Adapted Metrics and Webster Curvature in Finslerian 2-Dimensional Geometry

Mircea CRASMAREANU¹

Abstract The Webster scalar curvature is computed for the sphere bundle T_1S of a Finsler surface (S, F) subject to the Chern-Hamilton notion of adapted metrics. As an application, it is derived that in this setting $(T_1S, g_{\text{Sasaki}})$ is a Sasakian manifold homothetic with a generalized Berger sphere, and that a natural Cartan structure is arising from the horizontal 1-forms and the author associates a non-Einstein pseudo-Hermitian structure. Also, one studies when the Sasaki type metric of T_1S is generally adapted to the natural co-frame provided by the Finsler structure.

 Keywords Webster curvature, Finsler geometry, Sasakian type metric on tangent bundle, Sphere bundle, Adapted metric, Cartan structure, Pseudo-Hermitian structure
 2000 MR Subject Classification 53C60, 58B20, 53D10, 53C56

1 Introduction

The present note introduces the Webster scalar curvature discussed by Chern and Hamilton in [5] into the framework of 2-dimensional Finsler geometry. More precisely, we compute the Webster curvature for the sphere bundle T_1S of a Finsler surface (S, F(x, y)) by using the structural equations of this bundle. Specifically, the condition of adapted metric of [5] is suitable for only one 1-form (namely ω_3) of the natural co-frame of T_1S endowed with the Sasaki type metric g_{Sasaki} induced by F. This condition, called vertical adapted, reduces the discussion to the Riemannian surfaces by the vanishing of the main scalar I and yields the constant Gaussian curvature K = 2. It follows that the Webster curvature is $\frac{1}{2}$ and a natural Cartan structure (in terms of [8, p. 148]) is given by the horizontal 1-forms. Let us remark that an interplay between Cartan structures and the generalized Finsler structures is studied in [13–14].

We apply this computation to prove a structure result, that is, T_1S with g_{Sasaki} is homothetic with a generalized Berger sphere. More precisely, we obtain that under the vertical adapted condition, the vector field e_3 , dual of ω_3 with respect to g_{Sasaki} , is a Killing vector field for this metric and then it makes ($g_{\text{Sasaki}}, \omega_3$) a Sasakian structure on T_1S . Another important result is that in our setting ω_3 is a pseudo-Hermitian form corresponding to a CR structure on T_1S . Although this pseudo-Hermitian structure is non-Einstein, we obtain that its Webster scalar curvature is again $\frac{1}{2}$.

In order to extend the class of metrics, we generalize the concept of adapted metrics; in fact, we modify the original condition of Chern-Hamilton from the scalar 2 to a general $\rho \in \mathbb{R}$

Manuscript received January 20, 2014. Revised December 18, 2014.

¹Faculty of Mathematics, University Al. I. Cuza, Iași 700506, Romania. E-mail: mcrasm@uaic.ro

in order to cover all possibilities; this approach was used in [6]. Also our study is enlarged to all 1-forms providing the natural co-frame of T_1S .

2 Webster Scalar Curvature: The Chern-Hamilton Formalism

Fix (M^3, g) to be a 3-dimensional Riemannian manifold and consider $\{\omega_1, \omega_2, \omega_3\}$ as an orthonormal basis of 1-forms on M; then M is oriented with the volume form $\omega_1 \wedge \omega_2 \wedge \omega_3$. Then there exists a unique skew-symmetric matrix of 1-forms

$$\begin{pmatrix} 0 & \varphi_3 & -\varphi_2 \\ -\varphi_3 & 0 & \varphi_1 \\ \varphi_2 & -\varphi_1 & 0 \end{pmatrix},$$

such that the structural equations

$$\begin{cases} d\omega_1 = \varphi_2 \wedge \omega_3 - \varphi_3 \wedge \omega_2, \\ d\omega_2 = \varphi_3 \wedge \omega_1 - \varphi_1 \wedge \omega_3, \\ d\omega_3 = \varphi_1 \wedge \omega_2 - \varphi_2 \wedge \omega_1 \end{cases}$$
(2.1)

