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The Expansion of a Wedge of Gas into Vacuum with

Small Angle in Two-Dimensional Isothermal Flow∗
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Abstract In this paper, the authors consider the expansion problem of a wedge of gas into
vacuum for the two-dimensional Euler equations in isothermal flow. By the bootstrapping
argument, they prove the global existence of the smooth solution through the direct method
in the case 0 < θ ≤ θ = arctan 1√

2+
√

5
, where θ is the half angle of the wedge. Furthermore,

they get the uniform C1,1 estimates of the solution to the expansion problem.
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1 Introduction

In this paper, we consider the two-dimensional isentropic compressible Euler equations⎧⎪⎨⎪⎩
ρt + (ρu)x + (ρv)y = 0,

(ρu)t + (ρu2 + p)x + (ρuv)y = 0,

(ρv)t + (ρuv)x + (ρv2 + p)y = 0,

(1.1)

where (u, v) and ρ denote the velocity and the density, respectively, while the pressure p is
given by p(ρ) = ρ for the isothermal case. For the Riemann initial data, we may seek the
self-similar solutions (u, v, ρ) = (u, v, ρ)(ξ, η)

(
ξ = x

t , η = y
t

)
, for the reason that (1.1) and the

Riemann initial data are invariant under the stretch (x, y, t) → (kx, ky, kt) (k > 0). This kind
of initial value problem is called the two-dimensional Riemann problem. The Riemann problem
in general is very complicated. A simpler situation is the expansion problem of a wedge of gas
into vacuum.

This problem has been an interesting problem for a long time. In [6], Dai and Zhang
used the characteristic decomposition method to establish the global smooth solution for the
expansion problem of the pressure gradient system. In [14], by the hodograph transformation
and the characteristic decompositions of characteristic angles, Li and Zheng obtained various
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priori estimates and constructed classical self-similar solutions to the interaction of two planar
rarefaction waves for the two-dimensional polytropic Euler equations. In [12], Li, Yang and
Zheng developed the direct approach to recover all the properties of the solutions obtained
by the hodograph transformation of Li and Zheng [14]. They obtained the existence of the
solution for θ < θ < π

2 and γ > 1. In [18], by the characteristic decompositions and the
special symmetric structure of the characteristic forms, Zhao proved the global existence of the
solution through the direct approach for 0 < θ ≤ θ. In [7], Hu, Li and Sheng investigated the
two-dimensional isothermal Euler equations and obtained the existence of the global solution
for θ < θ < π

2 . For more related results, readers can see the survey papers (see [1–5, 8–11,
15–17]).

In this paper, we prove the global existence of the solution to the expansion problem of
a wedge of gas into vacuum to the two-dimensional isothermal Euler equations by the direct
method in the case 0 < θ ≤ θ, where θ is the half angle of the wedge. Our research relies on the
bootstrapping argument and the analysis of α, β instead of c for the reason that c = 1 for the
isothermal flow. This paper is organized as follows. In Section 2, we give some preliminaries,
including the characteristic forms of the isothermal Euler equations and some characteristic
decompositions of the inclination angle (α, β). In Section 3, the expansion problem of a wedge
of gas into vacuum is considered, and the main results are obtained.

Here is a list of our notations:

δ=
α−β

2
, σ=

α+β

2
, m1 =α− π

4
, m2 = −β− π

4
, M =

π

4
−θ,

∂± = ∂ξ+Λ±∂η, ∂
+

= cosα∂ξ+sinα∂η, ∂
−

= cosβ∂ξ+sinβ∂η.

2 Preliminaries

Consider the two-dimensional isentropic isothermal compressible Euler equations (1.1). For
the smooth self-similar solutions, the system (1.1) can be written as⎧⎪⎨⎪⎩

Uqξ + V qη + q(uξ + vη) = 0,

Uuξ + V uη + qξ = 0,

Uvξ + V vη + qη = 0,

(2.1)

where (U, V ) = (u − ξ, v − η) is the pseudo-velocity, and q = ln ρ for ρ > 0. The eigenvalues of
(2.1) are

Λ0 =
V

U
, Λ± =

UV ±√
U2 + V 2 − 1

U2 − 1
. (2.2)

The curves C0 : dη
dξ =Λ0 and C± : dη

dξ =Λ± are the (pseudo-)flow characteristics and the (pseudo-)
wave characteristics of (2.1), respectively.

