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Abstract The Webster scalar curvature is computed for the sphere bundle T1S of a Finsler
surface (S, F ) subject to the Chern-Hamilton notion of adapted metrics. As an application,
it is derived that in this setting (T1S, gSasaki) is a Sasakian manifold homothetic with a
generalized Berger sphere, and that a natural Cartan structure is arising from the horizontal
1-forms and the author associates a non-Einstein pseudo-Hermitian structure. Also, one
studies when the Sasaki type metric of T1S is generally adapted to the natural co-frame
provided by the Finsler structure.
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1 Introduction

The present note introduces the Webster scalar curvature discussed by Chern and Hamilton
in [5] into the framework of 2-dimensional Finsler geometry. More precisely, we compute the
Webster curvature for the sphere bundle T1S of a Finsler surface (S, F (x, y)) by using the
structural equations of this bundle. Specifically, the condition of adapted metric of [5] is suitable
for only one 1-form (namely ω3) of the natural co-frame of T1S endowed with the Sasaki type
metric gSasaki induced by F . This condition, called vertical adapted, reduces the discussion to
the Riemannian surfaces by the vanishing of the main scalar I and yields the constant Gaussian
curvature K = 2. It follows that the Webster curvature is 1

2 and a natural Cartan structure
(in terms of [8, p. 148]) is given by the horizontal 1-forms. Let us remark that an interplay
between Cartan structures and the generalized Finsler structures is studied in [13–14].

We apply this computation to prove a structure result, that is, T1S with gSasaki is homothetic
with a generalized Berger sphere. More precisely, we obtain that under the vertical adapted
condition, the vector field e3, dual of ω3 with respect to gSasaki, is a Killing vector field for this
metric and then it makes (gSasaki, ω3) a Sasakian structure on T1S. Another important result
is that in our setting ω3 is a pseudo-Hermitian form corresponding to a CR structure on T1S.
Although this pseudo-Hermitian structure is non-Einstein, we obtain that its Webster scalar
curvature is again 1

2 .
In order to extend the class of metrics, we generalize the concept of adapted metrics; in

fact, we modify the original condition of Chern-Hamilton from the scalar 2 to a general ρ ∈ R

Manuscript received January 20, 2014. Revised December 18, 2014.
1Faculty of Mathematics, University Al. I. Cuza, Iaşi 700506, Romania. E-mail: mcrasm@uaic.ro
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in order to cover all possibilities; this approach was used in [6]. Also our study is enlarged to
all 1-forms providing the natural co-frame of T1S.

2 Webster Scalar Curvature: The Chern-Hamilton Formalism

Fix (M3, g) to be a 3-dimensional Riemannian manifold and consider {ω1, ω2, ω3} as an
orthonormal basis of 1-forms on M ; then M is oriented with the volume form ω1 ∧ ω2 ∧ ω3.
Then there exists a unique skew-symmetric matrix of 1-forms

⎛
⎝

0 ϕ3 −ϕ2

−ϕ3 0 ϕ1

ϕ2 −ϕ1 0

⎞
⎠ ,

such that the structural equations
⎧⎨
⎩

dω1 = ϕ2 ∧ ω3 − ϕ3 ∧ ω2,
dω2 = ϕ3 ∧ ω1 − ϕ1 ∧ ω3,
dω3 = ϕ1 ∧ ω2 − ϕ2 ∧ ω1

(2.1)

hold on M . Making one step further, we derive the existence of the functions {Kij ; 1 ≤ i, j ≤ 3}
such that Kij = Kji and

⎧⎨
⎩

dϕ1 = ϕ2 ∧ ϕ3 + K11ω2 ∧ ω3 + K12ω3 ∧ ω1 + K13ω1 ∧ ω2,
dϕ2 = ϕ3 ∧ ϕ1 + K21ω2 ∧ ω3 + K22ω3 ∧ ω1 + K23ω1 ∧ ω2,
dϕ3 = ϕ1 ∧ ϕ2 + K31ω2 ∧ ω3 + K32ω3 ∧ ω1 + K33ω1 ∧ ω2.

