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Abstract In this paper, the authors consider the Harry-Dym equation on the line with
decaying initial value. They construct the solution of the Harry-Dym equation via the
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1 Introduction

The following nonlinear partial differential equation

qt − 2
( 1√

1 + q

)
xxx

= 0 (1.1)

is known as the Harry-Dym equation (see [1]). This equation was obtained by Harry Dym and
Martin Kruskal as an evolution equation solvable by a spectral problem based on the string
equation instead of the Schrödinger equation. The Harry-Dym equation plays an important role
in the study of the Saffman-Taylor problem which describes the motion of a two-dimensional
interface between a viscous and a nonviscous fluid (see [2]). The Harry-Dym equation shares
many of the properties typical of the soliton equations. It is a completely integrable equation
which can be solved by the inverse scattering transform (see [3]). It has a bi-Hamiltonian
structure (see [4]), an infinite number of conservation laws and infinitely many symmetries (see
[5]), and has reciprocal Backlund transformations to the KdV equation (see [6]). The Harry-
Dym equation has been solved by different methods such as the inversing scattering method
(see [3]), the Bäcklund transformation technique (see [7]), and the straightforward method (see
[8]). Especially, Wadati obtained the one-cusp soliton solution (see [3])

q(x, t) = tanh−4(κx− 4κ3t+ κx0 + ε+) − 1,

ε+ =
1
κ

[1 + tanh(κx− 4κ3t+ κx0 + ε+)]

by using inverse scattering transformation.
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The main aim of this paper is to develop the inversing scattering method, based on a
Riemann-Hilbert problem for solving nonlinear integrable systems, which has further developed
and applied many equations with initial value problems on the line (see [9–11]) and initial
boundary value problems on the half line (see [12–17]). In this paper, we consider the initial
value problem of the Harry-Dym equation

qt − 2
( 1√

1 + q

)
xxx

= 0, x ∈ R, t > 0,

q(x, 0) = q0(x),
(1.2)

where the q0(x) is a smoothly real-valued function and decays as |x| → ∞. The organization
of the paper is as follows. In the following Section 2, we perform the spectral analysis of the
associated Lax pair for the Harry-Dym equation. In Section 3, we formulate the main Riemann-
Hilbert problem associated with the initial value problem (1.2). In Section 4, we obtain the
one-cusp soliton solution in terms of the Riemann-Hilbert problem, which has a similar, but
not the same, form constructed by the inverse scattering method (see [3]).

2 Spectral Analysis

2.1 A Lax pair

In general, the matrix Riemann-Hilbert problem is defined in the λ plane and has explicit
(x, t) dependence, while for the Harry-Dym equation (1.2), we need to construct a new matrix
Riemann-Hilbert problem with explicit (y, t) dependence, where y(x, t) is a function unknown
from the initial value condition. For this purpose, we make a transformation

ρ =
√

1 + q,

and (1.2) can be expressed by

(ρ2)t − 2
(1
ρ

)
xxx

= 0.

Then the initial value problem (1.2) is transformed into

(ρ2)t − 2
(1
ρ

)
xxx

= 0, x ∈ R, t > 0,

ρ(x, 0) = ρ0(x) =
√

1 + q0(x),

ρ0(x) → 1, |x| → ∞.

(2.1)

It was shown that (1.2) admits the following Lax pair (see [3]):⎧⎪⎨⎪⎩
ψxx = −λ2(1 + q)ψ,

ψt = 2λ2
[ 2√

1 + q
ψx −

( 1√
1 + q

)
x
ψ
]
.

(2.2)

Making a transformation

ρ =
√

1 + q, ϕ =
(
ψ
ψx

)
,
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then the Lax pair (2.2) can be written in the matrix form{
ϕx = Mϕ,
ϕt = Nϕ,

(2.3)

where

M =
(

0 1
−λ2ρ2 0

)
, N =

⎛⎜⎜⎝ −2λ2
(1
ρ

)
x

4λ2 1
ρ

−4λ4ρ− 2λ2
(1
ρ

)
xx

2λ2
(1
ρ

)
x

⎞⎟⎟⎠ .

