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Abstract The author studies the properties and applications of quasi-Killing spinors
and quasi-twistor spinors and obtains some vanishing theorems. In particular, the author
classifies all the types of quasi-twistor spinors on closed Riemannian spin manifolds. As a
consequence, it is known that on a locally decomposable closed spin manifold with nonzero
Ricci curvature, the space of twistor spinors is trivial. Some integrability condition for
twistor spinors is also obtained.
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1 Introduction

It is well known that the spectrum of the Dirac operator on closed spin manifolds detects
subtle information on the geometry and the topology of such manifolds (see [1]). The first
sharp estimate for the nonzero eigenvalues λ of the Dirac operator is the well-known Friedrich
inequality, which says that

λ2 ≥ n

4(n− 1)
inf
Mn

R, (1.1)

where R is the scalar curvature of the closed spin manifold (Mn, g). The case of equality in
(1.1) occurs if and only if (Mn, g) admits a nontrivial spinor field ψ called a real Killing spinor,
satisfying the following overdetermined elliptic equation:

∇Xψ = −λ
n
X · ψ, (1.2)

where X ∈ Γ(TMn) and the dot “.” indicates the Clifford multiplication. Obviously, a Killing
spinor is a twistor spinor which is also an eigenspinor. The existence of Killing spinors implies
severe restrictions on the manifold. The manifold must be a locally irreducible Einstein manifold
and the simply connected manifolds admitting real Killing spinors were completely classified
(see [2]). Some classification results for manifolds with twistor spinors can be seen in [3–4].

On the other hand, Lichnerowicz [5] and Hijazi [6] noticed that a manifold admitting a
non-zero parallel k-form, for k �= 0, n, carries no real Killing spinor. Furthermore, if (Mn, g)
possesses a locally product structure, then there is no Killing spinor. Consequently, this shows
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the estimate (1.1) cannot be sharp, for example, on (quaternionic) Kähler manifolds, and on
manifolds with a locally product structure. Indeed, better estimates have been proved in these
cases by Kirchberg [7], Hijazi [8], Kramer et al [9], and Kim [10], respectively.

In the paper [8], Kählerian twistor spinors are introduced to get lower bounds for the
eigenvalues of the Dirac operator on closed spin Kähler manifolds. Hijazi also studied the
uniqueness of Kählerian twistor spinors and obtained some vanishing theorems (see [11]). In
particular, he proved that on a Kähler spin manifold with R �≡ 0, the space of twistor spinors
is reduced to zero. Motivated by the paper [8], we study the properties and applications of the
quasi-Killing spinors and the quasi-twistor spinors which were used to get lower bounds for the
eigenvalues of the Dirac operator in [10–12], and obtain some vanishing theorems. Especially,
we prove that on a locally decomposable closed spin manifold with nonzero Ricci curvature, the
space of twistor spinor is trivial.

The article is organized as follows: In Section 2, some geometric conventions and prelimi-
naries are given. In Section 3, we discuss the quasi-Killing spinor and its application in lower
bounds estimation for the eigenvalues of the Dirac operator. In the final section, the quasi-
twistor spinor is investigated. Especially, we give an integrability condition for twistor spinors
(see Theorem 4.2). More generally, we study the uniqueness of quasi-twistor spinors on com-
plete Riemannian spin manifolds (see Theorems 4.3–4.4). As a corollary, we know that on a
locally decomposable closed spin manifold with Ric �≡ 0, the space of twistor spinors is trivial.

2 Preliminaries

Let (Mn, g) be an oriented n-Riemannian manifold. Let β be a (1, 1)-tensor field on (Mn, g)
such that β2 = σId, σ = ±1 and

g(β(X), β(Y )) = g(X,Y )

for all vector fields X,Y ∈ Γ(TMn) (here Id stands for the identity map). We say (Mn, g, β) is
an almost Hermitian manifold if σ = −1 and an almost product Riemannian manifold if σ = 1,
respectively. Moreover, if σ = −1 and β is parallel, (Mn, g, β) is called a Kähler manifold.
Similarly, we have the following definition.

