
Chin. Ann. Math.
37B(3), 2016, 405–418
DOI: 10.1007/s11401-016-0970-8

Chinese Annals of
Mathematics, Series B
c© The Editorial Office of CAM and

Springer-Verlag Berlin Heidelberg 2016

Brake Subharmonic Solutions of Subquadratic

Hamiltonian Systems∗

Chong LI1

Abstract The author mainly uses the Galerkin approximation method and the iteration
inequalities of the L-Maslov type index theory to study the properties of brake subharmonic
solutions for the Hamiltonian systems ż(t) = J∇H(t, z(t)), where H(t, z) = 1

2
(B̂(t)z, z) +

Ĥ(t, z), B̂(t) is a semipositive symmetric continuous matrix and Ĥ is unbounded and not
uniformly coercive. It is proved that when the positive integers j and k satisfy the certain
conditions, there exists a jT -periodic nonconstant brake solution zj such that zj and zkj

are distinct.
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1 Introduction and the Main Results

Consider the Hamiltonian systems

ż(t) = J∇H(t, z(t)), ∀z ∈ R
2n, ∀t ∈ R, (1.1)

where J =
(

0 −In

In 0

)
is the standard symplectic matrix, In is the unit matrix of order n,

H ∈ C2(R × R
2n, R) and ∇H(t, z) is the gradient of H(t, z) with respect to the space variable

z. We denote the standard norm and inner product in R
2n by | · | and (·, ·), respectively.

Suppose that H(t, z) = 1
2 (B̂(t)z, z)+ Ĥ(t, z) and H ∈ C2(R×R

2n, R) satisfies the following
conditions:

(H1) Ĥ(T + t, z) = Ĥ(t, z) for all z ∈ R
2n, t ∈ R;

(H2) Ĥ(t, z) = Ĥ(−t, Nz) for all z ∈ R
2n, t ∈ R, N =

(−In 0
0 In

)
;

(H3) Ĥ ′′(t, z) > 0 for all z ∈ R
2n\{0}, t ∈ R;

(H4) There exist constants a1, a2 > 0 and α ∈ (0, 1) such that

|∇Ĥ(t, z)| ≤ a1|z|α + a2 for all z ∈ R
2n, t ∈ [0, T ];

(H5) lim
|z|→+∞

|z|−2α
∫ T

0 Ĥ(t, z)dt = +∞;

(H6) B̂(t) is a symmetrical continuous matrix, |B̂|C0 ≤ β0 for some β0 > 0, and B̂(t) is a
semi-positively definite for all t ∈ R;

(H7) B̂(T + t) = B̂(t) = B̂(−t), B̂(t)N = NB̂(t) for all t ∈ R.

Manuscript received March 19, 2014. Revised December 22, 2014.
1Basic Department, Beijing Union University, Beijing 100101, China. E-mail: lichong@buu.edu.cn
∗This work was supported by the National Natural Science Foundation of China (Nos. 11501030,
11226156) and the Beijing Natural Science Foundation (No. 1144012).



406 C. Li

Recall that a T -periodic solution (z, T ) of (1.1) is called a brake solution if z(t + T ) = z(t)
and z(t) = Nz(−t), and the later is equivalent to z

(
T
2 + t

)
= Nz

(
T
2 − t

)
, in which T is

called the brake period of z. Up to the author’s knowledge, H. Seifert firstly studied brake
orbits in the second-order autonomous Hamiltonian systems in [27] of 1948. Since then, many
studies have been carried out for brake orbits of the first-order and second-order Hamiltonian
systems. For the minimal periodic problem, multiple existence results about brake orbits for
the Hamiltonian systems and more details about brake orbits, one can refer to the papers (see
[1, 3–6, 11–13, 20, 22, 25, 29]) and the references therein. S. Bolotin proved first in [5] (also
see [6]) of 1978 the existence of brake orbits in the general setting. K. Hayashi in [13], H. Gluck
and W. Ziller in [11], and V. Benci in [3] in 1983–1984 proved the existence of brake orbits
of second-order Hamiltonian systems under certain conditions. In 1987, P. Rabinowitz in [25]
proved the existence of brake orbits of the first-order Hamiltonian systems. In 1989, V. Benci
and F. Giannoni gave a different proof of the existence of one brake orbit in [4]. In 1989, A.
Szulkin in [29] proved the existence of brake orbits of the first-order Hamiltonian systems under
the

√
2-pinched condition. E. van Groesen in [12] of 1988 and A. Ambrosetti, V. Benci, Y.

Long in [1] of 1993 also proved the multiplicity result about brake orbits for the second order
Hamiltonian systems under different pinching conditions. Without pinching conditions, in [22]
Y. Long, D. Zhang and C. Zhu proved that there exist at least two geometrically distinct brake
orbits in every bounded convex symmetric domain in R

n for n ≥ 2. Recently, C. Liu and D.
Zhang in [20] proved that there exist at least

[
n
2

]
+1 geometrically distinct brake orbits in every

bounded convex symmetric domain in R
n for n ≥ 2, and there exist at least n geometrically

distinct brake orbits on the nondegenerate domain. D. Zhang studied the minimal period
problem for brake orbits of nonlinear autonomous reversible Hamiltonian systems in [30].