Further, by the gauge transformations

φ =
(

1 i
i 1

)⎛⎜⎝
√
λρ 0

0
1√
λρ

⎞⎟⎠ϕ,

we have ⎧⎨⎩
φx + iλρσ3φ = Uφ,

φt + i
(
λ

1
ρ

(1
ρ

)
xx

+ 4λ3
)
σ3φ = V φ,

(2.4)

where

U(x, t) =
1
2
ρx

ρ
σ2, V (x, t, λ) = −λ1

ρ

(1
ρ

)
xx
σ1 − 2λ2

(1
ρ

)
x
σ2.

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

It is clear that as |x| → ∞, U(x, t) → 0 and V (x, t, λ) → 0. We define a real-valued function
y(x, t) by

y(x, t) = x+
∫ ∞

x

(1 − ρ(ξ, t))dξ.

It is obvious that
yx = ρ(x, t), yt = −

∫ ∞

x

ρt(ξ, t)dξ.

The conservation law
ρt −

(
− 1

2

((1
ρ

)
x

)2

+
1
ρ

(1
ρ

)
xx

)
x

= 0

implies that

yt = −1
2

((1
ρ

)
x

)2

+
1
ρ

(1
ρ

)
xx
.

Extending the column vector φ to be a 2 × 2 matrix and letting

μ = φexp(iλy(x, t)σ3 + 4iλ3tσ3),

then μ solves {
μx + iλyx[σ3, μ] = Ũμ,

μt + i(λyt + 4λ3)[σ3, μ] = Ṽ μ,
(2.5)
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which can be written in the full derivative form

d(ei(y(x,t)x+4λ3t)σ̂3μ) = ei(y(x,t)x+4λ3t)σ̂3(Ũdx+ Ṽ dt)μ,

where

Ũ = U,

Ṽ = −1
2
iλ
((1

ρ

)
x

)2

σ3 − λ
1
ρ

(1
ρ

)
xx
σ1 − 2λ2

(1
ρ

)
x
σ2,

and [σ3, μ] = σ3μ − μσ3. As |x| → ∞, Ṽ → 0. The lax pair in (2.5) is very convenient
for dedicated solutions via the integral Volterra equation, which is also what we study in the
following paper.

Remark 2.1 By the representation of M,N and U, V in (2.3) and (2.4) respectively, we
find that ψx, ψt and φx, φt have no singularity in λ = 0. Therefore, φ has no real singularity in
λ = 0.

2.2 Eigenfunctions

We define two eigenfunctions μ± of (2.5) as the solutions of the following two Volterra
integral equations in the (x, t) plane:

μ(x, t, λ) = I +
∫ (x,t)

(x∗,t∗)

e−[iλ(y(x,t)−y(x′,t))+4iλ3(t−τ)]σ̂3(Ũ(x′, t)μ(x′, t, λ)dx′

+ Ṽ (x′, τ, λ)μ(x′, τ, λ))dτ, (2.6)

where I is a 2× 2 identity matrix, and σ̂3 acts on a 2× 2 matrix A by σ̂3A = σ3Aσ3. Since the
integrated expression is independent of the path of integration, we choose the particular initial
points of integration to be parallel to the x-axis and obtain that for μ+ and μ−,

μ+(x, t, λ) = I −
∫ ∞

x

e−iλ(y(x,t)−y(x′,t))σ̂3 Ũ(x′, t)μ+(x′, t, λ)dx′,

μ−(x, t, λ) = I +
∫ x

−∞
e−iλ(y(x,t)−y(x′,t))σ̂3 Ũ(x′, t)μ−(x′, t, λ)dx′.