(2.2)

Recall that the subject of [5] consists in adapted metrics for a contact 1-form ω, i.e., Rie-
mannian metrics satisfying

‖ω‖ = 1, dω = 2 ∗ ω. (2.3)

If g is adapted to ω3, then the Webster scalar curvature W of the triple (M, g, ω3) is defined as

W (M, g, ω3) =
1
8
(K11 + K22 + 2K33 + 4) (2.4)

and is computed in [5] for the unit sphere S
3, the unit tangent bundle of a compact orientable

surface of genus g �= 1 (for g = 0 it results in W = 1) and the Heisenberg group Nil3. In fact,
W (S3) = 1 and W (Nil3) = 0. For another formalism on Webster curvature, see [3, p. 212] and
our formula (5.4) below.

A last main notion of this note is that of Cartan structure according to Definition 1.1 of [8,
p. 148]: A pair of 1-forms ω1, ω2 with

ω1 ∧ dω1 = ω2 ∧ dω2(�= 0), ω1 ∧ dω2 = 0 = ω2 ∧ dω1. (2.5)

3 Finsler 2-Dimensional Geometry and Adapted Metrics

Let S be a 2-dimensional manifold and π : TS → S its tangent bundle. Let x = (xi) =
(x1, x2) be the local coordinates on S and (x, y) = (xi, yi) = (x1, x2, y1, y2) the induced local
coordinates on TS. Denote by O the null-section of π.
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Recall that a Finsler fundamental function on S is a map F : TS → R+ with the following
properties:

(F1) F is smooth on the slit tangent bundle TS \ O and continuous on O;
(F2) F is positive homogeneous of degree 1: F (x, λy) = λF (x, y) for every λ > 0;
(F3) the matrix (gij) =

(
1
2

∂2F 2

∂yi∂yj

)
is invertible and its associated quadratic form is positive

definite.
The tensor field (gij(x, y)) is called the Finsler metric.
Due to the homogeneity condition, all important objects of Finsler geometry actually live

on the sphere bundle p : T1S = {(x, y) ∈ TS; F (x, y) = 1} → S (see [2, p. 9]). Here T1S is
3-dimensional and an adapted co-frame consists in three 1-forms denoted by ω1, ω2, ω3. More
precisely, after [2, p. 93], we have

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ω1 =
√

g

F
(y2dx1 − y1dx2) := m1dx1 + m2dx2,

ω2 = Fy1dx1 + Fy2dx2 := l1dx1 + l2dx2,

ω3 =
√

g

F 2
(y2δy1 − y1δy2) =

m1

F
δy1 +

m2

F
δy2,

(3.1)

where g = det(gij), Fyi = ∂F
∂yi and δyi = dyi + N i

jdxj with (N i
j(x, y)) being the canonical

nonlinear connection of the Finsler geometry (S, F ) (see [2, p. 34]). The vector fields
(

∂
∂yi

)
span the vertical distribution while

(
δ

δxi

)
span the horizontal distribution. The Finsler metric

yields the Sasaki type metric on T1S (see [2, p. 93]):

gSasaki = ω1 ⊗ ω1 + ω2 ⊗ ω2 + ω3 ⊗ ω3 (3.2)

making {ω1, ω2, ω3} an orthonormal co-frame. If {e1, e2, e3} is the dual frame, then e1 and e2

are horizontal while e3 is vertical.
After [2, p. 82], the structural equations of (S, F ) are

⎧⎨
⎩

dω1 = −Iω1 ∧ ω3 + ω2 ∧ ω3,
dω2 = −ω1 ∧ ω3,
dω3 = Kω1 ∧ ω2 − Jω1 ∧ ω3,

(3.3)

where I, J , K are smooth functions defined as follows (see [2, p. 82]):
(i) I is the Cartan (or main) (pseudo-)scalar. Its vanishing characterizes Riemannian sur-

faces, i.e., g = g(x) which means that F (x, y) =
√

gij(x)yiyj and gSasaki on TS is exactly the
Sasaki lift of the Riemannian metric g. It also follows that N i

j(x, y) = Γi
jk(x)yk with (Γ.