For the non-autonomous Hamiltonian systems, and the periodic boundary (brake solution)
problems, since the Hamiltonian function H is T -periodic in the time variable t, if the system
(1.1) has a T -periodic solution (z1, T ), one hopes to find the jT -periodic solution (zj , jT ) for
integer j ≥ 1, for example, (z1, jT ) itself is a jT -periodic solution. The subharmonic solution
problem asks when the solutions z1 and zj are geometrically distinct. More precisely, in the
case of brake solutions, z1 and zj are distinct if kT

2 ∗ z1(·) ≡ z1(kT
2 + ·) �= zj(·) for any integer

k. Below we remind that the L0-indices of the two solutions z1 and (kT ) ∗ z1 for any k ∈ Z in
the interval

[
0, T

2

]
are the same.

Theorem 1.1 Suppose that H ∈ C2(R × R
2n, R) satisfies (H1)–(H7), and then for each

integer 1 ≤ j < 2π
β0T , there is a jT -periodic nonconstant brake solution zj of (1.1) such that zj

and zkj are distinct for k ≥ 5 and kj < 2π
β0T . Furthermore, {zkp | p ∈ N} is a pairwise distinct

brake solution sequence of (1.1) for k ≥ 5 and 1 ≤ kp < 2π
β0T .

Especially, if B̂(t) ≡ 0, then 2π
β0T = +∞. Therefore, one can state the following theorem.

Theorem 1.2 Suppose that H ∈ C2(R × R
2n, R) with B̂(t) ≡ 0 satisfies (H1)–(H5), and

then for each integer j ≥ 1, there is a jT -periodic nonconstant brake solution zj of (1.1).
Furthermore, given any integers j ≥ 1 and k ≥ 5, zj and zkj are distinct brake solutions of
(1.1), and in particularly, {zkp | p ∈ N} is a pairwise distinct brake solution sequence of (1.1).

The first result on subharmonic periodic solutions for the Hamiltonian systems ż(t) =
J∇H(t, z(t)), where z ∈ R

2n and H(t, z) is T -periodic in t, was obtained by P. Rabinowitz
in his pioneer work [26]. Since then, many new contributions have appeared (see, for example,
[8–9, 19, 21, 28] and the references therein). Especially, in [9], I. Ekeland and H. Hofer proved
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that under a strict convex condition and a superquadratic condition, the Hamiltonian system
ż(t) = J∇H(t, z(t)) possesses a subharmonic solution zk for each integer k ≥ 1 and all of these
solutions are pairwise geometrically distinct. In [19], C. Liu obtained a result of subharmonic
solutions for the non-convex case by using the Maslov-type index iteration theory. In [14], the
author of this paper and C. Liu obtained a result of brake subharmonic solutions for the su-
perquadratic condition by using the L-Maslov type index iteration theory. For the subquadratic
Hamiltonian systems, P. Rabinowitz [26] proved the existence of subharmonic solutions for the
Hamiltonian system (1.1) under conditions (H4)–(H5) for the special case α = 0. In [28], E. A.
B. Silva obtained the existence of subharmonic solutions for the Hamiltonian system (1.1) un-
der conditions (H4)–(H5), by establishing a new version of a saddle point theorem for strongly
indefinite functionals which satisfy a generalization of the well-known (PS) condition. In this
paper, we mainly use the L-Maslov type index iteration theory to study the brake subharmonic
solutions under the subquadratic conditions.

The main ingredient in proving Theorems 1.1–1.2 is to transform the brake solution problem
into the L0-boundary problem:⎧⎪⎨

⎪⎩
ż(t) = J∇H(t, z(t)), ∀z ∈ R

2n, ∀t ∈
[
0,

T

2

]
,

z(0) ∈ L0, z
(T

2

)
∈ L0,

(1.2)

where L0 = {0} ⊕ R
n ∈ Λ(n). Λ(n) is the set of all linear Lagrangian subspaces in (R2n, ω0),

where the standard symplectic form is defined by ω0 =
n∑

i=1

dxi∧dyi. A Lagrangian subspace L of

R
2n is an n dimensional subspace satisfying ω0|L = 0. Then we use the Galerkin approximation

methods to get a critical point of the action functional which is also a solution of (3.1) with a
suitable L0-index estimate (see Theorem 3.1 below).

The L-Maslov type index theory for any L ∈ Λ(n) was studied in [17] by the algebraic
methods. In [22], Y. Long, D. Zhang and C. Zhu established two indices μ1(γ) and μ2(γ)
for the fundamental solution γ of a linear Hamiltonian system by the methods of functional
analysis which are special cases of the L-Maslov type index iL(γ) for Lagrangian subspaces
L0 = {0} ⊕ R

n and L1 = R
n ⊕ {0} up to a constant n. In order to prove Theorem 1.1, we

need to consider the problem (3.1). The iteration theory of the L0-Maslov type index theory
was developed in [18] and [20], which helps us to distinguish solutions zj from zkj in Theorems
1.1–1.2.

This paper is divided into 3 sections. In Section 2, we give an introduction to the Maslov-
type index theory for symplectic paths with Lagrangian boundary conditions and an iteration
theory for the L0-Maslov type index theory. In Section 3, we give the proofs of Theorems
1.1–1.2.

2 Preliminaries

In this section, we briefly recall the Maslov-type index theory for symplectic paths with
Lagrangian boundary conditions and an iteration theory for the L0-Maslov type index theory.
All the details can be found in [16–18, 20].

