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Embedding Generalized Petersen Graph in Books∗
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Abstract A book embedding of a graph G consists of placing the vertices of G on a spine
and assigning edges of the graph to pages so that edges in the same page do not cross
each other. The page number is a measure of the quality of a book embedding which is
the minimum number of pages in which the graph G can be embedded. In this paper, the
authors discuss the embedding of the generalized Petersen graph and determine that the
page number of the generalized Petersen graph is three in some situations, which is best
possible.
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1 Introduction

A book consists of a spine which is just a line and some number of pages each of which is a
half-plane with the spine as its boundary. A book embedding of a graph G consists of placing
the vertices of G on the line in order and assigning edges of the graph to pages so that the
edges assigned to the same page do not cross each other. The page number is a measure of the
quality of a book embedding. It is the minimum number of pages in which the graph G can be
embedded, and is denoted by pn(G).

Ollmann [18] first introduced the page number problem, and the problem is NP-complete
even if the order of nodes on the spine is fixed (see [3, 13]). The book embedding problem has
been motivated by several areas of computer science such as sorting with parallel stacks, single-
row routing, fault-tolerant processor arrays and turning machine graphs (see [3]). Embedding
a graph in a book with the minimum number of pages has received much attention in the
literature (see [3–10]). In [16], Berhart and Keinen proved the theorem: pn(G) ≤ 1 if and only
if G is outplanar and pn(G) ≤ 2 if and only if G is a subgraph of a Hamiltonian planar graph.
By the above, for a connected graph G which is neither an outplanar nor a subhamiltonian
planar graph, we have pn(G) ≥ 3.

The Petersen graph is one of the most famous graphs. The notation of the generalized
Petersen graph is that given integers n ≥ 3 and k ∈ Zn\{0}, the graph P (n, k) is defined on
the set {xi, yi | i ∈ Zn} of 2n vertices, with the adjacencies given by xixi+k, xiyi, yiyi+1 for all
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i ∈ Zn. In this notion, the Petersen graph is P (5, 2) (see Figure a), which can be embedded in
a 3-page book (see Figure b).
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Figure a
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Figure b

From the definition of the generalized Petersen graph, P (n, k) ∼= P (n, n − k) for k ≤ ⌊
n
2

⌋
.

Thus, we always assume k ≤ ⌊
n
2

⌋
. The graph P (n, 1) is called a Prism graph, which is an

outplanar graph, so we assume 2 ≤ k ≤ ⌊
n
2

⌋
.

Let (n, k) = d be the greatest common denominator of n and k. For different parities
of n and d, we give a complete description of the upper bounds of pn(P (n, k)), and in some
situations, we obtain that pn(P (n, k)) = 3, which is best possible. We shall prove the following
theorems.

Theorem 1.1 If n and d are even, then pn(P (n, k)) � 4.

Corollary 1.1 If n is even and k = 2, then pn(P (n, k)) = 3.

Theorem 1.2 If n is even and d is odd, then pn(P (n, k)) � 5.

Let n = qk + r and s = k − r, where r is an integer less than k.

Theorem 1.3 If n is odd and k is even, then pn(P (n, k)) � 2s + 1. In particular,
pn(P (n, k)) � 2d + 1, if s = d �= 1.

Corollary 1.2 If n is odd and k = 2, then pn(P (n, k)) = 3.

Theorem 1.4 If both n and k are odd, then pn(P (n, k)) � k+1
2 + 3.
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Table 1

graph generalized Petersen graph page number
cubic symmetric graph (F(048)A) P (24, 5) ≤ 6
cubical graph P (4, 1) 1
Desargues graph P (10, 3) 3
dodecahedral graph P (10, 2) 3
Dürer graph P (6, 2) 3
Möbius-Kantor graph P (8, 3) < 6
Nauru graph P (12, 5) < 6
Petersen graph P (5, 2) 3
prism graph P (n, 1) 1

Some graphs are special cases of the generalized Petersen graph. For example, the Desargues
graph is P (10, 3), the Möbius-Kantor graph is P (8, 3), and the prism graph is P (n, 1). We can
know the page number of these graphs from the page number of the generalized Petersen graph
(see Table 1).

