frame {∂i, ∂i
}.

Using (1.1) and (2.1), we have

g�
∗
CXT =

(
δk
i 0

ys ∂gks

∂xi gki

)(
X i

ys∂sX
i

)
=
(

Xk

X iys∂igks + gkiy
s∂sX

i

)
=
(

Xk

ys((LXg)sk − (∂kX i)gis − (∂sX
i)gki) + gikys∂sX

i

)
=
(

Xk

ys(LXg)sk − pi(∂kX i)

)
, (2.2)

where LX is the Lie derivation of g with respect to the vector field X :

(LXg)sk = X i∂igsk + (∂sX
i)gik + (∂kX i)gsi.
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In a manifold (M, g), a vector field X is called a Killing vector field if LXg = 0. It is well

known that the complete lift CXT∗ of X to the cotangent bundle T ∗M is given by

CXT∗ = Xk∂k − ps∂kXs∂k .

From (2.2) we find

g�
∗
CXT =C XT∗ + γ(LXg) ,

where γ(LXg) is defined by

γ(LXg) =
(

0
ys(LXg)sk

)
.

Thus we have the following theorem.

Theorem 2.1 Let (M, g) be a pseudo-Riemannian manifold, and let CXT and CXT∗ be

complete lifts of a vector field X to the tangent and cotangent bundles, respectively. Then the

differential (pushforward) of CXT by g� coincides with CXT∗ , i.e.,

g�
∗
CXT =CXT∗

if and only if X is a Killing vector field.

Let X and Y be Killing vector fields on M . Then we have

L[X,Y ]g = [LX , LY ]g = LX ◦ LY g − LY ◦ LXg = 0,

i.e., [X, Y ] is a Killing vector field. Since C [X, Y ]T = [CXT , CYT ] and C [X, Y ]T∗ = [CXT∗ , CYT∗ ],

from Theorem 2.1 we have the following result.

Corollary 2.1 If X and Y are Killing vector fields on M , then

g�
∗[

CXT , CYT ] = [CXT∗ , CYT∗ ] ,

where g�
∗ is a differential (pushforward) of the musical isomorphism g�.

3 Transfer of Complete Lifts of Almost Complex Structures

Let (M, ϕ) be a 2n-dimensional, almost complex manifold, where ϕ (ϕ2 = −I) denotes its

almost complex structure. A semi-Riemannian metric g of the neutral signature (n, n) is an

anti-Hermitian (also known as a Norden) metric if

g(ϕX, Y ) = g(X, ϕY )

for any X, Y ∈ �1
0(M). An almost complex manifold (M, ϕ) with an anti-Hermitian metric is

referred to as an almost anti-Hermitian manifold. Structures of this kind have also been studied

under the name: Almost complex structures with pure (or B-)metric. An anti-Kähler (Kähler-

Norden) manifold can be defined as a triple (M, g, ϕ) which consists of a smooth manifold

M endowed with an almost complex structure ϕ and an anti-Hermitian metric g such that
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∇ϕ = 0, where ∇ is the Levi-Civita connection of g. It is well known that the condition

∇ϕ = 0 is equivalent to C-holomorphicity (analyticity) of the anti-Hermitian metric g (see [6]),

i.e.,

(Φϕg)(X, Y, Z) = (LϕXg − LXG)(Y, Z) = 0

for any X, Y, Z ∈ �1
0(M), where Φϕg ∈ �0

3(M) and G(Y, Z) = (g ◦ ϕ)(Y, Z) = g(ϕY, Z) is the

twin anti-Hermitian metric. It is a remarkable fact that (M, g, ϕ) is anti-Kähler if and only if

the twin anti-Hermitian structure (M, G, ϕ) is anti-Kähler. This is of special significance for

anti-Kähler metrics since in such case g and G share the same Levi-Civita connection.

Let ϕ = ϕi
j ∂i ⊗ dxj be the local expression in U ⊂ M of an almost complex strucure ϕ.

Then the complete lift CϕT of ϕ to the tangent bundle TM is given by (see [8, p. 21])

CϕT = (CϕI
J ) =

(
ϕi

j 0
ys∂sϕ

i
j ϕi

j

)
(3.1)

with respect to the induced coordinates (xi, xi) = (xi, yi) in TM . It is well known that CϕT

defines an almost complex structure on TM , if and only if so does ϕ on M .