We denote the 2n-dimensional symplectic group Sp(2n) by

Sp(2n) = {M ∈ L (R2n) | MT JM = J},
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where L (R2n) is the set of all real 2n × 2n matrices, and MT is the transpose of matrix M .
Denote by Ls(R2n) the subset of L (R2n) consisting of symmetric matrices. And denote the
symplectic path space by

P(2n) = {γ ∈ C([0, 1], Sp(2n)) | γ(0) = I2n}.

We write a symplectic path γ ∈ P(2n) in the following form:

γ(t) =
(

S(t) V (t)
T (t) U(t)

)
, (2.1)

where S(t), T (t), V (t) and U(t) are n×n matrices. The n vectors that come from the column of
the matrix

(
V (t)
U(t)

)
are linearly independent and they span a Lagrangian subspace of (R2n, ω0).

Particularly, at t = 0, this Lagrangian subspace is L0 = {0} ⊕ R
n.

Definition 2.1 (see [17]) We define the L0-nullity of any symplectic path γ ∈ P(2n) by

νL0(γ) ≡ dim kerL0(γ(1)) := dim kerV (1) = n − rank V (1)

with the n × n matrix function V (t) defined in (2.1).

For L0 = {0} ⊕ R
n, We define the following subspaces of Sp(2n) by

Sp(2n)∗L0
= {M ∈ Sp(2n) | detVM �= 0},

Sp(2n)0L0
= {M ∈ Sp(2n) | detVM = 0},

Sp(2n)±L0
= {M ∈ Sp(2n) | ± detVM > 0},

where M =
(

SM VM

TM UM

)
and Sp(2n)∗L0

= Sp(2n)+L0
∪ Sp(2n)−L0

. We denote two subsets of P(2n)
by

P(2n)∗L0
= {γ ∈ P(2n) | νL0(γ) = 0}, P(2n)0L0

= {γ ∈ P(2n) | νL0(γ) > 0}.

We note that rank
(

V (t)
U(t)

)
= n, so the complex matrix U(t) ± √−1V (t) is invertible. We

define a complex matrix function by

Q(t) = (U(t) −√−1V (t))(U(t) +
√−1V (t))−1.

It is easy to see that the matrix Q(t) is a unitary matrix for any t ∈ [0, 1]. We define

M+ =
(

0 In

−In 0

)
, M− =

(
0 Jn

−Jn 0

)
, Jn = diag (−1, 1, · · · , 1).

For a path γ ∈ P(2n)∗L0
, we first adjoin it with a simple symplectic path starting from

J = −M+, that is, we define a symplectic path by

γ̃(t) =

⎧⎪⎨
⎪⎩

I cos
(1 − 2t)π

2
+ J sin

(1 − 2t)π
2

, t ∈
[
0,

1
2

]
,

γ(2t − 1), t ∈
[1
2
, 1

]
.
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Then we choose a symplectic path β(t) in Sp(2n)∗L0
starting from γ(1) and ending at M+ or

M− according to γ(1) ∈ Sp(2n)+L0
or γ(1) ∈ Sp(2n)−L0

, respectively. We now define a joint path
by

γ(t) = β ∗ γ̃ :=

⎧⎪⎨
⎪⎩

γ̃(2t), t ∈
[
0,

1
2

]
,

β(2t − 1), t ∈
[1
2
, 1

]
.

By the definition, we see that the symplectic path γ starts from −M+ and ends at either M+

or M−. As above, we define

Q(t) = (U(t) −√−1V (t))(U (t) +
√−1V (t))−1

for γ(t) =
(

S(t) V (t)

T (t) U(t)

)
. We can choose a continuous function Δ(t) in [0,1] such that

det Q(t) = e2
√−1Δ(t).

By the above arguments, we see that the number 1
π (Δ(1) − Δ(0)) ∈ Z and it does not depend

on the choice of the function Δ(t).

Definition 2.2 (see [17]) For a symplectic path γ ∈ P(2n)∗L0
, we define the L0-index of γ

by iL0(γ) = 1
π (Δ(1) − Δ(0)).

Definition 2.3 (see [17]) For a symplectic path γ ∈ P(2n)0L0
, we define the L0-index of γ

by iL0(γ) = inf{iL0(γ̃) | γ̃ ∈ P(2n)∗L0
, and γ̃ is sufficiently close to γ}.

We know that Λ(n) = U(n)
O(n) , which means that for any linear subspace L ∈ Λ(n), there is an

orthogonal symplectic matrix P =
(

A −B
B A

)
with A ±√−1B ∈ U(n), the unitary matrix, such

that PL0 = L. P is uniquely determined by L up to an orthogonal matrix C ∈ O(n). It means
that for any other choice P ′ satisfying the above conditions, there exists a matrix C ∈ O(n)
such that P ′ = P ( C 0

0 C ) (see [23]). We define the conjugated symplectic path γc ∈ P(2n) of γ

by γc(t) = P−1γ(t)P .

Definition 2.4 (see [17]) We define the L-nullity of any symplectic path γ ∈ P(2n) by

νL(γ) ≡ dim kerL(γ(1)) := dim kerVc(1) = n − rank Vc(1),

where the n× n matrix function Vc(t) is defined in (2.1) with the symplectic path γ replaced by
γc, i.e., γc(t) =

(
Sc(t) Vc(t)
Tc(t) Uc(t)

)
.