Definition 2.1 (see [10, 13]) An n-Riemannian manifold (Mn, g) is called locally decom-
posable if it is an almost product Riemannian manifold (Mn, g, β) and β is parallel.

In case that (Mn, g, β) is locally decomposable, the tangent bundle TMn decomposes into
TMn = T+Mn ⊕ T−Mn under the action of the endomorphism β, where

T±Mn � {X ∈ TMn | β(X) = ±X}.

Obviously, the distributions T±Mn are integrable since β is parallel. If (Mn, g) is simply
connected and complete, then the De Rham decomposition theorem implies that there is a
global splitting (Mn, g) = (M1 ×M2, g1 + g2).

Example 2.1 Suppose that an n-Riemannian manifold (Mn, g) possesses a unit vector field
ξ ∈ Γ(TMn). Then the reflection β defined by

β(X) � X − 2g(X, ξ)ξ, X ∈ Γ(TM)
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is an almost product Riemannian structure. Moreover, it is a locally decomposable Riemannian
structure if ξ is a parallel vector field.

We now suppose that (Mn, g) is a Riemannian manifold with a fixed spin structure. We
understand the spin structure as a reduction SpinMn of the SO(n)-principal bundle of Mn

to the universal covering Ad : Spin(n) → SO(n) of the special orthogonal group. The spinor
bundle ΣMn = SpinMn ×ρ Σn on Mn is the associated complex 2[n2 ] dimensional complex
vector bundle, where ρ is the complex spinor representation. The tangent bundle TMn can be
regarded as TMn = SpinMn×Ad R

n. Consequently, the Clifford multiplication on ΣMn is the
fibrewise action given by

μ : TMn ⊗ ΣMn −→ ΣMn,

X ⊗ ψ 
−→ X · ψ.

On the spinor bundle ΣMn, one has a natural Hermitian metric, denoted as the Riemannian
metric by 〈·, ·〉. The spinorial connection on the spinor bundle induced by the Levi-Civita
connection ∇ on Mn will also be denoted by ∇. The Hermitian metric 〈·, ·〉 and spinorial
connection ∇ are compatible with the Clifford multiplication μ. That is

X〈φ, ϕ〉 = 〈∇Xφ, ϕ〉 + 〈φ,∇Xϕ〉,
〈X · φ,X · ϕ〉 = |X |2〈φ, ϕ〉,

∇X(Y · φ) = ∇XY · φ+ Y∇Xφ

∀φ, ϕ ∈ Γ(ΣMn) and ∀X,Y ∈ Γ(TMn). Using a local orthonormal frame field {e1, · · · , en}, the
spinorial connection ∇, the Dirac operator D and the twistor operator P , are locally expressed
as

∇ekψ = ek(ψ) +
1
4
ei · ∇ekei · ψ, (2.1)

Dψ � ei · ∇eiψ, (2.2)

Pψ � ei ⊗
(
∇eiψ +

1
n
ei ·Dψ

)
, (2.3)

respectively, which satisfy the following important relation:

|∇ψ|2 = |Pψ|2 +
1
n
|Dψ|2

for any ψ ∈ Γ(ΣMn) (throughout this paper, the Einstein summation notation is always
adopted). The kernels of the operators D and P are respectively, the twistor spinors and
the harmonic spinors, and they are both conformally invariant. If M is closed, KerD = KerD2

on L2(ΣMn).
Let RX,Y Z � (∇X∇Y − ∇Y∇X − ∇[X,Y ])Z be the Riemannian curvature of (Mn, g) and

denote by RX,Y ψ � (∇X∇Y −∇Y∇X−∇[X,Y ])ψ the spin curvature in the spinor bundle ΣMn.
They are related via the formula

RX,Y ψ =
1
4
g(RX,Y ei, ej)ei · ej · ψ. (2.4)

We also use the notation
Rijkl � g(Rei,ejek, el)
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and Rij = 〈Ric(ei), ej〉 � Rikkj , R = Rii. With the help of the Bianchi identity, (2.4) implies

ei · Rej ,eiψ = −1
2
Ric(ej) · ψ, (2.5)

which in turn gives 2ei · ej · Rei,ejψ = Rψ. Hence one derives the well-known Schrödinger-
Lichnerowicz formula

D2 = ∇∗∇ +
1
4
R, (2.6)

where ∇∗ is the formal adjoint of ∇ with respect to the natural Hermitian scalar product on
ΣMn. The formula shows the close relation between the scalar curvature R and the Dirac
operator D.

