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Abstract In this paper, the author considers a class of bounded pseudoconvex domains,
i.e., the generalized Cartan-Hartogs domains Ω(µ, m). The first result is that the natu-
ral Kähler metric gΩ(µ,m) of Ω(µ, m) is extremal if and only if its scalar curvature is a
constant. The second result is that the Bergman metric, the Kähler-Einstein metric, the
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1 Introduction

In order to find the canonical representant of a given Kähler class [ω] of a complex compact
Kähler manifold (M, J), Calabi made a search in [3–4]. He introduced the notion of the extremal
metric defined as the minimizer of the L2-norm of the Ricci tensor. This notion is one of the
generalizations of the Kähler-Einstein metric. Let sg be the scalar curvature of the Kähler
metric g. He proved that g is an extremal metric if and only if ∇sg is a holomorphic vector
field. From the Euler-Lagrange equation for sg, the metrics with constant scalar curvatures,
in particular the Kähler-Einstein metrics, are extremal. He also proved that some extremal
metrics with non-constant scalar curvatures do exist.

The existence and uniqueness of the extremal metrics in some given Kähler classes have been
studied (see [7, 13, 18]). The important relationship between the existence of extremal metrics
and various stability notions of the corresponding polarized manifolds has also been deeply
investigated (see [2, 11–12, 19–22, 24]). However, a complete understanding of the existence
theory for extremal metrics is still missing. One can see some recent progress on the study of
Calabi’s extremal Kähler metrics in [23].

In general, the problem of finding extremal metrics is quite natural but difficult (see [27]).
On a complete noncompact smooth surface, Chang [6] proved the existence of extremal metrics.
On a strongly pseudoconvex Hartogs domain, Loi and Zedda [16] proved that the only extremal
metric is the hyperbolic metric. On Cartan-Hartogs domains endowed with their natural Kähler
metrics, Zedda [29] proved that they are extremal if and only if they are Kähler-Einstein. In
this paper, we extend Zedda’s result to (Ω(μ, m), gΩ(μ,m)), i.e., the generalized Cartan-Hartogs
domain endowed with a natural Kähler metric gΩ(μ,m), where all elements of the vector μ ∈ R
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are positive (see the definition in Section 3). This domain is a Hartogs domain over the product
of irreducible bounded symmetric domains. In particular, Ω(μ, 1) is exactly the Cartan-Hartogs
domain introduced by Yin, Roos [26]. The first result of the paper is the following two theorems.

Theorem 1.1 Let Ω(μ, m) ⊂ Cn be the generalized Cartan-Hartogs domain given by (3.1).
Then the Kähler metric gΩ(μ,m) in (3.2) is extremal if and only if its scalar curvature is a

constant, i.e., μ = (μ1, μ2, · · · , μm) satisfies the equation
m∑

i=1

(
n − γi

μi

)
di = 0.

Theorem 1.2 The metric gΩ(μ,m) in (3.2) is Kähler-Einstein if and only if the parameter
μ satisfies μi = γi

n for i = 1, 2, · · · , m.

As we know, the Bergman metric, the Kähler-Einstein metric, the Carathéodary metric, and
the Koboyashi metric are four classical invariant metrics. It is interesting to study the compar-
ison theorem among them. For the holomorphic homogeneous regular manifolds (also called
the uniformly squeezing domains) introduced by Liu, Sun, Yau and Yeung independently, the
four classical invariant metrics on a homogenous regular domain are equivalent (see [15, 28]).
It is known that bounded homogeneous domains, bounded strongly convex domains, bounded
domains which cover a compact Kähler manifold, Teichmüller spaces Tg,n of hyperbolic Rie-
mann surfaces of genus g with n punctures, strongly pseudoconvex domains with C2 boundary,
Cartan-Hartogs domains, and bounded convex domains are such domains (see [10, 14–15, 28]).
In this paper, we prove that Ω(μ, m) is also holomorphic homogeneous regular (with the uniform
squeezing property). This implies our second result Theorem 4.2.