(2.7)

Define the following sets:

D1 = {λ ∈ C | Imλ > 0},
D2 = {λ ∈ C | Imλ < 0}.

Since for any fixed t, yx = ρ(x, t) > 0, y(x, t) is an increasing function of x for fixed t. As
x − x′ < 0, y(x, t) − y(x′, t) < 0; as x − x′ > 0, y(x, t) − y(x′, t) > 0. We can deduce that
the second column vectors of μ+ and μ− are bounded and analytic for λ ∈ C provided that
λ belongs to D1 and D2, respectively. We denote these vectors with superscripts (1), (2) to
indicate the domains of their boundedness. Then

μ+ = (μ(2)
+ , μ

(1)
+ ), μ− = (μ(1)

− , μ
(2)
− ).
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For any x and t, the following conditions are satisfied:

(μ(1)
− , μ

(1)
+ ) = I +O

( 1
λ

)
, λ→ ∞, λ ∈ D1,

(μ(2)
+ , μ

(2)
− ) = I +O

( 1
λ

)
, λ→ ∞, λ ∈ D2,

μ± = I +O
( 1
λ

)
, λ→ ∞.

2.3 Spectral functions

For λ ∈ R, the eigenfunctions μ+, μ− being the solution of the system of differential equations
(2.5) are related by a matrix independent of (x, t). We define the spectral function by

μ+(x, t, λ) = μ−(x, t, λ)e−i(λy(x,t)+4λ3t)σ̂3s(λ). (2.8)

From (2.5), we get

det(μ±(x, t, λ)) = 1. (2.9)

Since Ũ(x, t) = −Ũ(x, t), the μ±(x, t, λ) have the relations:{
μ±11(x, t, λ) = μ±22(x, t, λ), μ±21(x, t, λ) = μ±12(x, t, λ),
μ±11(x, t,−λ) = μ±22(x, t, λ), μ±12(x, t,−λ) = μ±21(x, t, λ).

(2.10)

The spectral function s(λ) can be written as

s(λ) =

(
a(λ) b(λ)
b(λ) a(λ)

)
, (2.11)

s(λ) = I −
∫ +∞

−∞
eiλy(x′,0)σ̂3 Ũ(x′, 0)μ+(x′, 0, λ)dx′, Imλ = 0. (2.12)

From the (2.9), det(s(λ)) = 1. Equations (2.8)–(2.9) imply that a(λ) and b(λ) have the following
properties:

(1) a(λ) is analytic in D1 and continuous for λ ∈ D1.
(2) b(λ) is continuous for λ ∈ R.
(3) a(λ)a(λ) − b(λ)b(λ) = 1, λ ∈ R.
(4) a(λ) = 1 +O

(
1
λ

)
, λ→ ∞, λ ∈ D1.

(5) b(λ) = O
(

1
λ

)
, λ→ ∞, λ ∈ R.

2.4 Residue conditions

We assume that a(λ) has N simple zeros {λj}N
j=1 in the upper half plane. These eigenvalues

are purely imaginary. The second column of (2.8) is

μ
(1)
+ = b(λ)μ(1)

− e−2i(λy(x,t)+4λ3t) + μ
(2)
− a(λ). (2.13)

For (2.9) and (2.13), it yields
a(λ) = det(μ(1)

− , μ
(1)
+ ),
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where we have used that both sides are well defined and analytic in D1 to extend the above
relation to D1. Hence, if a(λj) = 0, the μ(1)

− , μ
(1)
+ are linearly dependent vectors for each x and

t, i.e., there exist constants bj �= 0 such that

μ
(1)
− = bje2i(λjy(x,t)+4λ3

j t)μ
(1)
+ , x ∈ R, t > 0.

Recalling the symmetries in (2.10), we find

μ
(2)
− = bje−2i(λjy(x,t)+4λ

3
j t)μ

(2)
+ , x ∈ R, t > 0.