We further assume that the flow is ir-rotational, i.e., uη = vξ. Then (2.1) can be rewritten
as {

(1 − U2)uξ − UV (uη + vξ) + (1 − V 2)vη = 0,

uη − vξ = 0
(2.3)
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supplemented by Bernoulli’s law (see [13]):

U2 + V 2

2
+ ln ρ = −ϕ, ϕξ = U, ϕη = V. (2.4)

The characteristic forms of the system are ∂±u + Λ∓∂±v = 0. As in [14] and [12], let α and β

be the inclination angle variables of wave characteristics, that is,

tan α = Λ+, tan β = Λ−. (2.5)

Then, for the convenience of solving the gas expansion problem, we choose⎧⎪⎨⎪⎩
U = −cosσ

sin δ
,

V = − sinσ

sin δ

or

⎧⎪⎨⎪⎩
u = ξ − cosσ

sin δ
,

v = η − sin σ

sin δ
.

(2.6)

Then, using (2.6), we get ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂
+
u = cosα +

cosβ∂
+
α − cosα∂

+
β

2 sin2 δ
,

∂
+
v = sin α +

sinβ∂
+

α − sin α∂
+
β

2 sin2 δ
,

∂
−

u = cosβ +
cosβ∂

−
α − cosα∂

−
β

2 sin2 δ
,

∂
−

v = sin β +
sinβ∂

−
α − sin α∂

−
β

2 sin2 δ
.

(2.7)

Then, we have {
∂

+
α = cos(2δ)(−2 sin2 δ + ∂

+
β),

∂
−

β = cos(2δ)(2 sin2 δ + ∂
−

α).
(2.8)

In addition, we cite the following commutator relation of ∂
±

from [12–13] and the charac-
teristic decompositions in [7].

Lemma 2.1 (Commutator Relation of ∂
±

) For any C2 smooth function I(ξ, η), there
holds

∂
−

∂
+
I − ∂

+
∂
−

I =
1

sin(2δ)
{(cos(2δ)∂

+
β − ∂

−
α)∂

−
I − (∂

+
β − cos(2δ)∂

−
α)∂

+
I}. (2.9)

Lemma 2.2 For the inclination angles α and β, we have⎧⎪⎨⎪⎩
∂

+
∂
−

α + M1∂
−

α =
1
2

sin(2δ)(3 tan2 δ − 1)∂
+
α,

∂
−

∂
+
β + M2∂

+
β =

1
2

sin(2δ)(3 tan2 δ − 1)∂
−

β,

(2.10)

where ⎧⎪⎪⎨⎪⎪⎩
M1 =

1
sin(2δ)

{−8 sin6 δ − ∂
−

α + (1 − 2 sin2 δ cos(2δ))∂
+
β},

M2 =
1

sin(2δ)
{−8 sin6 δ + ∂

+
β − (1 − 2 sin2 δ cos(2δ))∂

−
α}.
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Lemma 2.3 For the inclination angle σ of Λ0-characteristics, we have{
∂
−

∂
+
σ + N1∂

+
σ = tan δ · a(δ)∂

−
σ,

∂
+

∂
−

σ + N2∂
−

σ = tan δ · a(δ)∂
+
σ,

(2.11)

where

N1 = tan δ(1 − 4 sin2 δ) +
1

cos2 δ

(1
2

tan δ cos(2δ) +
1

sin(2δ)
(∂

+
σ − cos(2δ)∂

−
σ)

)
,

N2 = tan δ(1 − 4 sin2 δ) +
1

cos2 δ

(1
2

tan δ cos(2δ) − 1
sin(2δ)

(∂
−

σ − cos(2δ)∂
+
σ)

)
and

a(δ) =
1
2

cos2 δ
(

tan2 δ − 1
2 +

√
5

)
(tan2 δ + 2 +

√
5).

Introduce θ by tan2 θ = 1
2+

√
5
. Then, we have a(δ) > 0 if δ > θ.

Lemma 2.4 For the inclination angles α and β (α − β �= π
2 , π), we have⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂
−( −∂

+
α

cos(2δ)

)
=

−∂
+
α

cos(2δ)

(
− (2 + cos(2δ)) tan δ + f1

−∂
+
α

cos(2δ)
+ f2

∂
−

β

cos(2δ)

)
,

∂
+
( ∂

−
β

cos(2δ)

)
=

∂
−

β

cos(2δ)

(
− (2 + cos(2δ)) tan δ + f1

∂
−

β

cos(2δ)
+ f2

−∂
+

α

cos(2δ)

)
,

(2.12)

where

f1 =
1

sin(2δ)
, f2 =

cos2(2δ) + 2 sin2 δ

sin(2δ)
.