This paper is organized as follows. We start by recalling some notions and results for
Cartan domains and holomorphic homogeneous regular domains (uniformly squeezing domains)
in Section 2. By investigating the geometry of (Ω(μ, m), gΩ(μ,m)), we obtain Theorems 1.1–1.2
in Section 3. Finally, we prove that Ω(μ, m) is a holomorphic homogeneous regular domain in
Section 4, which implies that the four classical metrics are equivalent.

2 Preliminaries

2.1 Cartan domains

In this section, we recall some results of the irreducible bounded symmetric domains which
have been completely classified up to a biholomorphic isomorphism due to Cartan [5].

Let Mm,n be the space of m × n complex matrices, I be the identity matrix, z be the
conjugate matrix of z, and zt be the transposed matrix of z. If a square matrix A is positive
definite, then we denote it by A > 0. The list of irreducible bounded symmetric domains and
the corresponding generic norms is the following (see [17, Chapter 4]):

Type I (1 ≤ m ≤ n): DI = {z ∈ Mm,n(C) : I − zzt > 0}, N(z, ζ) = det(I − zζ
t
).

Type II (m = n ≥ 5): DII = {z ∈ DI : z = −zt}, N(z, ζ) = det(I + zζ).
Type III (m = n ≥ 2): DIII = {z ∈ DI : z = zt}, N(z, ζ) = det(I − zζ).
Type IV (m ≥ 5): DIV = {z ∈ Cm : 1 − 2q(z, z) + |q(z, z)|2 > 0, |q(z, z)| < 1}, N(z, ζ) =

1 − q(z, ζ) + q(z, z)q(ζ, ζ), where q(z, ζ) =
m∑

j=1

zjζj .

Type V: DV =
{
z ∈ M2,1(OC) : 1− (z | z)+ (z� | z�) > 0, 2− (z | z) > 0

}
, N(z, ζ) = 1− (z |

ζ) + (z� | ζ�).
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Type VI: DVI =
{
z ∈ M3,3(OC) : 1 − (z | z) + (z� | z�) − | det z|2 > 0, 3 − 2(z | z) + (z� |

z�) > 0, 3 − (z | z) > 0
}
, N(z, ζ) = 1 − (z | ζ) + (z� | ζ�) − det zdet ζ.

Here OC = C ⊗ O is complex 8 dimensional Cayley algebra. M3,3(OC) is the space of 3 × 3
matrices with entries in the space OC of octonions over C, which are Hermitian with respect to
the Cayley conjugation. z� is the adjoint matrix in M3,3(OC), (z | ζ) is the standard Hermitian
product in M3,3(OC), and M2,1(OC) is a subspace of M3,3(OC).

The domains of types I–IV are classical, while DV and DVI are the exceptional 16 and 27
dimensional domains. These domains are also called Cartan domains (also see the details in [1,
Section 2]). The genus γ, the rank r, and the numerical invariants a and b for an irreducible
bounded symmetric domain D have the following relation:

γ = (r − 1)a + b + 2.

The parameters of those domains are given in Table 1.

Table 1 Parameters of Cartan domains

Type Dimension d Rank r a b Genus γ
DI (1 � m � n) mn m 0 or 2 n − m m + n

DII (m � 5) m(m−1)
2 [m

2 ] 4 0 or 2 2(m − 1)
DIII (m � 2) m(m+1)

2 m 1 0 m + 1
DIV (m � 4) m 2 m − 2 0 m
DV 16 2 6 4 12
DVI 27 3 8 0 18

The connection between the generic norm N(z, z) and the Bergman kernel K(z, z) of the
bounded symmetric domain D is

V (D)K(z, z) = N(z, z)−γ, (2.1)

where V (D) is the volume of D. Let gD be the Bergman metric, and then

det gD = γdN(z, z)−γ (2.2)

(see (13) in [25]).
In the following, we study the derivative of the generic norm at zero. Let z = (z1, z2, · · · , zd)

be the coordinate of the Cartan domain D ⊂ Cd. Since the Cartan domain is a circular domain
with its center at 0, we have

N(z, 0) ≡ 1. (2.3)

It turns out that

∂N(z, z)
∂zα

∣∣∣
z=0

=
∂N(z, z)

∂zα

∣∣∣
z=0

= 0, (2.4)