Consequently, the residues of
μ

(1)
−
a and

μ
(2)
−

a(λ)
at λj and λj are

Res
λ=λj

μ
(1)
− (x, t, λ)
a(λ)

= Cje2i(λjy(x,t)+4λ3
j t)μ

(2)
+ (x, t, λj), j = 1, · · · , N,

Res
k=λj

μ
(2)
− (x, t, λ)

a(λ)
= Cje−2i(λjy(x,t)+4λ

3
j t)μ

(1)
+ (x, t, λj), j = 1, · · · , N,

where Cj = bj

ȧ(kj)
, ȧ(k) = da

dk .

Remark 2.2 There is the relation of μ± that the s(λ) is the scattering matrix for the
one-dimensional Schödinger equation:

Wyy + λ2W = f(y)W

via the Liouville transformation:

y = x+
∫ ∞

x

(1 − ρ(ξ, 0))dξ, W (y, λ) = ψ(y, λ)ρ0(y),

ρ0(y) = ρ0(x), f(y) =
1
2
(ρ0yyρ

−1
0 − 1

2
ρ2
0yρ

−2
0 ).

Therefore, in terms of the spectral problem of the Schrödinger equation, we deduce that a(λ)
has only pure imaginary part of simple poles in the upper plane.

3 The Riemann-Hilbert Problem

3.1 A Riemann-Hilbert problem for (x, t)

We now solve the initial value problem for (2.1) on the line, and the solution can be expressed
in terms of a 2 × 2 matrix Riemann-Hilbert problem. Let M(x, t, λ) be defined by

M+ =
( μ(1)

−
a(λ)

, μ
(1)
+

)
, λ ∈ D1; M− =

(
μ

(2)
+ ,

μ
(2)
−

a(λ)

)
, λ ∈ D2, (3.1)

and let the M satisfy the jump condition:

M+(x, t, λ) = M−(x, t, λ)J(x, t, λ), Imλ = 0,
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where

J(x, t, λ) =

⎛⎜⎜⎜⎝
1

a(λ)a(λ)

b(λ)

a(λ)
e−2i(λy(x,t)+4λ3t)

− b(λ)
a(λ)

e2i(λy(x,t)+4λ3t) 1

⎞⎟⎟⎟⎠ , Imλ = 0. (3.2)

These definitions imply

detM(x, t, λ) = 1 (3.3)

and

M(x, t, λ) = I +O
( 1
λ

)
, λ→ ∞. (3.4)

This contour of the Riemann-Hilbert problem is the real axis.
The jump matrix J(x, t, λ), and the spectral a(λ) and b(λ) are dependent on the y(x, t),

while y(x, t) doesn’t involve initial data. Therefore, this Riemann-Hilbert problem can not be
formulated in terms of initial data alone. In order to overcome this problem, we will reconstruct
a new jump matrix by changing

(x, t) → (y, t), y = y(x, t),

where y is a new scale. Then we can transform this Riemann-Hilbert problem into the Riemann-
Hilbert problem parametrized by (y, t).

3.2 A Riemann-Hilbert problem for (y, t)

Theorem 3.1 Let q0(x), x ∈ R be a smooth function and decay as |x| → ∞. Moreover
1 + q0(x) > 0. Define the Ũ0, ρ0 and y0(x) as follows:

Ũ0(x) =
1
2
ρ0x(x)
ρ0(x)

σ2, ρ0(x) =
√

1 + q0(x),

y0(x) = x+
∫ ∞

x

(1 − ρ0(ξ))dξ.