Using (1.1)–(1.2) and (3.1), we have

g�
∗
CϕT = (ϕ̃ J

L) = (AJ
I Ã K

L
CϕI

K)

=
(

ϕj
l 0

ys(∂igjs)ϕi
l + gjiy

s∂sϕ
i
l + gjips(∂lg

ks)ϕi
k gjig

klϕi
k

)
. (3.2)

Since g = (gij) and g−1 = (gij) are pure tensor fields with respect to ϕ, we find

gjig
klϕi

k = gjig
ikϕl

k = δ
k

j ϕl
k (3.3)

and

ys(∂igjs)ϕi
l + gjiy

s∂sϕ
i
l + gjips(∂lg

ks)ϕi
k

= ys(Φlgjs + ∂l(g ◦ ϕ)js − gis∂jϕ
i
l) + gjips(∂lg

ks)ϕi
k

= ysΦlgsj + ys∂l(g ◦ ϕ)js − pi∂jϕ
i
l + gjips(∂lg

ks)ϕi
k

= ysΦlgsj − pi∂jϕ
i
l + ys∂l(g ◦ ϕ)js + gjips(∂lg

ks)ϕi
k

= ysΦlgsj − pi∂jϕ
i
l + ys∂l(gsmϕm

j ) + gjips(∂lg
ks)ϕi

k

= ysΦlgsj − pi∂jϕ
i
l + ys(∂lgsm)ϕm

j + ys(∂lϕ
m
j )gsm + gjmps(∂lg

ks)ϕm
k

= ysΦlgsj − pi∂jϕ
i
l + ys(∂lgsm)ϕm

j + ys(∂lϕ
m
j )gsm + gmkps(∂lg

ks)ϕm
j

= ysΦlgsj − pi∂jϕ
i
l + ys(∂lgsm)ϕm

j + ys(∂lϕ
m
j )gsm − gksps(∂lgmk)ϕm

j

= ysΦlgsj − pi∂jϕ
i
l + ys(∂lgsm)ϕm

j + pm(∂lϕ
m
j ) − yk(∂lgmk)ϕm

j

= ysΦlgsj + ps(∂lϕ
s
j − ∂jϕ

s
l ), (3.4)

where

Φkgij = ϕm
k ∂mgij − ∂k(g ◦ ϕ)ij + gmj∂iϕ

m
k + gim∂jϕ

m
k .
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Substituting (3.3)–(3.4) into (3.2), we obtain

g�
∗
CϕT =

(
ϕj

l 0
ysΦlgsj + ps(∂lϕ

s
j − ∂jϕ

s
l ) ϕl

j

)
.

It is well known that the complete lift CϕT∗ of ϕ ∈ �1
0(M) to the cotangent bundle is given by

(see [8, p. 242])

CϕT∗ =
(

ϕj
l 0

ps(∂lϕ
s
j − ∂jϕ

s
l ) ϕl

j

)
with respect to the induced coordinates in T ∗M . Thus we obtain

g�
∗
CϕT =CϕT∗ + γ(Φϕg),

where

γ(Φϕg) =
(

0 0
ysΦlgsj 0

)
.

From here, we have the following theorem.

Theorem 3.1 Let (M, g, ϕ) be an almost anti-Hermitian manifold, and let CϕT and CϕT∗

be complete lifts of an almost complex structure ϕ to the tangent and cotangent bundles, respec-

tively. Then the differential of CϕT by g� coincides with CϕT∗ , i.e., g�∗CϕT =CϕT∗ if and only

if (M, g, ϕ) is an anti-Kähler (Φϕg = 0) manifold.

4 Transfer of Complete Lifts of the Vector-Valued 2-Form

Let S be a vector-valued 2-form on M . A semi-Riemannian metric g is called pure with

respect to S if

g(SY X1, X2) = g(X1, SY X2)

for any X1, X2, Y ∈ �1
0(M), where SY denotes a tensor field of type (1, 1) such that

SY (Z) = S(Y, Z) = −S(Z, Y ) = −SZ(Y )

for any Y, Z ∈ �1
0(M) . The condition of purity of g may be expressed in terms of the local

components as follows:

gmi2S
m
i1l = gi1mSm

i2l .

We now define the Yano-Ako operator

ΦS :�0
2(M) → �0

4(M)

associated with S and applied to a pure tensor field g by (see [6–7])

(ΦSg)(X1, X2, Y1, Y2) = (LS(X1,X2)g)(Y1, Y2) − (LX1(g ◦ S))(Y1, X2, Y2)

− (LX2(g ◦ S))(X1, Y1, Y2) + (g ◦ S)([X1, X2], Y1, Y2),
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where (g ◦ S)(X, Y1, Y2) = g(S(X, Y1), Y2). The Yano-Ako operator has the following compo-

nents with respect to the natural coordinate system:

(ΦSg)jihs = Sm
ji ∂mghs − (∂jS

m
hi)gms − (∂jgms)Sm

hi − (∂iS
m
jh)gms

− (∂igms)Sm
jh + (∂hSm

ji )gms + (∂sS
m
ji )ghm. (4.1)

The non-zero components of the complete lift CST of S to the tangent bundle TM are given

by (see [8, p. 22])
CSh

ji = CSh
j i

= CSh
j i

= Sh
ji,

CSh
ji = xm∂mSh

ji .