2 Proofs of the Main Results

We assume V (P (n, k)) = {0, 1, · · · , n− 1, 0′, 1′, · · · , (n− 1)′}, E · · · (P (n, k) · · · ) = {ii′ | i =
0, 1, · · · , n−1}∪{i′(i+1)′ | i = 0, 1, · · · , n−1}∪{i(i+k) | i = 0, 1, · · · , n−1} ( mod n) and V1∪
V2 = V (P (n, k)), where V1 = {0, 1, · · · , (n− 1)} and V2 = {0′, 1′, · · · , (n− 1)′} in the following.
Each edge in E · · · (P (n, k)[V2] · · · ) is called a 1-edge, and each edge in E · · · (P (n, k)[V1] · · · ) is
called a k-edge, where P (n, k)[Vi] is the subgraph of P (n, k) induced by the vertex set Vi, so
E(P (n, k)[Vi]) ⊆ E(P (n, k)). E(Ci) denotes the edge set containing all edges induced by the
vertex set Ci, and E[Ci, Cj ] denotes the edge set containing all edges from Ci to Cj .

For P (n, k), we lay out V1 in the spine by ordering β, and use β−1 to denote the reverse
ordering of β. That is, β−1 is obtained from β by revolving 1800. Replacing each i ∈ V1 by
i′ ∈ V2 in β−1 gives an ordering of V2, which is denoted by β′. So we have the following fact.

Fact 2.1 For the generalized Petersen graph P (n, k), if an ordering of V1 is β, then
V (P (n, k)) has an ordering ββ′.

Using Fact 2.1, we can draw the next lemma.

Lemma 2.1 If P (n, k)[V1] and P (n, k)[V2] can be embedded in p1 and p2 pages with the
vertex orderings β and β′ respectively, then pn(P (n, k)) ≤ max(p1, p2) + 1.

Proof Since P (n, k)[V1] ∩ P (n, k)[V2] = ∅, pn(P (n, k)[V1] ∪ P (n, k)[V2]) = max(p1, p2). By
the definition of P (n, k), there is a perfect matching M , where each edge e = uv ∈ M satisfies
u ∈ V1, v ∈ V2, and P (n, k) = P (n, k)[V1] ∪ P (n, k)[V2] ∪ M . Since β is the vertex ordering of
P (n, k)[V1] with pn(P (n, k)[V1]) = p1, by Fact 2.1, we have an ordering of V (P (n, k)), denoted
by ββ′. By the construction of ββ′, M needs one page to be embedded, and the edges in M

cross the edges in P (n, k)[V1] and P (n, k)[V2]. So pn(P (n, k)) ≤ max(p1, p2) + 1.



388 B. Zhao, W. Xiong, Y. Z. Tian and J. X. Meng

Proof of Theorem 1.1 Let Ci (i ∈ [d − 1] ∪ 0) be an ordered n
d -element array and

C0 = · · ·
(
0, k, 2k, · · · ,

(n

d
− 2

)
k,

(n

d
− 1

)
k · · ·

)
,

C1 = · · ·
((n

d
− 1

)
k + 1,

(n

d
− 2

)
k + 2, · · · , 2k + 1, k + 1, 0 + 1 · · ·

)
,

· · ·
Ci = · · ·

(
0 + i, k + i, 2k + i, · · · ,

(n

d
− 2

)
k + i,

(n

d
− 1

)
k + i · · ·

)
, if i is even,

Ci = · · ·
((n

d
− 1

)
k + i,

(n

d
− 2

)
k + i, · · · , 2k + i, k + i, 0 + i · · ·

)
, if i is odd,

· · ·
Cd−1 = · · ·

((n

d
− 1

)
k + (d − 1),

(n

d
− 2

)
k + (d − 1), · · · , k + (d − 1), 0 + (d − 1) · · ·

)
.