∂2N(z, z)
∂zα∂zβ

∣∣∣
z=0

=
∂2N(z, z)
∂zα∂zβ

∣∣∣
z=0

= 0 (2.5)

for 1 ≤ α, β ≤ d. Since the Bergman metric

gD =
(∂2 log K(z, z)

∂zα∂zβ

)
= −γ

(∂2N(z, z)
∂zα∂zβ

)
, (2.6)
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noticing that gD|z=0 = γI(d) (see [17]), we have(∂2N(z, z)
∂zα∂zβ

)∣∣∣
z=0

= −I(d),

where I(d) is the d × d identity matrix. Let zα = xα +
√−1yα, and then

∂

∂xα
=

∂

∂zα
+

∂

∂zα
,

∂

∂yα
=

√−1
( ∂

∂zα
− ∂

∂zα

)
.

It follows that the real Hessian of the general norm N at the origin is

Hess(N)(0, 0) = −2I(2d). (2.7)

2.2 Squeezing function

The notion of the squeezing function introduced by Deng, Guan, and Zhang is useful for
studying the geometric and analytic properties of bounded domains (see [9]). In this section,
we will recall some properties of the squeezing function which will be used in Section 4.

Definition 2.1 (see [9]) Let D be a bounded domain in Cn. For z ∈ D and an (open)
holomorphic embedding f : D → Bn with f(z) = 0, define

sD(z, f) = sup{r | Bn(0, r) ⊂ f(D)},
and the squeezing number sD(z) of D at z is defined as

sD(z) = sup
f
{sD(z, f)},

where the supremum is taken over all holomorphic embeddings f : D → Bn with f(z) = 0, Bn

is the unit ball in C
n, and Bn(0, r) is the ball in C

n with center 0 and radius r. The function
sD is called the squeezing function of D.

The definition shows that the holomorphic homogenous regular domain is a bounded domain
whose squeezing function is bounded below by a positive constant and the squeezing function
is invariant under the biholomorphic transformation. From [9], we know that the squeezing
function is continuous. Hence, the boundary behavior of a squeezing function is important for
studying its boundedness.

Definition 2.2 (see [10]) A point p is called a globally strongly convex boundary point of
D if ∂D is C2 smooth and strongly convex at p, and D∩Tp∂D = p, where Tp∂D is the tangent
hyperplane of ∂D at p.

Theorem 2.1 (see [10]) Let D ⊂ Cn be a bounded domain. Assume that p ∈ ∂D is a
globally strongly convex boundary point of D. Then

lim
z→p

sD(z) = 1.

By this theorem, if the boundedness of the squeezing function of a bounded domain depends
on its globally strongly convex boundary points, then we know that it is a holomorphic homo-
geneous regular domain immediately, for example, bounded strongly pseudoconvex domains
with C2 smooth boundaries and Cartan-Hartogs domains. In Section 4, we will show that the
generalized Cartan-Hartogs domain has the similar property.
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3 The Geometry of (Ω(µ, m), gΩ(µ,m))

Let D×� = D1×D2×· · ·×Dm×� be the product of finite Cartan domains Di ⊂ Cdi and
the disc � ⊂ C. The coordinates of Di and � are denoted by zi = (zi1, zi2, · · · , zidi) in C

di and

ξ in C respectively. Set d =
m∑

i=1

di and write (z, ξ) := (z1, z2, · · · , zm, ξ) ∈ Cd1 × · · · × Cdm × C.

The generalized Cartan-Hartogs domain Ω(μ, m) associated to D is defined to be

Ω(μ, m) =
{

(z, ξ) ∈ D ×� : |ξ|2 <

m∏
i=1

Nui

i (zi, zi)
}

, (3.1)

where m is a positive integer, μ is an m-vector with the positive real numbers μi as its i-element
and Ni(zi, wi) is the generic norm of Di with the dimension n = d + 1.

In [25], Wang and Hao have computed the explicit form of the uniquely complete Kähler-
Einstein metric in the case that μ =

(
γ1
n , · · · , γm

n

)
. The Kähler potential is

Φ(z, ξ) = − log
( m∏

i=1

Nμi

i (zi, zi) − |ξ|2
)
.