3 The Gas Expansion Problem to the Isothermal Euler Equations for
the Case That θ ∈ (0, θ]

In this section, by the characteristic decompositions in the previous section, we discuss the
expansion problem of a wedge of gas into vacuum directly in the (ξ, η) plane.

3.1 The expansion problem of a wedge of gas into vacuum

For convenience, we place the wedge of gas symmetrically with respect to the x-axis and
the sharp corner at the origin, as in Figure 3.1(a). Let θ ∈ (

0, π
2

)
be the wedge half-angle

and l1, l2 denote the two edges of the wedge. At the time t = 0, the wedge is full of the gas,
and vacuum is outside. Then the gas would expand into the vacuum. This problem is then
formulated mathematically as seeking the solution of (2.3) with the initial data

(ρ, u, v)(0, x, y) =

{
(ρ0, 0, 0), −θ < ω < θ,

vacuum, otherwize,
(3.1)

where ρ0 > 0 is a constant, and ω = arctan y
x is the polar angle. In fact, this problem can be

considered as a two-dimensional Riemann problem of (2.3) with two pieces of initial data (3.1).
Through the analysis in the above subsection, the gas away from the wedge expands uniformly
to infinity as planar rarefaction waves R1 and R2 which satisfy

(ρ, u, v)(t, x, y) =
{

(ρ1, 0, 0), ζ > 1,
(ρ, u, v)(ζ), −∞ < ζ ≤ 1,

(3.2)
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)
(              )  , , 

0)
(  )

(a) Initial data (b) Interaction of rarefaction waves

Figure 3.1 The expansion of a wedge of gas

where ζ = n1ξ + n2η, with (n1, n2) = (sin θ,− cos θ) and (n1, n2) = (sin θ, cos θ), respectively
(see Figure 3.1(b)). Then the rarefaction waves R1 and R2 emitting from the initial disconti-
nuities l1 and l2 begin to interact at P

(
1

sin θ , 0
)

in the (ξ, η) plane. The wave interaction region
D is formed adjacent to the planar rarefaction waves with boundaries k1 and k2 (see [7]).

Gas Expansion Problem Find a solution of (2.3) and (3.1) inside the wave interaction
region D, subject to the boundary values on k1 and k2, which are determined continuously from
the rarefaction waves R1 and R2.

3.2 The existence of local solutions

The equations (2.8) can be reduced to a diagonal form{
∂

+
(−β + cot δ) = cos(2δ),

∂
−

(α + cot δ) = cos(2δ).
(3.3)

Let (ξδ, ξδ) = {δ = δ} ∩ k1, and Dδ (δ is between θ and max
D

{δ}) be the region enclosed by

the three curves k1, k2 and ξ = ξδ (see Figure 3.2). Then, for the boundary data

_

+

_

Figure 3.2 The domain Dδ
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α|k1 = θ, β|k2 = −θ, (3.4)

we get the following result as Lemma 5.2 in [7].

Theorem 3.1 (Local Existence) There is a δ0 > 0 such that the C1 solution of (3.3) and
(3.4) exists uniquely in the region Dδ0 , where δ0 depends only on the C0 and C1 norm of α, β

on the boundaries k1 and k2.

3.3 Estimates for the case that θ ∈ (0, θ]

Lemma 3.1 (Boundary Data Estimates (see [7])) If 0 < θ ≤ θ, there holds

2θ ≤ (α − β)|ki ≤
π

2
, i = 1, 2. (3.5)

Lemma 3.2 Assuming that the solution (α, β) ∈ C1, we have that −∂
+

α
cos(2δ) and ∂

−
β

cos(2δ) are
positive and bounded in Dδ.

Here we note that −∂
+

α
cos(2δ) = 2 sin2 δ−∂

+
β and ∂

−
β

cos(2δ) = 2 sin2 δ+∂
−

α, which can be obtained
by (2.8).

Proof By (3.4), we get ∂
−

α = 0 and ∂
+
β = 0 on k1 and k2, respectively. So, we obtain that

∂
−

β
cos(2δ) > 0 and −∂

+
α

cos(2δ) > 0 on k1 and k2, respectively. Using the characteristic decompositions

(2.12), we get ∂
−

β
cos(2δ) > 0 and −∂

+
α

cos(2δ) > 0 in Dδ,

X = max
{

max
Dδ

[
(2 + cos(2δ)) sin(2δ) tan δ,

(2 + cos(2δ)) sin(2δ) tan δ

cos2(2δ) + 2 sin2 δ

]
,

max
k2

|2 sin2 δ|, max
k1

|2 sin2 δ|
}

+ 2. (3.6)