Definition 2.5 (see [17]) For a symplectic path γ ∈ P(2n), we define the L-index of γ by
iL(γ) = iL0(γc).

In the case of linear Hamiltonian systems,

ẏ = JB(t)y, ∀y ∈ R
2n, (2.2)

where B ∈ C(R, Ls(R2n)). Its fundamental solution γ = γB is a symplectic path starting from
the identity matrix I2n, i.e., γ = γB ∈ P(2n). We denote

iL(B) = iL(γB), νL(B) = νL(γB).
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Theorem 2.1 (see [17]) Suppose that γ ∈ P(2n) is a fundamental solution of (2.2) with
B(t) > 0. There holds iL(γ) ≥ 0.

Suppose that the continuous symplectic path γ : [0, 2] → Sp(2n) is the fundamental solution
of (2.2) with B(t) satisfying B(t + 2) = B(t) and B(1 + t)N = NB(1 − t). This implies that
B(t)N = NB(−t). By the unique existence theorem of the differential equations, we get

γ(1 + t) = Nγ(1 − t)γ(1)−1Nγ(1), γ(2 + t) = γ(t)γ(2).

We define the iteration path of γ|[0,1] by

γ1(t) = γ(t), t ∈ [0, 1],

γ2(t) =
{

γ(t), t ∈ [0, 1],
Nγ(2 − t)γ(1)−1Nγ(1), t ∈ [1, 2],

γ3(t) =

⎧⎨
⎩

γ(t), t ∈ [0, 1],
Nγ(2 − t)γ(1)−1Nγ(1), t ∈ [1, 2],
γ(t − 2)γ(2), t ∈ [2, 3],

γ4(t) =

⎧⎪⎪⎨
⎪⎪⎩

γ(t), t ∈ [0, 1],
Nγ(2 − t)γ(1)−1Nγ(1), t ∈ [1, 2],
γ(t − 2)γ(2), t ∈ [2, 3],
Nγ(4 − t)γ(1)−1Nγ(1)γ(2), t ∈ [3, 4],

and in general, for k ∈ N, we define

γ2k−1(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

γ(t), t ∈ [0, 1],
Nγ(2 − t)γ(1)−1Nγ(1), t ∈ [1, 2],
· · · · · ·
Nγ(2k − 2 − t)γ(1)−1Nγ(1)γ(2)2k−5, t ∈ [2k − 3, 2k − 2],
γ(t − 2k + 2)γ(2)2k−4, t ∈ [2k − 2, 2k − 1],

γ2k(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

γ(t), t ∈ [0, 1],
Nγ(2 − t)γ(1)−1Nγ(1), t ∈ [1, 2],
· · · · · ·
γ(t − 2k + 2)γ(2)2k−4, t ∈ [2k − 2, 2k − 1],
Nγ(2k − t)γ(1)−1Nγ(1)γ(2)2k−3, t ∈ [2k − 1, 2k].

Recall that (iω(γ), νω(γ)) is the ω-index pair of the symplectic path γ introduced in [21], and
(iL0

ω (γ), νL0
ω (γ)) is defined in [20].

Theorem 2.2 (see [20]) Suppose that ωk = eπ
√−1

k . For odd k we have

iL0(γ
k) = iL0(γ

1) +

k−1
2∑

i=1

iω2i
k

(γ2), νL0(γ
k) = νL0(γ

1) +

k−1
2∑

i=1

νω2i
k

(γ2),

and for even k, we have

iL0(γ
k) = iL0(γ

1) + iL0

ω
k
2
k

(γ1) +

k
2−1∑
i=1

iω2i
k

(γ2),

νL0(γ
k) = νL0(γ

1) + νL0

ω
k
2

k

(γ1) +

k
2 −1∑
i=1

νω2i
k

(γ2),

where ω
k
2
k =

√−1.
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Theorem 2.3 (see [20]) There hold

i1(γ2) = iL0(γ
1) + iL1(γ

1) + n, ν1(γ2) = νL0(γ
1) + νL1(γ

1),

where L1 = R
n ⊕ {0} ∈ Λ(n).

In the following section, we need the following two iteration inequalities.

Theorem 2.4 (see [18]) For any γ ∈ P(2n) and k ∈ N, there hold

iL0(γ
1) +

k − 1
2

(i1(γ2) + ν1(γ2) − n) ≤ iL0(γ
k)

≤ iL0(γ
1) +

k − 1
2

(i1(γ2) + n) − 1
2
ν1(γ2k) +

1
2
ν1(γ2), if k ∈ 2N − 1,

iL0(γ
1) + iL0√−1

(γ1) +
(k

2
− 1

)
(i1(γ2) + ν1(γ2) − n) ≤ iL0(γ

k)

≤ iL0(γ
1) + iL0√−1

(γ1) +
(k

2
− 1

)
(i1(γ2) + n)

− 1
2
ν1(γ2k) +

1
2
ν1(γ2) +

1
2
ν−1(γ2), if k ∈ 2N.

Remark 2.1 From (3.21) of [20] and Proposition B of [22], we have that

iL0(B) ≤ iL0
ω (B) ≤ iL0(B) + n, |iL0(B) − iL1(B)| ≤ n,

where L1 = R
n ⊕ {0} ∈ Λ(n).

3 Proof of Theorems 1.1–1.2

In reference [14], we have proved the following Lemma 3.1.