In this section, we consider the domain Ω(μ, m) equipped with a natural Kähler metric gΩ(μ,m),
i.e., in the neighbourhood of the origin, the Kähler form associated to gΩ(μ,m) is

ω(μ, m) = −
√−1

2
∂∂ log Φ(z, ξ), (3.2)

where the Kähler potential

Φ(z, ξ) = − log
( m∏

i=1

Nμi

i (zi, zi) − |ξ|2
)
.

By (2.1), we know Φ is a C∞ strictly plurisubharmonic function on Ω(μ, m). So gΩ(μ,m) is
a Kähler metric. Actually, it is just the natural complete Kähler metric given by a defining
function of the domain. This Kähler metric was constructed by Cheng and Yau on the strictly
pseudoconvex domain with Ck, k ≥ 5 boundary in Cn firstly (see [8]). Now, we will describe
the case when (Ω(μ, m), gΩ(μ,m)) is a complete extremal Kähler manifold.

Let gΩ(μ,m) also denote its metric matrix, i.e.,

gΩ(μ,m) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
g
Ω(μ,m)

jα,kβ
g
Ω(μ,m)
jα,n

g
Ω(μ,m)

n,kβ
g
Ω(μ,m)
n,n

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (3.3)

where

g
Ω(μ,m)

jα,kβ
=

∂2Φ(z, ξ)
∂zjα∂zkβ

, g
Ω(μ,m)
jα,n =

∂2Φ(z, ξ)
∂zjα∂ξ

, g
Ω(μ,m)

n,kβ
=

∂2Φ(z, ξ)
∂ξ∂zkβ

.

Lemma 3.1 The metric gΩ(μ,m) satisfies the following equation:

det(gΩ(μ,m)) =
1

(H − |ξ|2)n+1

m∏
i=1

udi

i Ni(zi, zi)nμi−γi , (3.4)
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where H =
m∏

i=1

Nμi

i (zi, zi).

Proof For convenient, we define

Hjα :=
∂H

∂zjα
, Hjα,kβ :=

∂2H

∂zjα∂zkβ

for 1 ≤ j, k ≤ m. By a straightforward computation, the metric

gΩ(μ,m) =
1

(H − |ξ|2)2

⎛⎜⎜⎜⎜⎝
HjαHkβ − Hjα,kβ(H − |ξ|2) −Hjαξ

−ξHkβ H

⎞⎟⎟⎟⎟⎠ , (3.5)

where the upper left block is a d × d submatrix. Under the elementary transformations, the
matrix can be transformed into

1
(H − |ξ|2)2

⎛⎜⎜⎝ (H − |ξ|2)H HjαHkβ−Hjα,kβH

H2 −Hjαξ

0 H

⎞⎟⎟⎠ , (3.6)

and

HjαHkβ − Hjα,kβH

H2
=

{
−∂2 log Nj(zj ,zj)

μj

∂zjα∂zjβ
, j = k,

0, j 
= k.
(3.7)

It implies that the upper left block of (3.6) is a block diagonal matrix.
Let gDi be the Bergman metric of Di, and gDi

αβ
be the (α, β)-entry of gDi

B . Then

μi

γi
gDi

αβ
= −∂2 log Ni(zi, zi)μi

∂ziα∂ziβ
.

Hence, we have

det(gΩ(μ,m)) =
Hn

(H − |ξ|2)n+1

m∏
i=1

(μi

γi

)di

det(gDi

αβ
).

From (2.2) and the equation above, it follows that

det(gΩ(μ,m)) =
1

(H − |ξ|2)n+1

m∏
i=1

udi

i Ni(zi, zi)nμi−γi . (3.8)

We complete the proof.

By using the standard formula of Ricci tensor, we can obtain the following lemma directly.

Lemma 3.2 The Ricci tensor of gΩ(μ,m) is

Ricg =
m∑

i=1

(μin

γi
− 1

)
gDi − (n + 1)gΩ(μ,m).