Thus
d−1⋃
i=0

Ci = V1 because |Ci| = N
d , Ci ∩ Cj = ∅ and 0 ≤ v ≤ N − 1 for v ∈ Ci and

i = 0, 1, · · · , d − 1.
Put Ci in the line with the ordering of C0, C1, · · · , Cd−1, and then all vertices of V1 are

assigned. Let the ordering of V1 be β. By Fact 2.1, we have an ordering ββ′ of V (P (n, k)). We
denote β′ = C(d−1)′ , C(d−2)′ , · · · , C0′ , where Ci′ = · · · (((n

d −1
)
k+i

)′
,
((

n
d −2

)
k+i

)′
, · · · , (2k+

i)′, (k + i)′, (0 + i)′ · · · ), if i′ is even, or Ci′ = · · · ((0 + i)′, (k + i)′, (2k + i)′, · · · ,
((

n
d − 2

)
k +

i
)′

,
((

n
d − 1

)
k + i

)′ · · · ), if i′ is odd. There are some properties as follows.
Property 1 The ordering of V (P (n, k)) is C0 → C1 → · · · → Cd−1 → C(d−1)′ → C(d−2)′ →

C0′ (see Figure 1).
Property 2 The edge sets {E(Ci) | i = 0, 1, · · · , d−1} and {E[Ci, Ci+1] | i = 0, 1, · · · , (d−

2)} ∪ {ECd−1, C0} are contained in E(P (n, k)[V1]) which does not have a 1-edge, and the edge
set {E[Ci′ , C(i+1)′ ] | i′ = 0′, 1′, · · · , (d − 2)′} ∪ E[C(d−1)′ , C0′ ] is contained in E(P (n, k)[V2])
which does not have a k-edge.

Property 3 All k-edges can be embedded in one page without crossing (see Figure 2).

Property 4 Edges in E(V1, V2) do not cross each other (see Figure 4).
By Properties 1–4, we have k-edges and E[V1, V2] are embedded in two pages. Thus we only

need to embed 1-edges in pages.
Claim 1 1-edges can be embedded in three pages without crossing.
Proof In the ordering of V (P (n, k)), if i′ is even, E[Ci′ , C(i+1)′ ] contains n

d edges and
they are {(jk + i)′, (jk + i + 1)′}, where j′ goes from 0′ to

(
n
d − 1

)′ and i′ ∈ [(d − 2)′] ∪ {0′}
(mod n is omitted), which can be embedded in one page without crossing. If i is odd, the
edges of E[Ci′ , C(i+1)′ ] are {(jk + i)′, (jk + i + 1)′}, where j′ goes from

(
n
d − 1

)′ to 0′ and i′ ∈
[(d− 2)′]∪ {0′}, which can be embedded in another page without crossing. Next we can embed
E[C(d−1)′ , C0′ ] into two pages. The edge set {(d−1+ik)′, (d+ik)′} with i′ ∈ [(⌊

n−d
k

⌋−1
)′]∪{0′}

(denoted by I-edges) can be assigned in one page and the other edges of E[C(d−1)′ , C0′ ] which
are {(n− 1 + ik)′, (ik)′} with i′ ∈ [(

n
d − ⌊

n−d
k

⌋− 1
)′] (denoted by II-edges) can be assigned in

the other page.

By Property 3, Claim 1 and Lemma 2.1, we know that P (n, k) can be embedded in a 4-page
book.
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Page 1: II-edges.

Page 2: k-edges and E[C′
i, C(i+1)′ ], i′ is even.

Page 3: E[C′
i, C(i+1)′ ], i′ is odd and I-edges.

Page 4: E[V1, V2].

Proof of Corollary 1.1 If k = 2, since V2 can be partitioned into two parts C0′ and
C1′ , where C0′ = (0′, 2′, 4′, · · · , n′) and C0′ = ((n − 1)′, (n − 2)′, · · · , 5′, 3′, 1′), all 1-edges
{(0′, 1′), (1′, 2′), (2′, 3′) · · · ((n − 2)′, (n − 1)′), ((n − 1)′, 0′)} can be embedded in two pages. So
P (n, k) can be embedded in a 3-page book.

Page 1: 1-edges except the edge (n − 1, 0).

Page 2: k-edges and (n − 1, 0).

Page 3: E[V1, V2].

Proof of Theorem 1.2 Let C0 = (0, 2, · · · , n−4, n−2) and C1 = (n−2+k, n−4+k, · · · , 2+
k, k) (mod n is omitted) be the ordered vertex set of V1, C0 ∩ C1 = ∅, and C0 ∪ C1 = V1. We
put Ci in the spine with the ordering of C0, C1. Then all vertices of V1 are assigned.

