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Abstract In this paper, the Riemann problem with delta initial data for the one-
dimensional system of conservation laws of mass, momentum and energy in zero-pressure
gas dynamics is considered. Under the generalized Rankine-Hugoniot conditions and the
entropy condition, we constructively obtained the global existence of generalized solutions
which contains delta-shock. Moreover, the author obtains the stability of generalized so-
lutions by making use of the perturbation of the initial data.
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1 Introduction

In this paper, we are concerned with the one-dimensional system of conservation laws of
mass, momentum and energy in zero-pressure gas dynamics characterized by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρt + (ρu)x = 0,

(ρu)t + (ρu2)x = 0,

(
ρ
u2

2
+ H

)
t
+

((
ρ
u2

2
+ H

)
u
)

x
= 0,

(1.1)

where ρ and u represent the density and velocity, respectively, H = ρτ is the internal energy, τ
is the internal energy per unit mass. The zero-pressure gas dynamics system is a very important
one to approach the full Euler equations, which can describe the motion of free particles which
stick under collision and explain the formation of large-scale structures in the universe (see
[1–2]). The zero-pressure gas dynamics system consisting of conservation laws of mass and
momentum has been investigated extensively. For related results, see [3–8] and the papers cited
therein. However, it is well known that for the media which can be considered as having no
pressure, we must take into account energy transport. Therefore it is very necessary to consider
the energy conservation law in zero-pressure gas dynamics (see [9–10]).

For the Riemann problem of system (1.1), it is not difficult to see that the delta shock and
vacuum do occur (see [9]). In this paper, we will investigate the Riemann problem with delta
initial data and possible interactions of delta shock waves and contact vacuum state for system
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(1.1). As for delta shock waves, we refer readers to [11–17] and the references cited therein for
more details.

In this article, we first consider the Riemann problem for (1.1) with initial data

(ρ, u, H)(x, 0) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(ρ−, u−, H−), x < −ε,(ω0

ε
, u0,

h0

ε

)
, −ε < x < ε,

(ρ+, u+, H+), x > ε,

(1.2)

where ε > 0 is sufficiently small. We constructively obtain the solutions for the problem
(1.1)–(1.2). Moreover, a new kind of nonclassical wave is obtained, namely, a delta contact
discontinuity, which is a Dirac delta function supported on a contact discontinuity. Let ε → 0,
under the stability theory of weak solutions, we obtain solutions for the system (1.1) with delta
initial data

(ρ, u, H)(x, 0) =

⎧⎪⎨
⎪⎩

(ρ−, u−, H−), x < 0,

(ω0δ, u0, h0δ), x = 0,

(ρ+, u+, H+), x > 0,

(1.3)

where δ is the standard Dirac delta function. With the help of generalized Rankine-Hugoniot
conditions and the entropy condition, we obtain the global existence of generalized solutions
for the problems (1.1) with (1.3). Moreover, if we let ω0 = 0, u0 = 0 and h0 = 0, the solutions
of (1.1) with (1.3) correspond to the solutions of Riemann problem for (1.1). This method has
been used in [18] to study the Riemann problem with delta initial data for the 1-D Chaplygin
gas equations.

This paper is organized as follows. In Section 2, we recall and present some known results
about the system (1.1) and its Riemann solution with constant initial data. In Section 3, we
construct solutions of (1.1)–(1.2) case by case. Then letting ε → 0, we obtain the generalized
solutions of (1.1) with (1.3).

2 The Riemann Problem with Constant Initial Data

In this section, we study solutions of system (1.1) by considering the Riemann problem with
initial data

(ρ, u, H)(x, 0) =

{
(ρ−, u−, H−), x < 0,

(ρ+, u+, H+), x > 0.
(2.1)

The details can be found in [9]. The system (1.1) has a triple eigenvalue λ = u and two right
eigenvectors r1 = (1, 0, 0)T and r2 = (0, 0, 1)T, which satisfy ∇λ · ri = 0, i = 1, 2. Thus the
system (1.1) is linearly degenerate. Furthermore, we obtain the Riemann solutions of (1.1) with
(2.1) containing contact discontinuities, vacuum or delta shock wave.