Corollary 3.1 gΩ(μ,m) is Kähler-Einstein if and only if μi = γi

n for 1 ≤ i ≤ m.
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Let

gΩ(μ,m) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
gjα,kβ
Ω(μ,m) gjα,n

Ω(μ,m)

gn,kβ
Ω(μ,m) gn,n

Ω(μ,m)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(3.9)

be the inverse matrix of gΩ(μ,m), where 1 ≤ j, k ≤ m and 1 ≤ α ≤ dj , 1 ≤ β ≤ dk. Let
gDi = (gαβ

Di
) be the inverse matrix of the Bergman metric matrix gDi = (gDi

αβ
). By (2.4),

gjα,kβ
Ω(μ,m) =

{
H−|ξ|2

H
γj

μj
gαβ

Dj
, j = k,

0, j 
= k.
(3.10)

This equation shows that the upper left block of (3.9) is a block diagonal matrix.
Let sg be the scalar curvature of gΩ(μ,m), and we have

sg =
m∑

i=1

idi∑
iα,iβ=i1

H − |ξ|2
H

γi

μi
gβα

Di

(μin

γi
− 1

)
gDi

αβ
− (n + 1)n

=
m∑

i=1

(
n − γi

μi

)
di

H − |ξ|2
H

− (n + 1)n.

Lemma 3.3 The scalar curvature of gΩ(μ,m) is

sg =
m∑

i=1

(
n − γi

μi

)
di

(H − |ξ|2)
H

− (n + 1)n.

Corollary 3.2 sg is a constant if and only if
m∑

i=1

(
n − γi

μi

)
di = 0.

Now we study the extremal condition. Let (M, g) be an n-dimensional Kähler manifold,
and (z1, · · · , zn) be the local coordinate in a neighborhood of p ∈ M . From [3], the extremal
condition can be given by the following equation:

∂

∂zη

n∑
β=1

gβα ∂κ

∂zβ
= 0 (3.11)

for all α, η = 1, · · · , n. By using (3.11), we can obtain our main result in this section.

Theorem 3.1 The metric gΩ(μ,m) is extremal if and only if its scalar curvature sg is a

constant, i.e.,
m∑

i=1

(
n − γi

μi

)
di = 0.

Proof Let τ =
m∑

i=1

(
n− γi

μi

)
di. By Calabi’s result, we only need to prove that gΩ(μ,m) is not

an extremal metric if τ 
= 0. By Lemma 3.3,

∂sg

∂zkβ
=

τ |ξ|2Hkβ

H2
= −τξ(H − |ξ|2)2

H2
g
Ω(μ,m)

n,kβ
,

∂sg

∂ξ
= −τξ

H
= −τξ(H − |ξ|2)2

H2
g
Ω(μ,m)
n,n .
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Let A = gΩ(μ,m) and An,jα be the algebraic cofactor of gn,jα. Let B be the upper left d × d

block matrix of A, i.e., B = (gΩ(μ,m)

jα,kβ
).

gjα,n
Ω(μ,m) =

det An,jα

det(gΩ(μ,m))
, gn,n

Ω(μ,m) =
detB

det(gΩ(μ,m))
.

In our case, the extremal condition (3.11) turns out to be

0 =
m∑

k=1

dk∑
β=1

gkβ,n
Ω(μ,m)

∂sg

∂zkβ
+ gn,n

Ω(μ,m)

∂sg

∂ξ

= −
m∑

k=1

dk∑
β=1

detAn,kβ

det(gΩ(μ,m))
τξ(H − |ξ|2)2

H2
g
Ω(μ,m)

n,kβ
− detB

det(gΩ(μ,m))
τξ(H − |ξ|2)2

H2
g
Ω(μ,m)
n,n

= − τξ(H − |ξ|2)2
det(gΩ(μ,m))H2

( m∑
k=1

dk∑
β=1

detAn,kβg
Ω(μ,m)

n,kβ
+ detBg

Ω(μ,m)
n,n

)
= −τ(H − |ξ|2)2

H2
.

Thus we know that gΩ(μ,m) is not extremal if τ 
= 0.

Remark 3.1 In particular, Ω(μ, 1) is the Cartan-Hartogs domain over an irreducible bounded
symmetric domain D. We can obtain Loi and Zedda’s results in [29]. Their results can be sum-
marized as follows. Let γ be the genus of D and n be the total dimension of Ω(μ, 1). Then

(1) gΩ(μ,1) is an extremal metric;
(2) gΩ(μ,1) is a Kähler-Einstein metric;
(3) the scalar curvature of gΩ(μ,1) is a constant;
(4) the parameter μ equals γ

n

are equivalent.