Denote the vertex ordering of V1 by β, and by Fact 2.1, we have an ordering ββ′ of
V (P (n, k)). Thus all vertices of P (n, k) are assigned in the spine. In the ordering, 1-edges
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can be embedded in four pages: {(2i)′, (2i + 1)′} with i ∈ [⌊
k
2 − 1

⌋] ∪ {0} (denoted by
E1), {(2i)′, (2i + 1)′} with i ∈ [

n
2

]\⌊k
2 − 1

⌋
(denoted by E2), {(k + 2i)′, (k + 2i + 1)′} with

i ∈ [
n−1−k

2 − 1
]∪ {0} (denoted by E3) and {(n− 1 + 2i)′, i′} with i ∈ [

k+1
2 − 1

]∪ {0} (denoted
by E4). k-edges can be embedded in three pages as follows.

k-edges can be embedded in three pages which are {2i, 2i + k} with i ∈ [
n
2 − 1

] ∪ {0},
{k + 2i, 2k + 2i} with i ∈ [

n
2 − k − 1

] ∪ {0}, and {n − k + 2i, 2i} with i ∈ [k − 1] ∪ {0}.
By Lemma 2.1, we know that P (n, k) can be embedded in a 5-page book.

Next, we will embed P (n, k) when n is odd. It is more complicated.

Proof of Theorem 1.3
Case 1 When n is odd, k is even, and d = 1. Let Ci be an ordered array and

C0 = · · · (0, k, · · · , (c − 1)k, ck · · · ),
C1 = · · · (ck + 1, (c − 1)k + 1 · · · , k + 1, 0 + 1 · · · ),

· · ·
Ci = · · · (i, k + i, · · · , (c − 1)k + i, ck + i) · · · ), i is even,

Ci = · · · (ck + i, (c − 1)k + i, · · · , k + i, 0 + i · · · ), i is odd,

· · ·
Ck−1 = · · · (ck + (k − 1), (c − 1)k + (k − 1), · · · , k + (k − 1), 0 + (k − 1) · · · ).

Thus |Ci| = c + 1, c = q if ck + i < n; otherwise, c = q − 1, and Ci ∩ Cj = ∅. Since n = qk + r,

there are r parts having q + 1 vertices and other parts having q vertices, and
k−1⋃
i=0

Ci = V1.

Claim 1 |Ci| = q + 1 with 0 ≤ i ≤ r − 1 and |Ci| = q with r − 1 < i ≤ k − 1.
Proof Let Ci = {v1, v2, · · · , vc} and Ci + 1 = {vc + 1, vc−1 + 1, · · · , v1 + 1}. From the

structure of Ci, we find that the vertex in Ci + 1 is equal to Ci+1, 0 ≤ i ≤ r − 2 and q + 1 =
|C0| = |C1| = · · · = |Cr−1|. Assume Cr−1 = {r − 1, k + r − 1, · · · , (q − 1)k + r − 1, }, and then
Cr−1 +1 = {qk+ r, (q−1)k+ r, · · · , k+ r, r}. |Cr| = q because qk+ r ≡ 0 (mod n) and 0 ∈ C0.
So q = |Cr| = |Cr+1| = · · · = |Ck−1|.

Put Ci in the spine with the ordering of C0, C1, · · · , Ck−1, and then all vertices of V1 are
assigned. Let the ordering of V1 be β. By Fact 2.1, we have an ordering ββ′ of V (P (n, k)).

Therefore, each vertex of p(n, k) is assigned in the spine by the vertex set ordering ββ′. We
have the following properties.

Property 1 The order of V (P (n, k)) is C0 → C1 → · · · → Ck−1 → C(k−1)′ → C(k−2)′ →
· · · → C0′ (see Figure 5).

Property 2 The edge sets {E(Ci) | i = 0, 1, · · · , k−1} and {E(Ci′) | i′ = 0′, 1′, · · · , (k−1)′}
are contained in E(P (n, k)[V1]), and they contain no 1-edge. The edge set E[Ci′ , Cj′ ] =
E[Ci′ , C(i+1)′ ] ∪ E[C(k−1)′ , C0′ ] ∪ ((n − k)′, 0′) (i′, j′ = 0′, 1′, · · · , (k − 1)′) is contained in
E(P (n, k)[V2]), and they contain no k-edge.