..) being
the Christoffel symbols of g.

(ii) J is the Landsberg (pseudo-)scalar. Its vanishing characterizes Landsberg surfaces.
(iii) K is the Gaussian curvature. Its vanishing characterizes flat (in the Finslerian sense)

surfaces. Note that ω3 is a contact form for non-flat Finslerian surfaces since ω3 ∧ dω3 =
ω3 ∧ (Kω1 ∧ ω2 − Jω1 ∧ ω3) = Kω1 ∧ ω2 ∧ ω3. Then e3 can be called the Reeb vector field of
(S, F ).

Remark that Bianchi equations yield some relations between these functions (see [2, p. 97]):

I3 = J, J3 = −KI − K2, (3.4)
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where the subscript i denotes the derivation in the direction of ei, i.e., df = f1ω1 +f2ω2 +f3ω3.
It follows that I = 0 implies J = 0 and also K2 = 0.

In order to enlarge the class of suitable metrics, we consider the following notion which
appears (with a factor 2 in RHS) in [11].

Definition 3.1 Fix a 1-form ω on a general (M3, g) and the real number ρ. The Rieman-
nian metric g on M is called ρ-adapted to ω if dω = ρ ∗ ω.

We conclude from (3.3) the following proposition.

Proposition 3.1 The metric gSasakian is
(i) 1-adapted to the ω1 if and only if S is a Riemannian surface;
(ii) 1-adapted to ω2;
(iii) K-adapted to ω3 in the Landsberg case.

It follows that the lift of the round metric of S2 to T1S
2 = RP 3 = SO(3) is 1-adapted all

ω’s.

4 Webster Curvature in Finslerian Geometry of Surfaces

Comparing (2.3) with (3.3), it results that gSasaki can be an adapted metric only for ω3, in
which case we say that it is vertical adapted due to the character of the Reeb vector field e3;
correspondingly the 1-forms ω1, ω2 will be called horizontal. We are ready for the main result
of this note.

Theorem 4.1 The Riemannian metric gSasaki of T1S is vertical adapted if and only if S

is a Riemannian surface with K = 2. Then, the horizontal pair (ω1, ω2) is a Cartan structure
and the Webster curvature is

W (T1S, gSasaki, ω3) =
1
2
. (4.1)

Proof Since ωi is a gSasaki-orthonormal co-frame, we have ∗ω3 = ω1 ∧ ω2, and locking at
(3.33), we get that gSasaki is vertical adapted if and only if J = 0, K = 2. From the second
Bianchi relation (3.4), we deduce that I = 0, which yields the first part of the conclusion.

Now, the structural equations have the expression
⎧⎨
⎩

dω1 = ω2 ∧ ω3,
dω2 = −ω1 ∧ ω3,
dω3 = 2ω1 ∧ ω2,

(4.2)

and then we get the relations (2.5) with ω1∧dω1 = ω2∧dω2 = ω1∧ω2∧ω3 = being the volume
form of the metric gSasaki. It also follows that

ϕ1 = ω1, ϕ2 = ω2, ϕ3 = 0. (4.3)

It results in
⎧⎨
⎩

dϕ1 = ω2 ∧ ω3,
dϕ2 = −ω1 ∧ ω3,
dϕ3 = 0

(4.4)
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which gives the matrix of K’s:

K11 = K22 = 1, K33 = −1, (4.5)

all other being zero. Using the definition (2.4), it results in the Webster curvature (4.1).

Remark 4.1 (i) Comparing our result with the second example of [5, p. 285] gives that
Kii given by (4.5) coincides with relations (22) of the cited paper for ε = 1

2 = W .
(ii) If S is compact embedded in R

3 (being also oriented), then a classical sphere theorem
(from 1897) of Hadamard states that S must be diffeomorphic with a sphere. The following
Theorem 4.2 clarifies this claim.