4 The Equivalence of Four Classical Metrics

In [10], Deng, Guan and Zhang proved that Cartan-Hartogs domains are holomorphic homo-
geneous regular domains (i.e., they have the uniform squeezing property). As a generalization,
we will show that their method is also valid for the generalized Cartan-Hartogs domain defined
in (3.1).

In the following, we investigate the boundary ∂(Ω(μ, m)) of Ω(μ, m). By (3.1), it is easy to
see that

∂(Ω(μ, m)) = (∂D × {0}) ∪ ∂0(Ω(μ, m)), (4.1)

where ∂D × {0} = {(z, 0) : z ∈ ∂D} and ∂0(Ω(μ, m)) = {(z, ξ) ∈ D × C : ρ(z, ξ) = 0, ξ 
= 0}.
Here ρ(z, ξ) = |ξ|2−

m∏
i=1

Ni(zi, zi)μi . Now we claim that ρ is a local defining function of Ω(μ, m)

at the boundary point p̃ = (z̃, ξ̃) ∈ ∂0(Ω(μ, m)). In fact, let V (z̃) ⊂ D be a neighborhood of z̃,
and �(ξ̃, r) be a disc with radius r < |ξ̃|. Then the neighborhood U(p̃) = V (z̃) ×�(ξ̃, r) of p̃

satisfies
U(p̃) ∩ Ω(μ, m) = {(z, ξ) ∈ U(p̃) : ρ(z, ξ) < 0}
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and dρ(z, ξ) 
= 0 for (z, ξ) ∈ U(p̃). So the claim is true. Moveover, ρ is smooth by (2.1).
In [25], we have constructed a holomorphic automorphism subgroup G of Aut(Ω(μ, m)).

The domain Ω(μ, m) has the following characteristic: For any fixed point p = (z, ξ) ∈ Ω(μ, m),
there always exists Ψ ∈ G such that Ψ(z, ξ) = (0, ξ∗) for some real number ξ∗ ∈ [0, 1). Let G

act on Ω(μ, m) through the action G×Ω(μ, m) → Ω(μ, m). The orbit of a point p ∈ Ω(μ, m) is
Op = {Ψ(p) ∈ Ω(μ, m) : Ψ ∈ G}. Thus the set of all the orbits can be written in the following
form

{O(0,x) : x ∈ [0, 1)
}
. By the holomorphic invariant property of the squeezing function, we

have

inf
0≤x<1

sΩ(0, x) ≤ sΩ(z, ξ) ≤ 1 (4.2)

for (z, ξ) ∈ Ω(μ, m).

Theorem 4.1 Ω(μ, m) is a holomorphic homogeneous regular domain.

Proof We have proved that ρ is a local defining function of the boundary of Ω(μ, m) at
the boundary point (0, 1) ∈ ∂0(Ω(μ, m)). In view of (2.7), the real Hessian

Hessρ(0, 1) =

⎛⎜⎜⎜⎜⎜⎜⎝
2μiI

2(di) 0

0 2I(2)

⎞⎟⎟⎟⎟⎟⎟⎠ , (4.3)

where the upper left block is a 2d×2d submatrix. Let ξ = u+iv. Note that �X(0, 1) = 2 ∂
∂u 
= 0,

and then the tangent hyperplane T(0,1)∂(Ω(μ, m)) = {u = 1}. It is clear that Ω(μ, m) ∩ {u =
1} = {(0, 1)}, so (0, 1) is a globally strongly convex boundary point of Ω(μ, m). By Theorem
2.1, lim

(z,ξ)→(0,1)
sΩ(z, ξ) = 1. Furthermore, s(x) = sΩ(0, x) is continuous in [0, 1]. By (4.2), sΩ is

bounded blow by a positive number and Ω(μ, m) is a holomorphic homogeneous regular domain.

From [15, 28], we know that homogeneous regular domains have many interesting properties.
One of the properties is the equivalence of four classical metrics. So we have the following result.

Theorem 4.2 The Bergman metric, the Kähler-Einstein metric, the Carathéodary metric,
and the Koboyashi metric on Ω(μ, m) are equivalent.
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