hold on M. Making one step further, we derive the existence of the functions $\{K_{ij}; 1 \le i, j \le 3\}$ such that $K_{ij} = K_{ji}$ and

$$\begin{cases} d\varphi_1 = \varphi_2 \wedge \varphi_3 + K_{11}\omega_2 \wedge \omega_3 + K_{12}\omega_3 \wedge \omega_1 + K_{13}\omega_1 \wedge \omega_2, \\ d\varphi_2 = \varphi_3 \wedge \varphi_1 + K_{21}\omega_2 \wedge \omega_3 + K_{22}\omega_3 \wedge \omega_1 + K_{23}\omega_1 \wedge \omega_2, \\ d\varphi_3 = \varphi_1 \wedge \varphi_2 + K_{31}\omega_2 \wedge \omega_3 + K_{32}\omega_3 \wedge \omega_1 + K_{33}\omega_1 \wedge \omega_2. \end{cases}$$
(2.2)

Recall that the subject of [5] consists in adapted metrics for a contact 1-form ω , i.e., Riemannian metrics satisfying

$$\|\omega\| = 1, \quad \mathrm{d}\omega = 2 * \omega. \tag{2.3}$$

If g is adapted to ω_3 , then the Webster scalar curvature W of the triple (M, g, ω_3) is defined as

$$W(M, g, \omega_3) = \frac{1}{8}(K_{11} + K_{22} + 2K_{33} + 4)$$
(2.4)

and is computed in [5] for the unit sphere \mathbb{S}^3 , the unit tangent bundle of a compact orientable surface of genus $g \neq 1$ (for g = 0 it results in W = 1) and the Heisenberg group Nil_3 . In fact, $W(\mathbb{S}^3) = 1$ and $W(Nil_3) = 0$. For another formalism on Webster curvature, see [3, p. 212] and our formula (5.4) below.

A last main notion of this note is that of Cartan structure according to Definition 1.1 of [8, p. 148]: A pair of 1-forms ω_1 , ω_2 with

$$\omega_1 \wedge \mathrm{d}\omega_1 = \omega_2 \wedge \mathrm{d}\omega_2 \neq 0, \quad \omega_1 \wedge \mathrm{d}\omega_2 = 0 = \omega_2 \wedge \mathrm{d}\omega_1. \tag{2.5}$$

3 Finsler 2-Dimensional Geometry and Adapted Metrics

Let S be a 2-dimensional manifold and $\pi : TS \to S$ its tangent bundle. Let $x = (x^i) = (x^1, x^2)$ be the local coordinates on S and $(x, y) = (x^i, y^i) = (x^1, x^2, y^1, y^2)$ the induced local coordinates on TS. Denote by O the null-section of π .

Recall that a Finsler fundamental function on S is a map $F: TS \to \mathbb{R}_+$ with the following properties:

(F1) F is smooth on the slit tangent bundle $TS \setminus O$ and continuous on O;

(F2) F is positive homogeneous of degree 1: $F(x, \lambda y) = \lambda F(x, y)$ for every $\lambda > 0$;

(F3) the matrix $(g_{ij}) = \left(\frac{1}{2}\frac{\partial^2 F^2}{\partial y^i \partial y^j}\right)$ is invertible and its associated quadratic form is positive definite.

The tensor field $(g_{ij}(x, y))$ is called the Finsler metric.