For the case u− ≤ u+, the solution can be expressed as

(ρ, u, H)(ξ) =

⎧⎪⎨
⎪⎩

(ρ−, u−, H−), −∞ < ξ < u−,

(0, u(ξ), 0), u− ≤ ξ ≤ u+,

(ρ+, u+, H+), u+ < ξ < +∞,

(2.2)

where u(ξ) satisfies that u(u−) = u− and u(u+) = u+ (see Figure 2.1).
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For the case u− > u+, the overlap of the characteristic results in a δ-wave connecting the
two states (ρ−, u−, H−) and (ρ+, u+, H+). The solution of (1.1) with (2.1) is

(ρ, u, H)(t, x) =

⎧⎪⎨
⎪⎩

(ρ−, u−, H−)(t, x), x < x(t),
(ω(t)δ(x − x(t)), uδ(t), h(t)δ(x − x(t))), x = x(t),
(ρ+, u+, H+)(t, x), x > x(t),

(2.3)

where x(t), ω(t), h(t) and uδ satisfy the generalized R-H conditions

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(t)
dt

= uδ(t),

dω(t)
dt

= [ρ]uδ(t) − [ρu],

dω(t)uδ(t)
dt

= [ρu]uδ(t) − [ρu2],

d
(
ω(t)uδ

2(t)
2 + h(t)

)
dt

=
[ρu2

2
+ H

]
uδ(t) −

[(ρu2

2
+ H

)
u
]
,

(2.4)

where [ρ] = ρ+ − ρ−, with initial data x(0) = 0, ω(0) = 0, h(0) = 0. By simple calculation, we
obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(t) =
√

ρ−u− +
√

ρ+u+√
ρ− +

√
ρ+

t,

ω(t) =
√

ρ−ρ+(u− − u+)t, if ρ− �= ρ+,

uδ =
√

ρ−u− +
√

ρ+u+√
ρ− + √

ρ+
,

h(t) =
ρ−ρ+(u− − u+)2 + 2(√ρ− + √

ρ+)(H−
√

ρ+ + H+
√

ρ−)
2(√ρ− + √

ρ+)2
(u− − u+)t

(2.5)

and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(t) =
u− + u+

2
t,

ω(t) = ρ−(u− − u+)t, if ρ− = ρ+,

uδ =
u− + u+

2
,

h(t) =
ρ−(u− − u+)2 + 4(H− + H+)

8
(u− − u+)t.

(2.6)

Thus, we have obtained the solutions of system (1.1) with (2.1).

+−+
_

Figure 2.1 u− ≤ u+ Figure 2.2 u− > u+
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3 The Riemann Problem With Delta Initial Data

In this section, we first consider the solution to system (1.1) with (1.2). Then letting ε → 0,
we get the solution of (1.1) with (1.3) under the stability theory of weak solutions. According
to the relations among u−, u+ and u0, we discuss the Riemann problem case by case.

Case 1 u− ≤ u0 ≤ u+

In this case, when t is small enough, the solution of the initial value problem (1.1)–(1.2) can
be expressed briefly as follows (see Figure 3.1(a)):

(ρ−, u−, H−) + J− + Vac + J0
1 +

(ω0

ε
, u0,

h0

ε

)
+ J0

2 + Vac + J+ + (ρ+, u+, H+),

where “+” means “followed by”. The propagation speed of the J0
1 and J0

2 is u0. Thus we see
that the J0

1 can not overtake J0
2 at a finite time. So far, the solutions of (1.1) with (1.2) have

been constructed completely. Letting ε → 0, we obtain a solution of (1.1) with (1.3) as follows
(see Figure 3.1(b)):

(ρ−, u−, H−) + J− + Vac + δS + Vac + J+ + (ρ+, u+, H+),

where the propagation speed of the δS is u0.
If ω0 = 0, u0 = 0 and h0 = 0, it is easy to see that the solution of (1.1) with (1.3) is

consistent with the Riemann solutions of (1.1) with (2.1), which implies that the solution is
stable with respect to the perturbation in this case.

( )

−

+

−

(

( )

/ / ) +

−

( )( )

Figure 3.1 (a) Figure 3.1 (b)

Case 2 u0 < u− < u+ (if u− < u+ < u0, then the structure of the solution is similar)
Similarly to the analysis in Case 1, we seek the solution of the following form (see Figure

3.2):

(ρ, u, H)(x, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(ρ−, u−, H−)(t, x), x < x(t),
(ω(t)δ(x − x(t)), uδ(t), h(t)δ(x − x(t))), x = x(t),
(0, uδ(t), 0)(t, x), x(t) < x < u+t,

(ρ+, u+, H+)(t, x), x > u+t

(3.1)

and δS satisfies the following generalized Rankine-Hugoniot conditions:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(t)
dt

= uδ(t),

dω(t)
dt

= [ρ]uδ(t) − [ρu],

dω(t)uδ(t)
dt

= [ρu]uδ(t) − [ρu2],

d
(
ω(t)uδ

2(t)
2 + h(t)

)
dt

=
[
ρ
u2

2
+ H

]
uδ(t) −

[(
ρ
u2

2
+ H

)
u
]
,

(3.2)
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where [ρ] = 0 − ρ−, with initial data

(x, ω, uδ, h)(0) = (0, ω0, u0, h0). (3.3)

For more details, we refer readers to [18–19] and the references cited therein.