(iii) In [7], the 1-form η = Iω3 is introduced under the name Cartan-type form of (S, F ) and
it is proved that η ∧ dη is the Chern-Simons form of (S, F ). In our setting, this Chern-Simons
form is zero.

(iv) A Cartan structure is a particular case of taut contact circle according to the Definition
1.1 of [8, p. 148] and then any linear combination λ1ω1 + λ2ω2 with (λ1, λ2) ∈ S1 ⊂ R

2 defines
the same volume form, and in our case that is the form of gSasaki.

As an application of the previous theorem, we have the following structural result.

Theorem 4.2 If the Riemannian metric gSasaki of T1S is vertical adapted, then the manifold
(T1S, gSasaki) is Sasakian and homothetic with a generalized Berger sphere.

Proof According to the classification of [9, p. 124], W = 1
2 implies that if (T1S, gSasaki, ω3)

is a Sasakian manifold, then it is homothetic with a generalized Berger sphere. Hence we must
prove that the vertical adapted condition implies the Sasakian condition for gSasaki. But from
[3, p. 87], we know that in dimension 3 this is equivalent to the cu K-contact condition and
then we prove that the vertical adapted condition implies that e3 is a Killing vector field for
gSasaki.

According to [4, p. 28], we have the general Lie brackets:

[e1, e2] = −Ke3, [e2, e3] = −e1, [e3, e1] = −Ie1 − e2 − Je3 (4.6)

which yields the Levi-Civita connection of gSasaki:
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∇e1e1 = −Ie3, ∇e2e2 = 0, ∇e3e3 = Je1,

∇e1e2 = −K

2
e3, ∇e1e3 = Ie1 +

K

2
e2, ∇e2e3 = −K

2
e1,

∇e2e1 =
K

2
e3, ∇e3e1 =

(K

2
− 1

)
e2 − Je3, ∇e3e2 = −

(K

2
− 1

)
e1.

(4.7)

Let X = X iei and Y = Y iei be two arbitrary vector fields on T1S, we get
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∇Xe1 = −(IX1 + JX3)e1 +
(K

2
− 1

)
X3e2 +

K

2
X2e3,

∇Xe2 = −
(K

2
+ 1

)
X3e1 − K

2
X1e3,

∇Xe3 =
[
IX1 − K

2
X2 + JX3

]
e1 +

K

2
X1e2.

(4.8)
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It follows that the Lie derivatives of the metric are⎧⎨
⎩
Le1gSasaki(X, Y ) = −2IX1J1 − J(X1Y 3 + X3Y 1) + (K − 1)(X2Y 3 + X3Y 2),
Le2gSasaki(X, Y ) = −(K + 1)(X1Y 3 + X3Y 1),
Le3gSasaki(X, Y ) = 2IX1Y 1 + J(X1Y 3 + X3Y 1).

(4.9)

The vertical adapted condition gives then
⎧⎨
⎩
Le1gSasaki(X, Y ) = X2Y 3 + X3Y 2,
Le2gSasaki(X, Y ) = −3(X1Y 3 + X3Y 1),
Le3gSasaki(X, Y ) = 0

(4.10)

and we have the final conclusion.

Remark 4.2 (i) The relations in first line of (4.7) yield that under the vertical adapted
condition all vector fields ei are geodesic: ∇eiei = 0. Also, we can determine the generalized
Berger sphere structure of (T1S

2, gSasaki) according to the computations of [12]. More precisely,
we consider SU(2) = S3 with the natural left-invariant and orthonormal frame (X1, X2, X3)
of [12, p. 7], and gSasaki is the metric making orthonormal the frame: e1 = X2√

2
, e2 = X3√

2
,

e3 = −X3
2 as in [12, p. 81].

(ii) Let us remark that our contact structure on T1S is different from that of [3, p. 175]
for which the K-contact condition is characterized via the well-known Tashiro theorem ([3, p.
178]) in terms of constant curvature +1 for the base manifold (S, g(x)). Let us also note that
the Finslerian version of the Tashiro theorem was proved in [1].