Let μ+(x, 0, λ) and μ−(x, 0, λ) be the unique solution of the Volterra linear integral equation
(2.5) evaluated at t = 0 with Ũ0(x, 0) = Ũ0(x), ρ0(x) = ρ(x, 0) and y0(x) = y(x, 0). Define
a(λ), b(λ), Cj by(

b(λ)
a(λ)

)
= [s(λ)]2, s(λ) = I −

∫ +∞

−∞
eiλy0(x

′)σ̂3 Ũ0(x′)μ+(x′, 0, λ)dx′, Imλ = 0 (3.5)

and

[μ−(x, 0, λj)]1 = ȧ(λj)Cje2iλjy0(x)[μ+(x, 0, λj)]2, j = 1, · · · , N, (3.6)

here and here after ([A]1 [A]2) denotes the first (second) column of a 2×2 matrix A. We assume
that a(λ) has N simple zeros {λj}N

j=1 in the upper half plane and is pure imaginary. Then
(1) a(λ) is defined for k ∈ D1 and analytic in D1.
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(2) b(λ) is defined for λ ∈ R.

(3) a(λ)a(λ) − b(λ)b(λ) = 1, λ ∈ R.

(4) a(λ) = 1 +O
(

1
λ

)
, λ→ ∞, λ ∈ D1.

(5) b(λ) = O
(

1
λ

)
, λ→ ∞, λ ∈ R.

Suppose that there exists a uniquely solution q(x, t) of (1.2) with initial data q0(x) such that
ρ0(x) =

√
1 + q0(x) has sufficient smoothness and decays for t > 0. Then q(x, t) is given in the

parametric form by

q(x(y, t), t) = e8
∫ +∞

y
m(y′,t)dy′ − 1 (3.7)

and the function x(y, t) is defined by

x(y, t) = y +
∫ y

−∞
(e−4

∫ ∞
y′ m(ξ,t)dξ − 1)dy′, (3.8)

where m(y, t) = −i lim
λ→∞

(λM(y, t, λ))12, and M(y, t, λ) is the unique solution of the following

Riemann-Hilbert problem:
(1)

M(y, t, λ) =
{
M−(y, t, λ), λ ∈ D2,
M+(y, t, λ), λ ∈ D1

is a sectionally meromorphic function.
(2)

M+(y, t, λ) = M−(y, t, λ)J (y)(y, t, λ), Imλ = 0,

where J (y)(y, t, λ) is defined by

J (y)(y, t, λ) =

⎛⎜⎜⎜⎝
1

a(λ)a(λ)

b(λ)

a(λ)
e−2i(λy+4λ3t)

− b(λ)
a(λ)

e2i(λy+4λ3t) 1

⎞⎟⎟⎟⎠ , Imλ = 0. (3.9)

(3)

M(y, t, λ) = I +O
( 1
λ

)
, λ→ ∞. (3.10)

(4) The possible simple poles of the first column of M+(y, t, λ) occur at λ = λj , j = 1, · · · , N ,
and the possible simple poles of the second column of M−(y, t, λ) occur at λ = λj, j = 1, · · · , N .
The associated residues are given by

Res
λ=λj

[M(y, t, λ)]1 = Cje2i(λjy+4λ3
j t)[M(y, t, λj)]2, j = 1, · · · , N, (3.11)

Res
λ=λj

[M(y, t, λ)2 = Cje−2i(λjy+4λ
3
j t)[M(y, t, λj)]1, j = 1, · · · , N. (3.12)

Proof Assume that μ(x, t) is the solution of equation (2.5), and its asymptotic expansion
is

μ(x, t, λ) = I +
μ(1)(x, t)

λ
+
μ(2)(x, t)

λ2
+
μ(3)(x, t)

λ3
+O

( 1
λ4

)
, λ→ ∞
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into the x-part of (2.5), where μ(1)(x, t), μ(2)(x, t) and μ(3)(x, t) are 2× 2 matrices, dependent
on x, t. By considering the terms of O(1), We get

4μ(1)
12 (x, t) = −ρx(x, t)

ρ2(x, t)
. (3.13)

By construction of the new Riemann-Hilbert problem about (y, t, λ), we can deduce that

μ
(1)
12 (x, t) = −i lim

λ→∞
(λM(y, t, λ))12 = m(y, t). (3.14)

Then

−1
4
ρx(x, t)
ρ2(x, t)

= m(y, t). (3.15)

(3.13) can be expressed in terms of y = y(x, t). Indeed, using dy
dx = ρ, then (3.15) becomes

−1
4
ρy

ρ
= m(y, t). (3.16)

As |y| → ∞, ρ(y, t) → 1, by the evaluation of (3.16), we get

ρ(y, t) = e4
∫ +∞

y
m(y′,t)dy′

.