Due to the homogeneity condition, all important objects of Finsler geometry actually live on the sphere bundle $p: T_1S = \{(x, y) \in TS; F(x, y) = 1\} \rightarrow S$ (see [2, p. 9]). Here T_1S is 3-dimensional and an adapted co-frame consists in three 1-forms denoted by $\omega_1, \omega_2, \omega_3$. More precisely, after [2, p. 93], we have

$$\begin{cases} \omega_1 = \frac{\sqrt{g}}{F} (y^2 dx^1 - y^1 dx^2) := m_1 dx^1 + m_2 dx^2, \\ \omega_2 = F_{y^1} dx^1 + F_{y^2} dx^2 := l_1 dx^1 + l_2 dx^2, \\ \omega_3 = \frac{\sqrt{g}}{F^2} (y^2 \delta y^1 - y^1 \delta y^2) = \frac{m_1}{F} \delta y^1 + \frac{m_2}{F} \delta y^2, \end{cases}$$
(3.1)

where $g = \det(g_{ij})$, $F_{y^i} = \frac{\partial F}{\partial y^i}$ and $\delta y^i = dy^i + N_j^i dx^j$ with $(N_j^i(x, y))$ being the canonical nonlinear connection of the Finsler geometry (S, F) (see [2, p. 34]). The vector fields $(\frac{\partial}{\partial y^i})$ span the vertical distribution while $(\frac{\delta}{\delta x^i})$ span the horizontal distribution. The Finsler metric yields the Sasaki type metric on T_1S (see [2, p. 93]):

$$g_{\text{Sasaki}} = \omega^1 \otimes \omega^1 + \omega^2 \otimes \omega^2 + \omega^3 \otimes \omega^3 \tag{3.2}$$

making $\{\omega_1, \omega_2, \omega_3\}$ an orthonormal co-frame. If $\{e_1, e_2, e_3\}$ is the dual frame, then e_1 and e_2 are horizontal while e_3 is vertical.

After [2, p. 82], the structural equations of (S, F) are

$$\begin{cases} d\omega_1 = -I\omega_1 \wedge \omega_3 + \omega_2 \wedge \omega_3, \\ d\omega_2 = -\omega_1 \wedge \omega_3, \\ d\omega_3 = K\omega_1 \wedge \omega_2 - J\omega_1 \wedge \omega_3, \end{cases}$$
(3.3)

where I, J, K are smooth functions defined as follows (see [2, p. 82]):

(i) *I* is the Cartan (or main) (pseudo-)scalar. Its vanishing characterizes Riemannian surfaces, i.e., g = g(x) which means that $F(x, y) = \sqrt{g_{ij}(x)y^iy^j}$ and g_{Sasaki} on *TS* is exactly the Sasaki lift of the Riemannian metric *g*. It also follows that $N_j^i(x, y) = \Gamma_{jk}^i(x)y^k$ with $(\Gamma_{..})$ being the Christoffel symbols of *g*.

(ii) J is the Landsberg (pseudo-)scalar. Its vanishing characterizes Landsberg surfaces.

(iii) K is the Gaussian curvature. Its vanishing characterizes flat (in the Finslerian sense) surfaces. Note that ω_3 is a contact form for non-flat Finslerian surfaces since $\omega_3 \wedge d\omega_3 = \omega_3 \wedge (K\omega_1 \wedge \omega_2 - J\omega_1 \wedge \omega_3) = K\omega_1 \wedge \omega_2 \wedge \omega_3$. Then e_3 can be called the Reeb vector field of (S, F).

Remark that Bianchi equations yield some relations between these functions (see [2, p. 97]):

$$I_3 = J, \quad J_3 = -KI - K_2, \tag{3.4}$$

where the subscript *i* denotes the derivation in the direction of e_i , i.e., $df = f_1\omega_1 + f_2\omega_2 + f_3\omega_3$. It follows that I = 0 implies J = 0 and also $K_2 = 0$.

In order to enlarge the class of suitable metrics, we consider the following notion which appears (with a factor 2 in RHS) in [11].

Definition 3.1 Fix a 1-form ω on a general (M^3, g) and the real number ρ . The Riemannian metric g on M is called ρ -adapted to ω if $d\omega = \rho * \omega$.

We conclude from (3.3) the following proposition.

Proposition 3.1 The metric $g_{Sasakian}$ is

(i) 1-adapted to the ω_1 if and only if S is a Riemannian surface;

(ii) 1-adapted to ω_2 ;

(iii) K-adapted to ω_3 in the Landsberg case.