Lemma 3.1 Suppose that the Hamiltonian function H satisfies (H1)–(H2) and (H7). If(
z, T

2

)
is a solution of the problem (1.2), then (z̃, T ) is a T -periodic solution of the Hamiltonian

system (1.1) satisfying the brake condition z̃
(

T
2 + t

)
= Nz̃

(
T
2 − t

)
, where z̃ is defined by

z̃(t) =

⎧⎪⎨
⎪⎩

z(t), t ∈
[
0,

T

2

]
,

Nz(T − t), t ∈
(T

2
, T

]
.

By this observation, we consider the following Hamiltonian system:⎧⎪⎨
⎪⎩

ż(t) = J∇H(t, z(t)), ∀z ∈ R
2n, ∀t ∈

[
0,

jT

2

]
,

z(0) ∈ L0, z
(jT

2

)
∈ L0,

(3.1)

where j ∈ N. The following result is the first part of Theorem 1.1.

Theorem 3.1 Suppose that H(t, z) ∈ C2(R × R
2n, R) satisfies (H4)–(H6), and then (3.1)

possesses at least one nontrivial solution zj whose L0-index pair (iL0(zj), νL0(zj)) satisfies

iL0(zj) ≤ 1 ≤ iL0(zj) + νL0(zj).

So we get a nonconstant brake solution (z̃j , jT ) with a brake period jT of the Hamiltonian
system (1.1) by Lemma 3.1.
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In order to prove Theorem 3.1, we need the following arguments. For simplicity, we suppose
T = 2. Let X :=

{
z ∈ W

1
2 ,2([0, j], R2n) | z =

∑
l∈Z

e
lπ
j Jtzl, zl ∈ L0, ‖z‖X < +∞}

be the Hilbert

space with the inner product

(u, v)X = j(u0, v0) + j
∑
l∈Z

|l|(ul, vl), ∀u, v ∈ X.

In the following, we use 〈·, ·〉 and ‖·‖ to denote the inner product and the norm in X , respectively.
It is well known that for any z ∈ X , one has z ∈ Lr([0, j], R2n) for any r ∈ [1, +∞), and there
exists a constant cr > 0 such that ‖z‖Lr ≤ cr‖z‖.

We define the linear operators A and B̂ on X by extending the bilinear form

〈Au, v〉 =
∫ j

0

(−Ju̇, v)dt, 〈B̂u, v〉 =
∫ j

0

(B̂(t)u, v)dt.

Then B̂ is a compact self-adjoint operator (see [21]) and A is a self-adjoint operator, i.e.,
〈Au, v〉 = 〈u, A∗v〉 = 〈u, Av〉.

We take the spaces

Xm =
{
z ∈ X | z =

m∑
l=−m

e
lπ
j Jtzl, zl ∈ L0

}
,

X+ =
{
z ∈ X | z =

∑
l>0

e
lπ
j Jtzl, zl ∈ L0

}
,

X− =
{
z ∈ X | z =

∑
l<0

e
lπ
j Jtzl, zl ∈ L0

}
,

X0 = L0,

and X+
m = Xm ∩ X+, X−

m = Xm ∩ X−. We have Xm = X+
m ⊕ X0 ⊕ X−

m. We also know that

〈Az, z〉 =
π

j
‖z‖2, ∀z ∈ X+

m, (3.2)

〈Az, z〉 = −π

j
‖z‖2, ∀z ∈ X−

m. (3.3)

Equalities (3.2) and (3.3) can be proved by definition and direct computation. Let Pm : X →
Xm be the corresponding orthogonal projection for m ∈ N. Then Γ = {Pm; m ∈ N} is a
Galerkin approximation scheme with respect to A (see [16]).

For any Lagrangian subspace L ∈ Λ(n), suppose P ∈ Sp(2n) ∩ O(2n) such that L = PL0.
Then we define XL = PX and Xm

L = PXm. Let Pm : XL → Xm
L . Then as above, Γ =

{Pm; m ∈ N} is a Galerkin approximation scheme with respect to A. For d > 0, we denote by
M∗

d (Q), ∗ = +, 0,−, the eigenspaces corresponding to the eigenvalues λ of the linear operator
Q : XL → XL belonging to [d, +∞), (−d, d) and (−∞,−d], respectively. And denote by M∗(Q),
∗ = +, 0,−, the eigenspaces corresponding to the eigenvalues λ of Q belonging to (0, +∞), {0}
and (−∞, 0), respectively. For any adjoint operator Q, we denote Q� = (Q|ImQ)−1, and
we also denote PmQPm = (PmQPm)|Xm

L
. The following result is the well-known Galerkin

approximation formula, which is proved in [16].

Theorem 3.2 For any B(t) ∈ C([0, 1], Ls(R2n)) with its L-index pair (iL(B), νL(B)) and
any constant 0 < d ≤ 1

4‖(A − B)�‖−1, there exists m0 > 0 such that for m ≥ m0, we have

dim M+
d (Pm(A − B)Pm) = mn − iL(B) − νL(B),
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dim M−
d (Pm(A − B)Pm) = mn + iL(B) + n,

dim M0
d (Pm(A − B)Pm) = νL(B).

Define a function ϕ on X by

ϕ(z) =
1
2
〈Az, z〉 − 1

2
〈B̂z, z〉 −

∫ j

0

Ĥ(t, z(t))dt.