Therefore
q(x, t) = e8

∫ +∞
y

m(y′,t)dy′ − 1.

As |x| → ∞, |y| → ∞ and dy
dx = ρ > 0,

x = y +
∫ y

−∞
(e−4

∫ +∞
y′ m(ξ,t)dξ − 1)dy′.

Remark 3.1 It follows from the symmetries (2.10) that the solution M(y, t, λ) of the
Riemann-Hilbert problem in Theorem 3.1 has the symmetries:{

M11(y, t, λ) = M22(y, t, λ), M21(y, t, λ) = M12(y, t, λ),
M11(y, t,−λ) = M22(y, t, λ), M12(y, t,−λ) = M21(y, t, λ).

(3.17)

4 Soliton Solution

The solitons correspond to the spectral data {a(λ), b(λ), Cj} for which b(λ) vanishes iden-
tically. In this case, the jump matrix J (y)(y, t, λ) in the (3.9) is the identity matrix and the
Riemann-Hilbert problem of Theorem 3.1 consists of finding a meromorphic function M(y, t, λ)
satisfying (3.10) and the residue conditions (3.11)–(3.12). From (3.10)–(3.11), we get

[M(y, t, λ)]1 =
(

1
0

)
+

N∑
j=1

Cj

λ− λj
e2i(λjy+4λ3

j t)[M(y, t, λj)]2. (4.1)

For the symmetries (3.17), (4.1) can be written as(
M22(y, t, λ)
M12(y, t, λ)

)
=
(

1
0

)
+

N∑
j=1

Cj

λ− λj
e2i(λjy+4λ3

j t)

(
M12(y, t, λj)
M22(y, t, λj)

)
. (4.2)
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Let λ = λn, (4.2) becomes(
M22(y, t, λn)
M12(y, t, λn)

)
=
(

1
0

)
+

N∑
j=1

Cj

λn − λj

e2i(λjy+4λ3
j t)

(
M12(y, t, λj)
M22(y, t, λj)

)
, n = 1, · · · , N. (4.3)

Solving this algebraic system for M12(y, t, λj), M22(y, t, λj), n = 1, · · · , N , and substituting
them into (4.1) provide an explicit expression for the [M(y, t, λ)]1. In terms of the symmetries
(3.17), we can get M12(y, t, λ), which solves the Riemann-Hilbert problem. Then

−i lim
λ→∞

(λM(y, t, λ))12 = m(y, t) = −i
N∑

j=1

Cje2i(λjy+4λ3
j t)M12(y, t, λj).

Therefore, the N soliton solution q(x, t) is expressed by the (3.7).

4.1 The one-soliton solution

In this section, we derive an explicit formula for the one-soliton solution, which arises when
a(λ) has a pure imaginary λ1 of simple zero. Letting N = 1 in (4.3), from the the symmetries
of (2.10), we can deduce that a(λ1) = a(−λ1) = 0, and then λ1 = −λ1 and ȧ(λ1) = ȧ(−λ1).
Since the b1 is a real constant, we find that C1 = −C1, and thus C1 is pure imaginary. Making
use of the symmetries of (3.17), we can obtain

M22(y, t, λ1) = 1 +
C1

λ1 − λ1

e2i(λ1y+4λ3
1t)M12(y, t, λ1),

M12(y, t, λ1) =
C1

λ1 − λ1

e2i(λ1y+4λ3
1t)M22(y, t, λ1).