( )

( )

( )

Figure 3.2

Next, we only need to solve the initial value problem (3.2) with (3.3). From (3.2), we have

dw

dt
= −ρ−uδ + ρ−u−, (3.4)

dwuδ

dt
= −ρ−u−uδ + ρ−u2

− (3.5)

and

dw
u2

δ

2 + h

dt
= −

(ρ−u2
−

2
+ H−

)
uδ +

(ρ−u2
−

2
u− + H−u−

)
. (3.6)

By virtue of (3.4)–(3.5), we have

wdw = ω0ρ−(u− − u0)dt. (3.7)

Solving (3.7) with ω(0) = ω0, we have

w(t) =
√

ω2
0 + 2ω0ρ−(u− − u0)t. (3.8)

From (3.4) and (3.7), we have

uδ = u− − ω0(u− − u0)√
ω2

0 + 2ω0ρ−(u− − u0)t
. (3.9)

Using (3.5)–(3.6) and (3.8)–(3.9), we obtain

h(t) = h(0) +
H−
ρ−

√
ω2

0 + 2ω0ρ−(u− − u0)t − ω2
0(u− − u0)

2
√

ω2
0 + 2ω0ρ−(u− − u0)t

. (3.10)
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Remark 3.1 From (3.9), we have

lim
t→∞ uδ → u− < u+. (3.11)

This implies that δS does not penetrate vacuum completely and it converts to δJ when t → ∞.

Remark 3.2 From (3.4), (3.6) and (3.8), if ω0 = 0, u0 = 0, h0 = 0, then (ω, u, h) =
(0, u−, 0). This is consistent with the results of the Riemann problem (1.1) with (2.1). It
implies that the solution constructed here is stable under some perturbations.

Case 3 u+ < u0 < u−
Similarly to the analysis in Case 1, we seek the solution of the following form (see Figure

3.3):

(ρ, u, H)(x, t) =

⎧⎪⎨
⎪⎩

(ρ−, u−, H−)(t, x), x < x(t),
(ω(t)δ(x − x(t)), uδ(t), h(t)δ(x − x(t))), x = x(t),
(ρ+, u+, H+)(t, x), x > x(t)

(3.12)

and δS satisfies the following generalized Rankine-Hugoniot conditions:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(t)
dt

= uδ(t),

dω(t)
dt

= [ρ]uδ(t) − [ρu],

dω(t)uδ(t)
dt

= [ρu]uδ(t) − [ρu2],

d
(
ω(t)uδ

2(t)
2 + h(t)

)
dt

=
[
ρ
u2

2
+ H

]
uδ(t) −

[(
ρ
u2

2
+ H

)
u
]
,

(3.13)

where [ρ] = ρ+ − ρ−, with initial data

(x, ω, uδ, h)(0) = (0, ω0, u0, h0). (3.14)

( )( )

Figure 3.3

Now, we are going to solve the initial value problem (3.13) with (3.14).
Integrating (3.13) from 0 to t with initial data (3.14), we have⎧⎪⎪⎪⎨

⎪⎪⎪⎩

ω − ω0 = [ρ]x − [ρu]t,
ωuδ − ω0u0 = [ρu]x − [ρu2]t,

ωu2
δ

2
− ω0u

2
0

2
+ h − h0 =

[ρu2

2
+ H

]
x −

[ρu2

2
u + Hu

]
t.

(3.15)
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Canceling ω in the first and second equation of (3.5), we have

d
dt

{1
2
[ρ]x2 + (ω0 − [ρu]t)x +

1
2
[ρu2]t2 − ω0u0t

}
= 0. (3.16)

Integrating (3.16) from 0 to t, we have

1
2
[ρ]x2 + (ω0 − [ρu]t)x +

1
2
[ρu2]t2 − ω0u0t = 0. (3.17)

Solving (3.17), we get

x(t) =

⎧⎪⎪⎨
⎪⎪⎩

ω0u0t − 1
2 [ρu2]t2

ω0 − [ρu]t
, [ρ] = 0,

−ω0 + [ρu]t + ω(t)
[ρ]

, [ρ] �= 0
(3.18)

and

ω(t) =
√

ρ−ρ+[u]2t2 + 2ω0([ρ]u0 − [ρu])t + ω2
0 . (3.19)

From (3.15), we have

uδ =
[ρu]x − [ρu2]t + ω0u0

w(t)
(3.20)

and

h(t) = h0 +
[ρu2

2
+ H

]
x −

[ρu2

2
u + Hu

]
t +

ω0u
2
0

2
− ωu2

δ

2
. (3.21)

Remark 3.3 It is seen that

lim
t→∞uδ(t) =

⎧⎪⎪⎨
⎪⎪⎩

u+ + u−
2

, [ρ] = 0,

√
ρ−u− +

√
ρ+u+√

ρ− + √
ρ+

, [ρ] �= 0.
(3.22)

So from (3.22), we have

u+ < lim
t→∞uδ(t) < u−. (3.23)