It follows that the lift of the round metric of S^2 to $T_1S^2 = \mathbb{R}P^3 = SO(3)$ is 1-adapted all ω 's.

4 Webster Curvature in Finslerian Geometry of Surfaces

Comparing (2.3) with (3.3), it results that g_{Sasaki} can be an adapted metric only for ω_3 , in which case we say that it is vertical adapted due to the character of the Reeb vector field e_3 ; correspondingly the 1-forms ω_1 , ω_2 will be called horizontal. We are ready for the main result of this note.

Theorem 4.1 The Riemannian metric g_{Sasaki} of T_1S is vertical adapted if and only if S is a Riemannian surface with K = 2. Then, the horizontal pair (ω_1, ω_2) is a Cartan structure and the Webster curvature is

$$W(T_1S, g_{\text{Sasaki}}, \omega_3) = \frac{1}{2}.$$
(4.1)

Proof Since ω_i is a g_{Sasaki} -orthonormal co-frame, we have $*\omega_3 = \omega_1 \wedge \omega_2$, and locking at (3.3₃), we get that g_{Sasaki} is vertical adapted if and only if J = 0, K = 2. From the second Bianchi relation (3.4), we deduce that I = 0, which yields the first part of the conclusion.

Now, the structural equations have the expression

$$\begin{cases} d\omega_1 = \omega_2 \wedge \omega_3, \\ d\omega_2 = -\omega_1 \wedge \omega_3, \\ d\omega_3 = 2\omega_1 \wedge \omega_2, \end{cases}$$
(4.2)

and then we get the relations (2.5) with $\omega_1 \wedge d\omega_1 = \omega_2 \wedge d\omega_2 = \omega_1 \wedge \omega_2 \wedge \omega_3$ = being the volume form of the metric g_{Sasaki} . It also follows that

$$\varphi_1 = \omega_1, \quad \varphi_2 = \omega_2, \quad \varphi_3 = 0. \tag{4.3}$$

It results in

$$\begin{cases} d\varphi_1 = \omega_2 \wedge \omega_3, \\ d\varphi_2 = -\omega_1 \wedge \omega_3, \\ d\varphi_3 = 0 \end{cases}$$
(4.4)

Adapted Metrics and Webster Curvature in Finslerian 2-Dimensional Geometry

which gives the matrix of K's:

$$K_{11} = K_{22} = 1, \quad K_{33} = -1,$$
 (4.5)

all other being zero. Using the definition (2.4), it results in the Webster curvature (4.1).

Remark 4.1 (i) Comparing our result with the second example of [5, p. 285] gives that K_{ii} given by (4.5) coincides with relations (22) of the cited paper for $\epsilon = \frac{1}{2} = W$.

(ii) If S is compact embedded in \mathbb{R}^3 (being also oriented), then a classical sphere theorem (from 1897) of Hadamard states that S must be diffeomorphic with a sphere. The following Theorem 4.2 clarifies this claim.

(iii) In [7], the 1-form $\eta = I\omega_3$ is introduced under the name Cartan-type form of (S, F) and it is proved that $\eta \wedge d\eta$ is the Chern-Simons form of (S, F). In our setting, this Chern-Simons form is zero.

(iv) A Cartan structure is a particular case of taut contact circle according to the Definition 1.1 of [8, p. 148] and then any linear combination $\lambda_1 \omega_1 + \lambda_2 \omega_2$ with $(\lambda_1, \lambda_2) \in S^1 \subset \mathbb{R}^2$ defines the same volume form, and in our case that is the form of g_{Sasaki} .

As an application of the previous theorem, we have the following structural result.

Theorem 4.2 If the Riemannian metric g_{Sasaki} of T_1S is vertical adapted, then the manifold $(T_1S, g_{\text{Sasaki}})$ is Sasakian and homothetic with a generalized Berger sphere.