Using (1.1) and (1.2), we can easily verify that

g�
∗
CST = (S̃H

JI) = (AH
M ÃK

J ÃP
I

CSM
KP ),

and I, J, · · · = 1, · · · , 2n has non-zero components of the form

S̃ h
ji = δh

mδk
j δt

i
CSm

kt = Sh
ji,

S̃ h
j i

= ghmgkjδt
i
CSm

k t
= gmkgkjSm

hi = δj
mSm

hi = Sj
hi,

S̃ h
j i

= ghmδk
j gtiCSm

k t = gmtg
tiSm

jh = δi
mSm

jh = Si
jh,

S̃h
ji = ys(∂mghs)δk

j δt
i
CSm

kt + ghmδk
j δt

i
CSm

kt + ghmps(∂jg
ks)CSm

kt
+ ghmδk

j ps(∂ig
ts)CSm

kt

= ys(∂mghs)δk
j δt

iS
m
kt + ghmδk

j δt
iy

s∂sS
m
kt + ghmps(∂jg

ks)Sm
kt + ghmδk

j ps(∂ig
ts)Sm

kt

= ys(∂mghs)Sm
ji + ghmys∂sS

m
ji + ghmps(∂jg

ks)Sm
ki + ghmps(∂ig

ts)Sm
jt

= ys(ΦSg)jihs + ys(∂jS
m
hi)gms + ys(∂jgms)Sm

hi + ys(∂iS
m
jh)gms

+ ys(∂igms)Sm
jh − ys(∂hSm

ji )gms − yk(∂jgkm)Sm
hi − yt(∂igtm)Sm

jh

= ys(ΦSg)jihs + ys(∂jS
m
hi)gms + ys(∂iS

m
jh)gms − ys(∂hSm

ji )gms

= ys(ΦSg)jihs − pm(∂jS
m
ih + ∂iS

m
hj + ∂hSm

ji ),

i.e., the transfer g�
∗
CST coincides with the complete lift CST∗ of the vector-valued 2-form S ∈

∧2(M) to the cotangent bundle if and only if

(ΦSg)jihs = 0.

Thus we have the following theorem.

Theorem 4.1 Let g be a pure pseudo-Riemanian metric with respect to the vector-valued

2-form S ∈ ∧2(M), and let CST and CST∗ be complete lifts of S to the tangent and cotangent

bundles, respectively. Then

g�
∗
CST =CST∗

if and only if g satisfies the following Yano-Ako equation:

(ΦSg)jihs = 0 ,

where ΦSg is the operator defined by (4.1).
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5 Transfer of Complete Lifts of Metrics

Let Cg be a complete lift of a pseudo-Riemannian metric g to TM with components

Cg = (CgIJ) =
(

ys∂sgij gij

gij 0

)
. (5.1)

Using (1.2) and (5.1) we see that the pullback of Cg by g� is the (0, 2)-tensor field (g�)∗ Cg on

T ∗M and has components

(((g�)∗ Cg)KL) = (AI
KAJ

L
CgIJ)

=

(
Ai

kAj
l
Cgi j + Ai

kAj
l
Cgi j + Ai

kAj
l
Cgi j Ai

kAj

l
Cgi j

Ai
k
Aj

l
Cgi j 0

)

=
(

ys∂sgkl + ps((∂kgis)gi l + (∂lg
js)gk j) δl

k

δk
l 0

)
=
(

ptg
st∂sgkl − ps(gis∂kgi l + gjs∂lgk j) δl

k

δk
l 0

)
=
(−psg

ts(∂lgtk + ∂kglt − ∂tgkl) δl
k

δk
l 0

)
=
(−2psΓs

kl δl
k

δk
l 0

)
. (5.2)

On the other hand, a new pseudo-Riemannian metric ∇g ∈ �0
2(T ∗M) on T ∗M is defined by the

equation (see [8, p. 268])
∇g(CX, CY ) = −γ(∇XY + ∇Y X)

for any X, Y ∈ �1
0(M), where γ(∇XY + ∇Y X) is a function in π−1(U) ⊂ T ∗M with a local

expression

γ(∇XY + ∇Y X) = ph(X i∇iY
h + Y i∇iX

h),

and is called a Riemannian extension of the Levi-Civita connection ∇g to T ∗M . The Riemannian

extension ∇g has components of the form

∇g = (∇gIJ) =
(−2pmΓm

ij δj
i

δi
j 0

)
(5.3)

with respect to the natural frame {∂i, ∂ı}. Thus, from (5.2) and (5.3) we obtain (g�)∗ Cg = ∇g,

i.e., we have the following theorem.

Theorem 5.1 The Riemannian extension ∇g ∈ �0
2(T

∗M) is a pullback of the complete lift
Cg ∈ �0

2(TM).
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