Remark 3.4 If ω0 = 0, u0 = 0, h0 = 0, then

(x, ω, uδ, h)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(u+ + u−
2

t, ρ−(u− − u+)t,
u− + u+

2
,
ρ−(u− − u+)2 + 4(H− + H+)

8
(u− − u+)t

)
, [ρ] = 0,

(√
ρ−u− + √

ρ+u+√
ρ− + √

ρ+
t,
√

ρ−ρ+(u− − u+)t,
√

ρ−u− + √
ρ+u+√

ρ− + √
ρ+

,

ρ−ρ+(u− − u+)2 + 2(√ρ− + √
ρ+)(H−

√
ρ+ + H+

√
ρ−)

2(√ρ− + √
ρ+)2

(u− − u+)t
)
, [ρ] �= 0.

(3.24)



448 L. Wang

This is consistent with the results of the Riemann problems (1.1) with (2.1). It implies that
the solution constructed here is stable under some perturbations.

Case 4 u0 < u+ < u− (if u+ < u− < u0, then the structure of the solution is similar)
Similarly to the analysis in Case 2, we know that, in this case, when t is small enough, the

solution is the same as that in Case 2. More precisely, according to (3.9), there exists a unique
t1, such that uδ(t1) = u+.

When 0 ≤ t ≤ t1, the solution is the same as that in Case 2. When t > t1, the δ-shock wave
will overtake J+ in finite time t = t2, and we seek the solution of the following form (see Figure
3.4):

( ) +

( )

( )( )

Figure 3.4

For 0 ≤ t ≤ t1, the solution is the same as that in Case 2, and here we omit the details.
For t1 ≤ t ≤ t2,

(ρ, u, H)(x, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(ρ−, u−, H−)(t, x), x < x1(t),
(ω1(t)δ(x − x1(t)), u1

δ(t), h
1(t)δ(x − x1(t))), x = x1(t),

(0, u1
δ(t), 0)(t, x), x1(t) < x < u+t,

(ρ+, u+, H+)(t, x), x > u+t,

(3.25)

and δS1 satisfies the following generalized Rankine-Hugoniot conditions:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1(t)
dt

= u1
δ(t),

dω1(t)
dt

= [ρ]u1
δ(t) − [ρu],

dω1(t)u1
δ(t)

dt
= [ρu]u1

δ(t) − [ρu2],

d
(
ω1(t)u1

δ
2
(t)

2 + h1(t)
)

dt
=

[
ρ
u2

2
+ H

]
u1

δ(t) −
[(

ρ
u2

2
+ H

)
u
]
,

(3.26)

where [ρ] = 0 − ρ−, with initial data

(x1, ω1, u1
δ, h

1)(0) = (x1, ω1, u1, h1), (3.27)

where x1 = x(t1), ω1 = ω(t1), u1 = u(t1) and h1 = h(t1). The solution of (3.26)–(3.27)
(x1, ω1, u1

δ, h
1)(t) can be obtained similarly as in Case 2.

For t > t2, where t2 is determined by x1(t2) = u+t2,

(ρ, u, H)(x, t) =

⎧⎨
⎩

(ρ−, u−, H−)(t, x), x < x2(t),
(ω2(t)δ(x − x2(t)), u2

δ (t), h2(t)δ(x − x2(t))), x = x2(t),
(ρ+, u+, H+)(t, x), x > x2(t),

(3.28)
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and δS2 satisfies the following generalized Rankine-Hugoniot conditions⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx2(t)
dt

= u2
δ (t),

dω2(t)
dt

= [ρ]u2
δ (t) − [ρu],

dω2(t)u2
δ (t)

dt
= [ρu]u2

δ (t) − [ρu2],

d(ω2(t)u2
δ
2
(t)

2 + h2(t))
dt

=
[
ρ
u2

2
+ H

]
u2

δ (t) −
[(

ρ
u2

2
+ H

)
u
]
,

(3.29)

where [ρ] = ρ+ − ρ−, with initial data

(x2, ω2, u2
δ , h2)(0) = (x2, ω2, u2, h2), (3.30)

where x2 = x1(t2), ω2 = ω1(t2), u2 = u1(t2) and h2 = h1(t2). The solution of (3.29)–(3.30)
(x2, ω2, u2

δ , h2)(t) can be obtained similarly as in Case 3.
So far, we have finished the discussion for all kinds of interactions. We summarize our results

in the following.

Theorem 3.1 The solution of (1.1) with (1.3) can be obtained by letting ε → 0 for the
solutions of (1.1) with (1.2). If we let ω0 = 0, u0 = 0, h0 = 0, the solution of (1.1) with (1.3)
corresponds exactly to the solution of Riemann problem (1.1) with (2.1). It implies that the
solution constructed here is stable under some perturbation.
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