Property 3 Edges do not cross each other in E[V1, V2] (see Figure 8).
Next, we embed 1-edges and k-edges of P (n, k) in 2s pages without crossing.
Claim 2 The k-edges can be embedded in 2s pages without crossing, where s = k − r.
Proof Let Ek(Ci) denote the k-edges in E(Ci). Similarly, Ek[Ci, Cj ] denotes the k-edges in

E[Ci, Cj ]. From the partition and the ordering of V1, we know that Ek[C0, Cs], Ek[Cs, C2s], · · · ,
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Ek[C(� k
s �−1)s, C� k

s �s] and Ek[C� k
s �s, Ck−� k

s �s]
((

k − ⌊
k
s

⌋
s
)

= 1
)

can be embedded in two pages.
Obviously, Ek(C0), Ek(Cs), · · · , Ek(C� k

s �) can be embedded in the same page. Similarly, under
the vertex ordering, for i < s, every Ek[Ci, Ci+s], Ek[Ci+s, Ci+2s], · · · , Ek[Ci+(� k

s �−1)s, Ci+� k
s �s]

and Ek[Ci+� k
s �s, Ci+k−� k

s �s] can be embedded in two pages too. Similarly, Ek(Ci), Ek(Ci+s), · · · ,

Ek(Ci+� k
s �s) can be embedded in the same page. So we embed all k-edges in 2s pages. Specially,

if s = 1, Ek[Ci, Ci+1], i ∈ {0, 1, · · · , k − 1} is embedded in the spine with a natural order, and
all k-edges can be embedded in two pages (see Figure 6).

Claim 3 Embedding of 1-edges needs three pages.
Proof Because of the vertex ordering and the structure of Ci′ , 1-edges are E[Ci′ , C(i+1)′ ] ∪

E(C(k−1)′ , C0) ∪ ((n − 1)′, 0′) (i′ �= 1). Obviously, the edge set E[Ci′ , C(i+1)′ ] (i′ is even) can
be embedded in one page. Similarly, when i′ is odd, the embedding of E[Ci′ , C(i+1)′ ] and
E[C(k−1)′ , E(C0′)] also needs one page. ((n − 1)′, 0′) needs another page (see Figure 7).

Combining the above properties and claims, P (n, k) can be embedded in a (2s + 1)-page
book if d = 1.

Case 2 When n is odd, k is even, and d �= 1. Let Ci be an ordered array and

C0 = · · · (0, k, · · · , (c − 1)k, ck · · · ),
C1 = · · · (ck + 1, (c − 1)k + 1, · · · , k + 1, 0 + 1 · · · ),

· · ·
Ci = · · · (0 + i, k + i, · · · , (c − 1)k + i), ck + i · · · ), i is even,
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Ci = · · · (ck + i, (c − 1)k + i, · · · , k + i, 0 + i · · · ), i is odd,

· · ·
Ck−1 = · · · (ck + k − 1, (c − 1)k + k − 1, · · · , k + k − 1, 0 + k − 1 · · · ).

|Ci| = c + 1, c = q if ck + i < n; otherwise, c = q − 1, and Ci ∩Cj = ∅. Since n = qk + r, there

are r parts having q + 1 vertices and other parts having q vertices. Thus
k−1⋃
i=0

Ci = V1.

The graph P (n, k)[V1] can be divided into d copies because (n, k) = d �= 1. The copy
containing 0 is denoted by G0, and the other copies are denoted by G1, G2, · · · , Gd−1. We
know |V (Gi)| = n

d with i = 0, 1, · · · , d−1 and V (Gi) = V (G0)+ i, where V (G0)+ i = {v0 + i =
vi | vi ∈ V (G0), v0 ∈ V (G0)}. If we only embed k-edges, each copy has the same k-edges
embedding.

The vertex set V1 can be assigned in the spine in this ordering C0, C1, · · · , Ck−1. Clearly, all
vertices of V1 are assigned. We use β to denote this ordering. By Fact 2.1, we have an ordering
of V (P (n, k)), denoted by ββ′. Therefore, each vertex of P (n, k) is assigned in the spine and
has a position by the vertex set ordering ββ′. We have the following properties.