Suppose that W is a real Banach space, g ∈ C1(W, R). g is said to satisfy the (PS) condition,
if for any sequence {xq} ⊂ W satisfying that g(xq) is bounded and g′(xq) → 0 as q → ∞, there
exists a convergent subsequence {xqj} of {xq} (see [24]). Let ϕm = ϕ|Xm be the restriction of
ϕ on Xm. When H satisfies (H4) and (H5), by Proposition A in [2], we have the following two
lemmas.

Lemma 3.2 For all m ∈ N, ϕm satisfies the (PS) condition on Xm.

Lemma 3.3 ϕ satisfies the (PS)∗ condition on X with respect to {zm}, i.e., for any sequence
{zm} ⊂ X satisfying that zm ∈ Xm, ϕm(zm) is bounded and that ‖ϕ′

m(zm)‖(Xm)′ → 0 in (Xm)′

as m → +∞, where (Xm)′ is the dual space of Xm, there exists a convergent subsequence {zmj}
of {zm} in X.

In order to prove Theorem 3.1, we need the following definition and the saddle-point theorem.

Definition 3.1 (see [10]) Let E be a C2-Riemannian manifold and D be a closed subset
of E. A family φ(α) of subsets of E is said to be a homological family of dimensional q with
boundary D if for some nontrivial class, α ∈ Hq(E, D). The family φ(α) is defined by

φ(α) = {G ⊂ E : α is in the image of i∗ : Hq(G, D) → Hq(E, D)},

where i∗ is the homomorphism induced by the immersion i : G → E.

Theorem 3.3 (see [10]) For the above E, D and α, let φ(α) be a homological family of
dimension q with boundary D. Suppose that f ∈ C2(E, R) satisfies the (PS) condition. Define

c = inf
G∈φ(α)

sup
x∈G

f(x).

Suppose that sup
x∈D

f(x) < c and f ′ is Fredholm on

Kc(f) ≡ {x ∈ E : f ′(x) = 0, f(x) = c}.

Then there exists an x ∈ Kc(f) such that the Morse index m−(x) and the nullity m0(x) of the
functional f at x satisfy

m−(x) ≤ q ≤ m−(x) + m0(x).

It is clear that a critical point of ϕ is a solution of (3.1). For a critical point z = z(t), let
B(t) = H ′′(t, z(t)), and define the linearized systems at z(t) by{

ẏ(t) = JH ′′(t, z(t))y(t), ∀y ∈ R
2n, ∀t ∈ [0, j],

y(0) ∈ L0, y(j) ∈ L0.

Then the L0-index pair of z is defined by (iL0(z), νL0(z)) = (iL0(B), νL0(B)).
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Now we give the proof of Theorem 3.1.

Proof of Theorem 3.1 We carry out the proof in 2 steps.
Step 1 The critical points of ϕm.
Set Sm = X−

m ⊕ X0. Then dim Sm = mn + dim X0 = mn + dim ker A = mn + n,
dim X+

m = mn.
In the following, we prove that ϕm(z) satisfies:
(I) ϕm(z) ≥ β > 0, ∀z ∈ Ym = X+

m ∩ ∂Bρ(0),
(II) ϕm(z) ≤ 0 < β, ∀z ∈ ∂Qm, where Qm = {re | r ∈ [0, r1]} ⊕ (Br2(0) ∩ Sm), e ∈

X+
m ∩ ∂B1(0), r1 > ρ, r2 > 0.
First we prove (I). By (H4), we have Ĥ(t, z) ≤ d1|z|1+α + d2|z| + d3, where d1, d2, d3 > 0.

Take z ∈ Ym, and then

∣∣∣ ∫ j

0

Ĥ(t, z)dt
∣∣∣ ≤ ∫ j

0

|Ĥ(t, z)|dt

≤ d1‖z‖α+1
Lα+1 + d2‖z‖L1 + d3j

≤ d1c
α+1
α+1‖z‖α+1 + d2c1‖z‖ + d3j

= d1‖z‖α+1 + d2‖z‖ + d3j. (3.4)

Hence by (3.2) and (3.4),

ϕm(z) =
1
2
〈Az, z〉 − 1

2
〈B̂z, z〉 −

∫ j

0

Ĥ(t, z(t))dt

≥ π

2j
‖z‖2 − β0

2
‖z‖2 −

∫ j

0

Ĥ(t, z(t))dt

≥ π

2j
‖z‖2 − β0

2
‖z‖2 − d1‖z‖α+1 − d2‖z‖ − d3j

=
( π

2j
− β0

2

)
ρ2 − d1ρ

α+1 − d2ρ − d3j.

Since 1 ≤ j < π
β0

, choose a large enough ρ > 0 independent of m such that for z ∈ Ym,
ϕm(z) ≥ β > 0. Hence (I) holds.