(iii) Our Theorem 4.2 is a particular case of Lemma A.1 of Alan Weinstein from the Appendix
of [5] that ϕ1 = ω1, ϕ2 = ω2 implies e3 is a Killing vector field. Also, from the complex
structural equations (39) of [5, p. 290], it follows that Ω = ω1 + iω2 is a closed differential
1-form: dΩ = 0.

5 An Associated Pseudo-Hermitian Structure on T1S

From the third equation of (4.8), it results that the vertical adapted condition implies

∇Xe3 = −[X2e1 − X1e2], (5.1)

and recall, after [3, p. 87], that the Sasakian condition reads

∇Xe3 = −φ(X) (5.2)

in terms of the structural tensor field φ of (1, 1)-type. It gives the expression of φ:

φ(e1) = −e2, φ(e2) = e1, φ(e3) = 0. (5.3)

Let D = kerω3 be the structural distribution associated to ω3. A second formula for the Webster
scalar formula is [3, p. 213]:

W (M, g, ω3) =
1
8
(τ − Ric(e3) + 4), (5.4)

where τ is the scalar curvature of the metric g and Ric(e3) is the Ricci curvature in the direction
of e3. Note also that in the same way as [3, p. 214], we have

τ = 2K(D) + 2Ric(e3), (5.5)
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where K(D) is the sectional curvature of the 2-plane D and from Theorem 7.1 of [3, p. 112] on
the 3-dimensional K-contact case it results that Ric(e3) = 2. Using the Levi-Civita connection
(4.7), we obtain K(D) = −1, so then τ = 2 and from (4.14) we arrive again at W = 1

2 .
Remark also that J = φ|D is a complex structure satisfying the integrability conditions:

[JX, Y ] + [X, JY ] ∈ D, J([JX, Y ] + [X, JY ]) − [JX, JY ] + [X, Y ] = 0 (5.6)

for all X, Y ∈ D = span{e1, e2}. Using the terminology of [10], ω3 is a pseudo-Hermitian
structure on the CR manifold (T1S,D, J). Its associated Webster metric:

gω3(X, Y ) = dω3(X, JY ), gω3(X, e3) = 0, gω3(e3, e3) = 1 (5.7)

being

gω3 = −2ω2
1 − 2ω2

2 + ω2
3 = diag(−2,−2, 1) (5.8)

is not positive definite and hence the pseudo-Hermitian structure is not strictly pseudoconvex.
Since the Levi-Civita connection of gω3 satisfies

∇ω3
e1

e3 = 3e2, ∇ω3
e2

e3 = −3e1, ∇ω3ω3 = 0, (5.9)

it results that

∇ω3
X e3 = 3(−X2e1 + X1e2), (5.10)

and then, as in the previous section, we get that e3 is a Killing vector field for gω3 , which means
that e3 is a transversal symmetry (see [10, p. 446]) for the given pseudo-Hermitian structure.

Using the formulae of [10, p. 448] we get a component of the Webster-Ricci tensor of gω3 :

RicW (e1, e2) =
2Ricgω3 (e1, e1) + gω3(e1, e1)

−2i
=

0 − 2
−2i

= −i (5.11)

and then the Webster scalar curvature of gω3 is

scalW = igω3(e1, e1)RicW (e1, Je1) = i · (−2) · i = 2 = K = τ. (5.12)

Since we have RicW �= −iscalW dω3, it results that this pseudo-Hermitian structure is not
Einstein.
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Inform., 49(2), 2000, 3–9.

[2] Bao, D., Chern, S.-S. and Shen, Z., An introduction to Riemann-Finsler geometry, Graduate Texts in
Mathematics, 200, Springer-Verlag, New York, 2000.

[3] Blair, D. E., Riemannian geometry of contact and symplectic manifolds, 2nd edition, Progress in Mathe-
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