Property 4 The ordering of V (P (n, k)) is C0 → C1 → · · · → Ck−1 → C(k−1)′ → · · · →
C(k−2)′ · · · → C1′ → C0′ (see Figure 9).

Property 5 {E(Ci) | i = 0, 1, · · · , k − 1} and {E[Ci, Ci+1] | i = 0, 1, · · · , (k − 2)} ∪
{E[Cd−1, C0]} are contained in E(P (n, k)[V1]), and then they contain no 1-edges. The edge set
{E[Ci′ , C(i+1)′ ] | i′ = 0′, 1′, · · · , (k− 2)′}∪ {E[C(k−1)′ , C0′ ]} is contained in E(P (n, k)[V2]), and
then they contain no k-edges.

Property 6 Edges in E[V1, V2] do not cross each other (see Figure 12).

Now we embed the edges of P (n, k) in 2s + 1 pages without crossing.
Claim 4 All k-edges can be embedded in 2s pages without crossing.
Proof Since ck+is+k ≡ (i+1)s ( mod n), where ck+is+k ∈ Cis and (i+1)s ∈ C(i+1)s, we

have
k
d−1⋃
i=0

Cis = V (G0). That is
k
d−1⋃
j=0

Cjd = V (G0) because s is a multiple of d, and ordered array

Cid = {ck+id, (c−1)k+id, · · · , k+d, d} where i is even, and Cid = {d, k+d, · · · , (c−1)k, ck+id}
where i is odd. k-edges of G0 can be embedded in 2 s

d pages in ββ′ because ck+id+k = s+id ≡
(i+ s

d)d (mod n), the number of Ci (i = 0, 1, · · · , s−1) in V [G0] is s
d , ck + id is the first (when

i is odd) or the last (when i is even) vertex of Cid, and (i+ s
d )d is the last (when i is odd) or the

first (when i is even) vertex of C(i+ s
d )d. Since Gi with i = 0, 1, · · · , d − 1 has the same k-edges

embedding, all k-edges can be embedded in a (2s)-page book. Specially, if s = d, k-edges can
be embedded in 2d pages. Then ck + id + k = s + id ≡ (i + 1)d (mod n) and id ∈ Cid (see
Figure 6).

Claim 5 All 1-edges can be embedded in three pages.
Proof The edge set E[Ci′ , C(i+1)′ ], i′ = 0′, 1′, · · · , (k−2), and E[C(k−1)′ , C0′ ] can be embed-

ded in three pages without crossing. When i′ is even or odd, E[Ci′ , C(i+1)′ ] (i′ from 0′ to (k −
2)′, i′ is even or odd) can be embedded in one page. The edge (n − 1, 0) needs another page
(see Figure 11).

Combining the above properties and claims, P (n, k) can be embedded in 2s + 1 pages if
d �= 1.
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Proof of Corollary 1.2 When k = 2 and s = 1, all k-edges can be embedded in two pages
and 1-edges can be embedded in one of pages of the k-edges. By Lemma 2.1, the embedding of
P (n, 2) needs 3 pages.

Proof of Theorem 1.4 Let C0 = {0, 2, · · · , n − 1} and C1 = {n − 2, n − 4, · · · , 1} be
the ordered vertex set of V1, C0 ∩ C1 = ∅, and C0 ∪ C1 = V1. We put Ci in the line with the
ordering of C0, C1. So all vertices of V1 are assigned.

Denote the vertex ordering of V1 by β. By Fact 2.1, we have an ordering ββ′ of V (P (n, k)).
Therefore, each vertex of P (n, k) is assigned in the spine.

Note that 1-edges can be embedded in two pages. Next we embed k-edges.
The edge set {(2i, 2i + k)} with i ∈ [

n−k
2 − 1

] ∪ {0} can be embedded in one page, and the
edge set {1 + 2i, 1 + 2i + k} with i ∈ [

n−k
2 − 1

]∪ {0} can also be embedded in one page. Edges
in the edge set {(n − k + 2i, 2i)} with i ∈ [

k+1
2 − 1

] ∪ {0} (denoted by A1) cross each other.
Edges in the edge set {(n − 2i, n − 2i + k)} with i ∈ [

k−1
2

]
(denoted by A2) also cross each

other, while A1, A2 do not cross each other. Since max{|A1|, |A2|} = k+1
2 , k-edges at most need

k+1
2 + 2 pages to be embedded.