Then

M22(y, t, λ1) =
(λ1 − λ1)2

(λ1 − λ1)2 + |C1|2e2i(λ1y+4λ3
1t)e−2i(λ1y+4λ

3
1t)
.

Substituting this result into (4.3), we get

M12(y, t, λ) =
C1(λ1 − λ1)2

(λ− λ1)[(λ1 − λ1)2e2i(λ1y+4λ
3
1t) + |C1|2e2i(λ1y+4λ3

1t)]
. (4.4)

Let λ1 = iε, ε > 0, and in order to conveniently study the properties of the one soliton solution,
we choose C1 = ±2iε. When C1 = −2iε, substituting both parameters into (4.4), it comes into
being that

M12(y, t, λ) =
2iεe−2(εy−4ε3t)

(λ+ iε)[1 − e−4(εy−4ε3t)]
. (4.5)

Then

−i lim
λ→∞

(λM(y, t, λ))12 = −(arctanh e−2(εy−4ε3t))y,

where the arctanhx is the inverse function of tanhx. Furthermore,∫ ∞

y

m(y′, t)dy′ = −i
∫ ∞

y

lim
λ→∞

(λM(y′, t, λ))12dy′

= −
∫ ∞

y

(arctanh e−2(εy−4ε3t))y′dy′

= arctanh e−2(εy−4ε3t). (4.6)
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The solution q(x, t) in (3.7) can be transformed into

q(x, t) = e8arctanh e−2(εy−4ε3t) − 1. (4.7)

Letting α(y, t) = earctanh e−2(εy−4ε3t)
, we find that Lnα(y, t) = arctanh e−2(εy−4ε3t), and then

tanh(lnα(y, t)) = e−2(εy−4ε3t),

i.e.,
elnα(y,t) − e−lnα(y,t)

elnα(y,t) + e−lnα(y,t)
= e−2(εy−4ε3t).

We deduce
α2(y, t) = − tanh−1(−εy + 4ε3t).

(4.7) can be written as

q(x, t) = (earctanh e−2(εy−4ε3t)
)8 − 1 = tanh−4(−εy + 4ε3t) − 1. (4.8)

Substituting y with x, (4.8) becomes

q(x, t) = tanh−4(−εx+ 4ε3t− εγ(x, t)) − 1, (4.9)

where γ(x, t) =
∫∞

x
(1 − ρ(ξ, t))dξ and ρ(x, t) = tanh−2(−εx+ 4ε3t− εγ(x, t)). Then (4.9) can

be varied as (1+ q(x, t))
1
2 −1 = cosh2(−εx+4ε3t−εγ(x, t)), and hence the one soliton solution

q(x, t) has a singularity at the peak of the soliton, the so-called cusp soliton.
When λ1 = iε and C1 = 2iε, the corresponding one soliton solution q(x, t) of (1.2) can be

expressed as

q(x, t) = tanh−4(−εx+ 4ε3t− εγ(x, t)) − 1, (4.10)

where γ(x, t) =
∫∞

x
(1 − ρ(ξ, t))dξ, ρ(x, t) = tanh−2(−εx+ 4ε3t− εγ(x, t)).

Remark 4.1 In this paper, we use the Riemann-Hilbert approach to obtain the solution
q(x, t) of (1.2) expressed by (4.9)–(4.10). While [3] applies the inverse scattering method to
get the solution q(x, t). If ε = κ (κ in [3], to the one soliton solution, when C1 = −2iε, the
expression of the solution in both papers is similar, identical with −εx+ 4ε3t in the

tanh−4(−εx+ 4ε3t− εγ(x, t))

and κx− 4κ3t in the tanh−4(κx− 4κ3t− κx0 + ε+) in [3]). There is a different point about the
expression of the one soliton solution in the two papers, i.e., one is dependent of the −εγ(x, t)
of x and the other is −κx0 + ε+ of x.
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