X = max
Dδ

[
(2 + cos(2δ)) sin(2δ) tan δ,

(2 + cos(2δ)) sin(2δ) tan δ

cos2(2δ) + 2 sin2 δ

]
+ 2. (3.7)

Next, we prove that 0 < −∂
+

α
cos(2δ) < X and 0 < ∂

−
β

cos(2δ) < X . Suppose that ξ = ξδ1 is the first

time that ∂
−

β
cos(2δ) = X or −∂

+
α

cos(2δ) = X . Without loss of generality, we assume that −∂
+

α
cos(2δ) = X

at the point P1 on the line ξ = ξδ1 . From the first equation of (2.12), we have

∂
−( −∂

+
α

cos(2δ)

)∣∣∣
P1

=
{ −∂

+
α

cos(2δ)

(
− (2 + cos(2δ)) tan δ + f1

−∂
+
α

cos(2δ)
+ f2

∂
−

β

cos(2δ)

)}∣∣∣
P1

= X
{[

− (2 + cos(2δ)) tan δ + f2
∂
−

β

cos(2δ))

]∣∣∣
P1

+ f1|P1X
}

> 0.

Note that the direction of ∂
−

is the direction from Dδ to the boundary. Thus, we have

∂
−( −∂

+
α

cos(2δ)

)
< 0

at point P1. It leads to a contradiction. Then, we have 0 < −∂
+

α
cos(2δ) < X and 0 < ∂

−
β

cos(2δ) < X .
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Introducing new variables m1 = α − π
4 and m2 = −β − π

4 , we get⎧⎪⎪⎪⎨⎪⎪⎪⎩
− ∂

+
m1 = − ∂

+
α

cos(2δ)
cos(2δ) = (−m1 − m2)F (m1, m2),

− ∂
−

m2 =
∂
−

β

cos(2δ)
cos(2δ) = (−m1 − m2)G(m1, m2),

(3.8)

where

F (m1, m2) =
sin(π

2 − 2δ)
π
2 − 2δ

−∂
+
α

cos(2δ)
, G(m1, m2) =

sin(π
2 − 2δ)

π
2 − 2δ

∂
−

β

cos(2δ)
. (3.9)

Then, we have the results as follows.

Lemma 3.3 If 0 < θ ≤ θ, |m1| ≤ M and |m2| ≤ M , then F (m1, m2) and G(m1, m2) are
positive and bounded in Dδ.

Proof Because |m1| ≤ M , |m2| ≤ M , we have

2θ − π

2
≤ π

2
− 2δ ≤ π

2
− 2θ. (3.10)

Then, we have sin( π
2 −2δ)

π
2 −2δ > 0. From Lemma 3.2, considering the fact that sinx and x are

equivalent infinitely small, we get our result in this lemma.

Theorem 3.2 Assuming that there is a C1 solution in Dδ, 0 < θ ≤ θ, then we have

θ ≤ α ≤ π

2
− θ, −π

2
+ θ ≤ β ≤ −θ. (3.11)

Moreover, the above inequalities must be strict in the interior of Dδ, that is,

θ < α <
π

2
− θ, −π

2
+ θ < β < −θ. (3.12)

Proof Considering M = π
4−θ, then, we have that proving the inequalities (3.12) is equivalent

to proving |m1| < M and |m2| < M . In view of the boundary data estimates (3.5), according
to the bootstrapping argument, we can get (3.12) if we show |m1| < M, |m2| < M under the
assumption that |m1| ≤ M and |m2| ≤ M . Consequently, we only need to prove (3.12) holds
provided that |m1| ≤ M and |m2| ≤ M .

From (3.4), through the characteristic decompositions, we have that there exists a neigh-
borhood ω1 of k1 such that |m2| < M in ω1, and there exists a neighborhood ω2 of k2 such
that |m1| < M in ω2. Here, ω1 and ω2 are located in the interior of Dδ. By Lemma 3.1, we
get that −m1 − m2 = π

2 − 2δ > 0 on k1 and k2. From Lemma 3.3, we get −∂
+
m1|k1 > 0 and

−∂
−

m2|k2 > 0. According to −∂
+

and −∂
−

pointing toward the interior of Dδ on k1 and k2,
respectively, and m1 = −M , m2 > −M on k1 and m1 > −M , m2 = −M on k2 except P , we
get the results.