Now we prove (II). Let e ∈ X+
m ∩ ∂B1 and z = z− + z0 ∈ Sm. By (3.2) and (3.3),

ϕm(z + re) =
1
2
〈Az−, z−〉 +

1
2
r2〈Ae, e〉 − 1

2
〈B̂(z + re), z + re〉 −

∫ j

0

Ĥ(t, z + re)dt

≤ − π

2j
‖z−‖2 +

π

2j
r2 −

∫ j

0

Ĥ(t, z + re)dt

= − π

2j
‖z−‖2 +

π

2j
r2 −

∫ j

0

Ĥ(t, z0)dt −
∫ j

0

[Ĥ(t, z + re) − Ĥ(t, z0)]dt,

we have ∣∣∣ ∫ j

0

Ĥ(t, z + re)dt −
∫ j

0

Ĥ(t, z0)dt
∣∣∣

≤
∫ j

0

∫ 1

0

|∇Ĥ(t, z0 + sw)| · |w|dsdt

≤
∫ j

0

a1|z0 + w|α · |w|dt +
∫ j

0

a2|w|dt
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≤
∫ j

0

a1(|z0|α + |w|α)|w|dt +
∫ j

0

a2|w|dt

≤ a1|z0|α‖w‖L1 + a1‖w‖α+1
Lα+1 + a2‖w‖L1

≤ ã1|z0|α‖w‖ + a1‖w‖α+1 + ã2‖w‖
= (ã1|z0|α + ã2)(‖z−‖ + r) + a1(‖z−‖ + r)α+1,

where w = z− + re and ‖w‖ = ‖z−‖ + r, ã1 = a1c1, a1 = a1c
α+1
α+1 and ã2 = a2c1. Then we can

obtain

ϕm(z + re) ≤ − π

2j
‖z−‖2 +

π

2j
r2 −

∫ j

0

Ĥ(t, z0)dt −
∫ j

0

[Ĥ(t, z + re) − Ĥ(t, z0)]dt

≤ − π

2j
‖z−‖2 +

π

2j
r2 −

∫ j

0

Ĥ(t, z0)dt + (ã1|z0|α + ã2)(‖z−‖ + r)

+ a1(‖z−‖ + r)α+1.

It follows from (H5) that
∫ j

0
H(t, v)dt is bounded from below on R

2n, so then − ∫ j

0
H(t, z0)dt

has an upper bound. Choose r1 and r2 independent of m such that ϕm(z + re) ≤ 0 < β on
∂Qm. Hence (II) holds.

Because Qm is the deformation retract of Xm, then Hq(Qm, ∂Qm) ∼= Hq(Xm, ∂Qm), where
q = dim Sm + 1 = mn + n + 1 = dim Qm, and ∂Qm is the boundary of Qm in Sm ⊕ {Re}.
But Hq(Qm, ∂Qm) ∼= Hq−1(Sq−1) ∼= R. Denote by i : Qm → Xm the inclusion map. Let
α = [Qm] ∈ Hq(Qm, D) be a generator. Then i∗α is nontrivial in Hq(Xm, ∂Qm), and φ(i∗α)
defined by Definition 3.1 is a homological family of dimension q with boundary D := ∂Qm and
Qm ∈ φ(i∗α). ∂Qm and Ym are homologically linked (see [7]). By Lemma 3.2, ϕm satisfies the
(PS) condition. Define cm = inf

G∈φ(i∗α)
sup
z∈G

ϕm(z). We have

sup
z∈∂Qm

ϕm(z) ≤ 0 < β ≤ cm ≤ sup
z∈Qm

ϕm(z) ≤ π

2j
r2
1 . (3.5)

Since Xm is finite dimensional, ϕ′
m is Fredholm. By Theorem 3.3, ϕm has a critical point zm

j

with critical value cm, and the Morse index m−(zm
j ) and nullity m0(zm

j ) of zm
j satisfy

m−(zm
j ) ≤ mn + n + 1 ≤ m−(zm

j ) + m0(zm
j ). (3.6)

Since {cm} is bounded, passing to a subsequence, suppose cm → c ∈ [β, π
2j r2

1 ]. By the (PS)∗

condition of Lemma 3.3, passing to a subsequence, there exists a zj ∈ X such that

zm
j → zj , ϕ(zj) = c, ϕ′(zj) = 0.

Step 2 Let B(t) = H ′′(t, zj(t)), d =
1
4
‖(A − B)�‖−1. Since

‖ϕ′′(x) − (A − B)‖ → 0 as ‖x − zj‖ → 0,

there exists an r3 > 0 such that

‖ϕ′′(x) − (A − B)‖ <
1
4
d, ∀x ∈ Vr3(zj) = {x ∈ X | ‖x − zj‖ ≤ r3}.

Then for m large enough, there holds

‖ϕ′′
m(x) − Pm(A − B)Pm‖ <

1
2
d, ∀x ∈ Vr3(zj) ∩ Xm. (3.7)
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For x ∈ Vr3(zj) ∩ Xm, ∀u ∈ M−
d (Pm(A − B)Pm) \ {0}, from (3.7) we have

〈ϕ′′
m(x)u, u〉 ≤ 〈Pm(A − B)Pmu, u〉 + ‖ϕ′′

m(x) − Pm(A − B)Pm‖ · ‖u‖2

≤ −1
2
d‖u‖2 < 0. (3.8)

Thus by (3.8),

dim M−(ϕ′′
m(x)) ≥ dim M−

d (Pm(A − B)Pm), ∀x ∈ Vr3(zj) ∩ Xm. (3.9)

Similarly, we have

dim M+(ϕ′′
m(x)) ≥ dim M+

d (Pm(A − B)Pm), ∀x ∈ Vr3(zj) ∩ Xm. (3.10)

By Theorem 3.2 and (3.6), (3.9)–(3.10), for large m we have

mn + n + 1 ≥ m−(zm
j )

≥ dim M−
d (Pm(A − B)Pm)

= mn + iL0(B) + n. (3.11)

We also have

mn + n + 1 ≤ m−(zm
j ) + m0(zm

j )

≤ dim M−
d (Pm(A − B)Pm) ⊕ dim M0

d (Pm(A − B)Pm)

= mn + iL0(B) + n + νL0(B). (3.12)

Combining (3.11) and (3.12), we have

iL0(zj) ≤ 1 ≤ iL0(zj) + νL0(zj).