By Lemma 2.1, P (n, k) can be embedded in k+1
2 + 3 pages.

3 Conclusion

The connected graph G can be embedded in one page if and only if G is outplanar, and in
two pages if and only if G is a subgraph of a Hamiltonian planar graph. So for a connected
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graph which is not an outplanar or a subhamiltonian planar graph, we have pn(G) ≥ 3. A
graph is planar if and only if it does not contain subdivision of either K3,3 or K5, or it has no
Kuratowski minor (a minor which is isomorphic to K3,3 or K5). The general Peterson graph
is not a planar graph for k �= 1. For example, K5 is a minor of P (5, 2), so pn(P (n, k)) ≥ 3.
In this paper, we completely describe the upper bounds of pn(P (n, k)), and in some situation,
pn(P (n, k)) = 3, which is the best possible.

Acknowledgements The authors are grateful to the referees for their valuable comments
and suggestions which significantly helped to improve the paper. Also, they are thankful to the
referees and editors for their help.

References

[1] Bondy, J. A. and Murty, U. S. R., Graph Theory with Application, Macmillan, London, 1976.

[2] Bilski, T., Optimum embedding of complete graphs in books, Discrete Math., 182, 1998, 21–28.

[3] Chung, F. R. K., Leighton, F. T. and Rosenberg, A. L., Embedding graph in books: A layout problem
with applications to VLSI design, SIAM J. Algebr. Discrete Methods, 8(1), 1987, 33–58.

[4] Endo, T., The page number of toroidal graphs is at most seven, Discrete Math., 175, 1997, 87–96.

[5] Nakamoto, A. and Ozeki, K., Book embedding of toroidal bipartite graphs, SIAM J. Discrete Math., 26
(2), 2012, 661–669.

[6] Fang, J. F. and Lai, K. C., Embedding the incomplete hypercube in books, Inf. Process. Lett., 96, 2005,
1–6.

[7] Enomoto, H., Nakamigawa, T. and Ota, K., On the page number of complete bipartite graphs, J. Comb.
Theory B, 71, 1997, 111–120.

[8] Sperfeld, K., On the page number of complete odd-partite graphs, Discrete Math., 313, 2013, 1689–1696.

[9] Swaminathan, R., Giraraj, D. and Bhatia, D. K., The page number of the class of bandwidth-k graphs is
k − 1, Inf. Process. Lett., 55, 1995, 71–74.

[10] Yang, W. H. and Meng, J. X., Embedding connected double-loop networks with even cardinality in books,
Appl. Math. Lett., 22, 2009, 1458–1461.

[11] Garey, M. R., Johnson, D. S., Miller, G. L. and Papadimitrion, C. H., The complexity of coloring circular
arcs and chords, SIAM J. Algebr. Discrete Methods, 1(2), 1980, 216–217.

[12] Kapoor, N., Russell, M., Stojmenovic, I. and Zomaya, A. Y., A genetic algorithm for finding the page
number of interconnection networks, JPDC, 62, 2002, 267–283.

[13] Shahrokhi, F. and Shi, W., On crossing sets, disjiont sets and page number, J. Algorithms, 34, 2000,
40–53.

[14] Wood, D. R., Degree constrained book embeddings, J. Algorithms, 45, 2002, 144–154.

[15] Watkins, M. E., A theorem on Tait colorings with an application to generalized Petersen graphs, J. Comb.
Theory, 6, 1969, 152–164.

[16] Bemhart, F. and Kainen, B., The book thickness of a graph. J. Comb. Theory B, 27, 1979, 320–331.

[17] Yannakakis, M., Embedding planar graph in four pages. J. Comput. Syst. Sci., 38, 1989, 36–37.

[18] Ollmann, L. T., On the book thicknesses of various graphs, in Hoffman, F., Levow, R. B. and Thomas, R.
S. D., editors, Proc. 4th Southeastern Conference on Combinatorics, Graph Theory and Computing, Vol.
VIII of Congr. Numer., Utilitas Math., 1973.