Proof According to the classification of [9, p. 124], $W = \frac{1}{2}$ implies that if $(T_1S, g_{\text{Sasaki}}, \omega_3)$ is a Sasakian manifold, then it is homothetic with a generalized Berger sphere. Hence we must prove that the vertical adapted condition implies the Sasakian condition for g_{Sasaki} . But from [3, p. 87], we know that in dimension 3 this is equivalent to the cu K-contact condition and then we prove that the vertical adapted condition implies that e_3 is a Killing vector field for g_{Sasaki} .

According to [4, p. 28], we have the general Lie brackets:

$$[e_1, e_2] = -Ke_3, \quad [e_2, e_3] = -e_1, \quad [e_3, e_1] = -Ie_1 - e_2 - Je_3 \tag{4.6}$$

which yields the Levi-Civita connection of g_{Sasaki} :

$$\begin{cases} \nabla_{e_1} e_1 = -Ie_3, \quad \nabla_{e_2} e_2 = 0, \quad \nabla_{e_3} e_3 = Je_1, \\ \nabla_{e_1} e_2 = -\frac{K}{2}e_3, \quad \nabla_{e_1} e_3 = Ie_1 + \frac{K}{2}e_2, \quad \nabla_{e_2} e_3 = -\frac{K}{2}e_1, \\ \nabla_{e_2} e_1 = \frac{K}{2}e_3, \quad \nabla_{e_3} e_1 = \left(\frac{K}{2} - 1\right)e_2 - Je_3, \quad \nabla_{e_3} e_2 = -\left(\frac{K}{2} - 1\right)e_1. \end{cases}$$
(4.7)

Let $X = X^i e_i$ and $Y = Y^i e_i$ be two arbitrary vector fields on $T_1 S$, we get

$$\begin{cases} \nabla_X e_1 = -(IX^1 + JX^3)e_1 + \left(\frac{K}{2} - 1\right)X^3e_2 + \frac{K}{2}X^2e_3, \\ \nabla_X e_2 = -\left(\frac{K}{2} + 1\right)X^3e_1 - \frac{K}{2}X^1e_3, \\ \nabla_X e_3 = \left[IX^1 - \frac{K}{2}X^2 + JX^3\right]e_1 + \frac{K}{2}X^1e_2. \end{cases}$$

$$\tag{4.8}$$

M. Crasmareanu

It follows that the Lie derivatives of the metric are

$$\begin{pmatrix} \mathcal{L}_{e_1} g_{\text{Sasaki}}(X, Y) = -2IX^1 J^1 - J(X^1 Y^3 + X^3 Y^1) + (K-1)(X^2 Y^3 + X^3 Y^2), \\ \mathcal{L}_{e_2} g_{\text{Sasaki}}(X, Y) = -(K+1)(X^1 Y^3 + X^3 Y^1), \\ \mathcal{L}_{e_3} g_{\text{Sasaki}}(X, Y) = 2IX^1 Y^1 + J(X^1 Y^3 + X^3 Y^1). \end{cases}$$

$$(4.9)$$

The vertical adapted condition gives then

$$\begin{cases} \mathcal{L}_{e_1}g_{\text{Sasaki}}(X,Y) = X^2Y^3 + X^3Y^2, \\ \mathcal{L}_{e_2}g_{\text{Sasaki}}(X,Y) = -3(X^1Y^3 + X^3Y^1), \\ \mathcal{L}_{e_3}g_{\text{Sasaki}}(X,Y) = 0 \end{cases}$$
(4.10)

and we have the final conclusion.

Remark 4.2 (i) The relations in first line of (4.7) yield that under the vertical adapted condition all vector fields e_i are geodesic: $\nabla_{e_i} e_i = 0$. Also, we can determine the generalized Berger sphere structure of $(T_1 S^2, g_{\text{Sasaki}})$ according to the computations of [12]. More precisely, we consider $SU(2) = S^3$ with the natural left-invariant and orthonormal frame (X_1, X_2, X_3) of [12, p. 7], and g_{Sasaki} is the metric making orthonormal the frame: $e_1 = \frac{X_2}{\sqrt{2}}$, $e_2 = \frac{X_3}{\sqrt{2}}$, $e_3 = -\frac{X_3}{2}$ as in [12, p. 81].