The proof of Theorem 3.1 is complete.

It is the time to give the proof of Theorem 1.1.

Proof of Theorem 1.1 For 1 ≤ k < π
β0

, by Theorem 3.1, we obtain that there is a
nontrivial solution (zk, k) of the Hamiltonian systems (3.1) and its L0-index pair satisfies

iL0(zk, k) ≤ 1 ≤ iL0(zk, k) + νL0(zk, k). (3.13)

Then by Lemma 3.1, (z̃k, 2k) is a nonconstant brake solution of (1.1).
For k ∈ 2N − 1, we suppose that (z̃1, 2) and (z̃k, 2k) are not distinct. By (3.13), Theorems

2.3–2.4, we have

1 ≥ iL0(zk, k) ≥ iL0(z1, 1) +
k − 1

2
(i1(z̃1, 2) + ν1(z̃1, 2) − n)

≥ iL0(z1, 1) +
k − 1

2
(iL0(z1, 1) + iL1(z1, 1) + n + νL0(z1, 1) + νL1(z1, 1) − n)

= iL0(z1, 1) +
k − 1

2
(iL0(z1, 1) + iL1(z1, 1) + νL0(z1, 1) + νL1(z1, 1)), (3.14)

where L1 = R
n ⊕{0} ∈ Λ(n). By (H3), (H6) and Theorem 2.1, we have iL1(z1, 1) ≥ 0. We also

know that νL1(z1, 1) ≥ 0 and iL0(z1, 1) + νL0(z1, 1) ≥ 1. Then (3.14) is

1 ≥ iL0(z1, 1) +
k − 1

2
. (3.15)
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By 0 ≤ iL0(z1, 1) ≤ 1, from (3.15) we have k−1
2 ≤ 1, i.e., k ≤ 3. It is contradictory to

k ≥ 5. Similarly, we have that for each k ∈ 2N − 1, k ≥ 5 and kj < π
β0

, 1 ≤ j < π
β0

, (z̃j, 2j)
and (z̃kj , 2kj) are distinct brake solutions of (1.1). Furthermore, (z̃1, 2), (z̃k, 2k), (z̃k2 , 2k2),
(z̃k3 , 2k3), · · · , (z̃kp , 2kp) are pairwise distinct brake solutions of (1.1), where k ∈ 2N− 1, k ≥ 5
and 1 ≤ kp < π

β0
with p ∈ N.

For k ∈ 2N, as above, we suppose that (z̃1, 2) and (z̃k, 2k) are not distinct. By (3.13),
Theorems 2.3–2.4, we have

1 ≥ iL0(zk, k)

≥ iL0(z1, 1) + iL0√−1
(z1, 1) +

(k

2
− 1

)
(i1(z̃1, 2) + ν1(z̃1, 2) − n)

≥ iL0(z1, 1) + iL0√−1
(z1, 1) +

(k

2
− 1

)
(iL0(z1, 1) + iL1(z1, 1) + n

+ νL0(z1, 1) + νL1(z1, 1) − n)

= iL0(z1, 1) + iL0√−1
(z1, 1) +

(k

2
− 1

)
(iL0(z1, 1) + iL1(z1, 1) + νL0(z1, 1) + νL1(z1, 1)). (3.16)

Similarly, we also know that iL1(z1, 1) ≥ 0, νL1(z1, 1) ≥ 0, iL0(z1, 1) + νL0(z1, 1) ≥ 1. By
Remark 2.1, we have iL0√−1

(z1, 1) ≥ iL0(z1, 1) ≥ 0. Then (3.16) is

1 ≥ iL0(z1, 1) +
(k

2
− 1

)
. (3.17)

By 0 ≤ iL0(z1, 1) ≤ 1, from (3.17) we have k
2 −1 ≤ 1, i.e., k ≤ 4. It contradicts k ≥ 5. Similarly

we have that for each k ∈ 2N, k ≥ 6 and kj < π
β0

, 1 ≤ j < π
β0

, (z̃j , 2j) and (z̃kj , 2kj) are distinct
brake solutions of (1.1). Furthermore, (z̃1, 2), (z̃k, 2k), (z̃k2 , 2k2), (z̃k3 , 2k3), · · · , (z̃kp , 2kp) are
pairwise distinct brake solutions of (1.1), where k ∈ 2N, k ≥ 6 and 1 ≤ kp < π

β0
with p ∈ N.

In all, for any integer 1 ≤ j < π
β0

, z̃j and z̃kj are distinct brake solutions of (1.1) for k ≥ 5
and kj < π

β0
. Furthermore, {z̃kp | p ∈ N} is a pairwise distinct brake solution sequence of (1.1)

for k ≥ 5 and 1 ≤ kp < π
β0

. The proof of Theorem 1.1 is complete.

We note that Theorem 1.2 is a direct consequence of Theorem 1.1.
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