We select a Λ− characteristic curve k̃1 in ω1 and a Λ+ characteristic curve k̃2 in ω2, taking
them as the new boundaries and the data on them as the initial data in the bootstrapping
argument.
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Next, we would prove |m1| < M and |m2| < M in the interior of Dδ. Otherwise, there
exist some points at which |m1| ≥ M or |m2| ≥ M . Suppose that P1(ξ1, η1) is the first point
at which |m1| = M or |m2| = M along the Λ+ characteristic curve C1 emitting from the point
P0(ξ0, η0) on k̃1. Noticing (3.8) can be rewritten as

−∂
+
m1 + m1F = −m2F, (3.13)

and solving the equation along C1 from P0 to P1, we get

m1(ξ1, η1) = e−
∫

C1
Fds

m1(ξ0, η0) + e−
∫

C1
Fds

∫
C1

F e
∫

C1
Fds(−m2)ds. (3.14)

In view of d(e
∫

Fds) = F e
∫

Fdsds and Lemma 3.3 and the choice condition of P1, we have

|m1(ξ1, η1)| < e−
∫

C1
Fds

M + Me−
∫

C1
Fds(e

∫
C1

Fds − 1) < M. (3.15)

Similarly, utilizing the second equation of (3.8), we get |m2(ξ1, η1)| < M . It leads to a contra-
diction.

From Theorem 3.2, we have θ < δ ≤ π
2 −θ. Considering (3.7), we can get that X = C(θ, γ) is

a constant independent of δ. By (2.7)–(2.8), the gradient estimates can be obtained by Lemma
3.2 directly, similar to [7].

Lemma 3.4 ∂
±

u, ∂
±

v, ∂
±

α and ∂
±

β are all uniformly bounded for the C1 solution in
Dδ.

Lemma 3.5 Assume that there is a C1 solution in Dδ, where the system is hyperbolic
(α − β �= 0, π). Then the C1 norm of α, β, u, v have a uniform bound C = C(θ, γ):

‖(α, β, u, v)‖C1(Dδ) ≤ C. (3.16)

Theorem 3.3 (C1,1 Estimates) Assume that there exists a smooth solution in the domain
Dδ. Then, there exists a constant C(θ, γ), such that

‖(α, β, u, v)‖C1,1(Dδ) ≤ C. (3.17)

Proof From Lemma 3.5 and (3.16), it suffices to prove that |�2
α| < C, |�2

β| < C,
where �2 = (∂

+
∂

+
, ∂

−
∂

+
, ∂

+
∂
−

, ∂
−

∂
−

). From the first equation in (2.10) and (3.16), we get
|∂+

∂
−

α| < C easily. By the commutator relation (2.9), we get

|∂−
∂

+
α| < C|∂−

α| + C|∂+
α| < C. (3.18)

Using (2.9) for I = ∂
+
α, we get

∂
−

∂
+
∂

+
α = ∂

+
∂
−

∂
+
α + W (α, β, �α, �β, ∂

−
∂

+
α, ∂

+
∂

+
α). (3.19)

From (2.8)–(2.10) and (3.18), we get a first-order equation of ∂
+
∂

+
α,

∂
−

(∂
+
∂

+
α) = P (α, β, �α)∂

+
∂

+
α + Q(α, β, �α), (3.20)
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+

Λ−

Λ

_π
4

Figure 3.3 Convexity types of characteristics as 0 < θ ≤ θ

where P and Q are algebraic functions of α, β, �α. Integrating (3.20) along the direction ∂
−

and considering (3.16), we get that |∂+
∂

+
α| < C. Similarly, we get that |∂−

∂
−

α| < C. The
results of β can be obtained in a similar way.

Through the prior estimates, we could extend the local solution to the global smooth solu-
tion.

Theorem 3.4 (Global Existence) There exists a unique global smooth solution to the
interaction of two rarefaction waves with the interaction (half) angle θ ∈ (0, θ]. As shown
in Figure 3.3, the Λ± characteristics are concave and convex, respectively, before they hit the
curve δ = π

4 , and the Λ± characteristics are convex and concave, respectively, after they cross
the curve δ = π

4 .

Proof The proof follows from the previous results, including Theorems 3.1–3.3 and the
fact that the curve ξ = ξδ is non-characteristic. Here, we omit the details since they are similar
to those in [6, 14]. Differentiating (2.5), we get⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂
+
Λ+ = sec2 α∂

+
α = − sec2 α cos(2δ)

−∂
+

α

cos(2δ)
,

∂
−

Λ− = sec2 β∂
−

β = sec2 β cos(2δ)
∂
−

β

cos(2δ)
.

(3.21)

By Lemma 3.2, we get the convexity types immediately.

Remark 3.1 The global existence of the solution to the expansion problem of the isothermal
Euler equations for 0 < θ < π

2 is obtained from the results above and Theorem 5.8 in [7].
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