(ii) Let us remark that our contact structure on T_1S is different from that of [3, p. 175] for which the K-contact condition is characterized via the well-known Tashiro theorem ([3, p. 178]) in terms of constant curvature +1 for the base manifold (S, g(x)). Let us also note that the Finslerian version of the Tashiro theorem was proved in [1].

(iii) Our Theorem 4.2 is a particular case of Lemma A.1 of Alan Weinstein from the Appendix of [5] that $\varphi_1 = \omega_1$, $\varphi_2 = \omega_2$ implies e_3 is a Killing vector field. Also, from the complex structural equations (39) of [5, p. 290], it follows that $\Omega = \omega_1 + i\omega_2$ is a closed differential 1-form: $d\Omega = 0$.

5 An Associated Pseudo-Hermitian Structure on T_1S

From the third equation of (4.8), it results that the vertical adapted condition implies

$$\nabla_X e_3 = -[X^2 e_1 - X^1 e_2], \tag{5.1}$$

and recall, after [3, p. 87], that the Sasakian condition reads

$$\nabla_X e_3 = -\phi(X) \tag{5.2}$$

in terms of the structural tensor field ϕ of (1, 1)-type. It gives the expression of ϕ :

$$\phi(e_1) = -e_2, \quad \phi(e_2) = e_1, \quad \phi(e_3) = 0.$$
 (5.3)

Let $\mathcal{D} = \ker \omega_3$ be the structural distribution associated to ω_3 . A second formula for the Webster scalar formula is [3, p. 213]:

$$W(M, g, \omega_3) = \frac{1}{8}(\tau - \operatorname{Ric}(e_3) + 4), \qquad (5.4)$$

where τ is the scalar curvature of the metric g and $\operatorname{Ric}(e_3)$ is the Ricci curvature in the direction of e_3 . Note also that in the same way as [3, p. 214], we have

$$\tau = 2K(\mathcal{D}) + 2\operatorname{Ric}(e_3), \tag{5.5}$$

424

where $K(\mathcal{D})$ is the sectional curvature of the 2-plane \mathcal{D} and from Theorem 7.1 of [3, p. 112] on the 3-dimensional K-contact case it results that $\operatorname{Ric}(e_3) = 2$. Using the Levi-Civita connection (4.7), we obtain $K(\mathcal{D}) = -1$, so then $\tau = 2$ and from (4.14) we arrive again at $W = \frac{1}{2}$.

Remark also that $J = \phi|_{\mathcal{D}}$ is a complex structure satisfying the integrability conditions:

$$[JX,Y] + [X,JY] \in \mathcal{D}, \quad J([JX,Y] + [X,JY]) - [JX,JY] + [X,Y] = 0$$
(5.6)

for all $X, Y \in \mathcal{D} = \text{span}\{e_1, e_2\}$. Using the terminology of [10], ω_3 is a pseudo-Hermitian structure on the CR manifold (T_1S, \mathcal{D}, J) . Its associated Webster metric:

$$g_{\omega_3}(X,Y) = d\omega_3(X,JY), \quad g_{\omega_3}(X,e_3) = 0, \quad g_{\omega_3}(e_3,e_3) = 1$$
 (5.7)

being

$$g_{\omega_3} = -2\omega_1^2 - 2\omega_2^2 + \omega_3^2 = \operatorname{diag}(-2, -2, 1)$$
(5.8)

is not positive definite and hence the pseudo-Hermitian structure is not strictly pseudoconvex. Since the Levi-Civita connection of g_{ω_3} satisfies

$$\nabla_{e_1}^{\omega_3} e_3 = 3e_2, \quad \nabla_{e_2}^{\omega_3} e_3 = -3e_1, \quad \nabla^{\omega_3} \omega_3 = 0, \tag{5.9}$$

it results that

$$\nabla_X^{\omega_3} e_3 = 3(-X^2 e_1 + X^1 e_2), \tag{5.10}$$

and then, as in the previous section, we get that e_3 is a Killing vector field for g_{ω_3} , which means that e_3 is a transversal symmetry (see [10, p. 446]) for the given pseudo-Hermitian structure.

Using the formulae of [10, p. 448] we get a component of the Webster-Ricci tensor of g_{ω_3} :

$$\operatorname{Ric}^{W}(e_{1}, e_{2}) = \frac{2\operatorname{Ric}^{g_{\omega_{3}}}(e_{1}, e_{1}) + g_{\omega_{3}}(e_{1}, e_{1})}{-2\mathrm{i}} = \frac{0-2}{-2\mathrm{i}} = -\mathrm{i}$$
(5.11)

and then the Webster scalar curvature of g_{ω_3} is

$$\operatorname{scal}^{W} = ig_{\omega_{3}}(e_{1}, e_{1})\operatorname{Ric}^{W}(e_{1}, Je_{1}) = i \cdot (-2) \cdot i = 2 = K = \tau.$$
(5.12)

Since we have $\operatorname{Ric}^W \neq -\operatorname{iscal}^W d\omega_3$, it results that this pseudo-Hermitian structure is not Einstein.

Acknowledgement The author is extremely indebted to an anonymous referee who helped to substantially improve the presentation and the contents of this paper.

References

- Anastasiei, M., A framed f-structure on tangent manifold of a Finsler space, An. Univ. Bucureşti Math. Inform., 49(2), 2000, 3–9.
- [2] Bao, D., Chern, S.-S. and Shen, Z., An introduction to Riemann-Finsler geometry, Graduate Texts in Mathematics, 200, Springer-Verlag, New York, 2000.
- [3] Blair, D. E., Riemannian geometry of contact and symplectic manifolds, 2nd edition, Progress in Mathematics, 203, Birkhäuser Boston, Inc., Boston, MA, 2010.

- [4] Bryant, R. L., Finsler structures on the 2-sphere satisfying K = 1, in "Finsler Geometry" (Seattle, WA, 1995), 27–41, Contemp. Math., **196**, Amer. Math. Soc., Providence, RI, 1996.
- [5] Chern, S.-S. and Hamilton, R. S., On Riemannian Metrics Adapted to Three-Dimensional Contact Manifolds, with an Appendix, by Alan Weinstein, Lecture Notes in Math., 1111, Workshop Bonn, 1984, 279–308, Springer-Verlag, Berlin, 1985.
- [6] Crasmareanu, M., Adapted metrics and Webster curvature on three classes of 3-dimensional geometries, International Electronic Journal of Geometry, 7(2), 2014, 50–59.
- [7] Feng, H. and Li, M., Adiabatic limit and connections in Finsler geometry, Comm. Anal. Geom., 21(3), 2013, 607–624. arXiv: 1207.1552
- [8] Geiges, H. and Gonzalo, J., Contact geometry and complex surfaces, Invent. Math., 121(1), 1995, 147–209.
- [9] Guilfoyle, B. S., The local moduli of Sasakian 3-manifolds, Int. J. Math. Math. Sci., 32(2), 2002, 117–127.
- [10] Leitner, F., On transversally symmetric pseudo-Einstein and Fefferman-Einstein spaces, Math. Z., 256(2), 2007, 443–459.
- [11] Nicolaescu, L. I., Adiabatic limits of the Seiberg-Witten equations on Seifert manifolds, Comm. Anal. Geom., 6(2), 1998, 331–392.
- [12] Petersen, P., Riemannian Geometry, 2nd edition, Graduate Texts in Mathematics, 171, Springer-Verlag, New York, 2006.
- [13] Sabau, S. V., Shibuya, K. and Shimada, H., Moving frames on generalized Finsler structures, J. Korean Math. Soc., 49(6), 2012, 1229–1257.
- [14] Sabau, S. V., Shibuya, K. and Pitis, Gh., Generalized Finsler structures on closed 3-manifolds, Tohoku Math. J. (2), 66(3), 2014, 321–353.