On almost Hermitian manifolds or almost product Riemannian manifolds, we can also define
the following β-twist Dβ of the Dirac operator D by

Dβψ � ei · ∇β(ei)ψ = σβ(ei) · ∇eiψ. (2.7)

It is easy to see that Dβ is a formally self-adjoint elliptic operator with respect to L2-product,
if Mn is closed and divβ = 0. As in the Kählerian case, Kim obtained that D2 = D2

β holds on
the locally decomposable Riemannian spin manifold (Mn, g, β) (see Prop. 2.1 in [10]).

3 Quasi-Killing Spinors

Definition 3.1 (see [10]) A non-trivial solution ψ to the following field equation on the
almost product Riemannian manifold (Mn, g, β)

∇Xψ = aX · ψ + bβ(X) · ψ, a, b ∈ C∞(M,R) (3.1)

is called a quasi-Killing spinor of type (a, b).

Obviously, if ψ is a quasi-Killing spinor of type (a, b), the energy-momentum tensor associ-
ated to ψ is given on the complement of its zero set by

Qψ(X,Y ) � 1
2
Re〈X · ∇Y ψ + Y · ∇Xψ/|ψ|2〉

= −a〈X,Y 〉 − bβ(X,Y )

for any X,Y ∈ Γ(TMn). Especially, the quasi-Killing spinor of type (a, 0) (or β = ±Id) is also
called the generalized Killing spinor. In fact, in this case one can prove that the function a

must be a constant. That is, ψ is in fact a Killing spinor. In addition, Hijazi proved that a
manifold admitting a parallel 1-form carries no real Killing spinors (see [6]). Furthermore, we
can prove the following theorem.

Theorem 3.1 Let ψ be a quasi-Killing spinor of type (a, b) on a locally decomposable Rie-
mannian spin manifold (Mn, g, β), where β �= ±Id. Then |ψ|2 is a positive constant and

(1) if R �≡ 0, ψ is an eigenspinor of D, 0 �= a = b (or 0 �= a = −b) is constant, and R is a
positive constant;

(2) if R ≡ 0, then Ric ≡ 0;
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(3) the real vector field Xψ defined by

g(Xψ, Y ) �
√−1〈ψ,Qψ(Y ) · ψ〉, ∀Y ∈ Γ(TM)

is a Killing field, i.e., LXψg = 0.

Proof (1) First, from

∇iψ � ∇eiψ = aei · ψ + bβ(ei) · ψ,

we know that ∇i|ψ|2 = 2Re〈∇iψ, ψ〉 = 0. Hence |ψ|2 is a positive constant. One can also easily
check

Dψ = ei∇iψ = −(na+ btrβ)ψ,

D2ψ = (na+ btrβ)2ψ − (n∇a+ trβ∇b)ψ (3.2)

and

Dβψ = β(ei)∇iψ = −(nb+ atrβ)ψ,

D2
βψ = (nb+ atrβ)2ψ − (nβ(∇b) + trββ(∇a))ψ. (3.3)

In particular {
na+ btrβ = ±(nb+ atrβ),
n∇a+ trβ∇b = nβ(∇b) + trββ(∇a),

since D2
β = D2. Noting β �= ±Id, we have a = ±b, which in turn implies that β(∇a) = ±∇a.

Hence the quasi-Killing equation can also be written as

∇iψ = a[ei ± β(ei)] · ψ � −Qψ(ei) · ψ, (3.4)

where Qψ = −a(Id ± β). Moreover, by (2.5),

1
2
Ric(ei) · ψ = ∇a · (ei ± β(ei)) · ψ + (n± trβ)aiψ

+ 4a2(n± trβ − 2)[ei ± β(ei)] · ψ. (3.5)

Hence performing its Clifford multiplication by ei yields

[R
4

+ |Qψ|2 − (trQψ)2
]
ψ = (dtrQψ − divQψ) · ψ. (3.6)

Using (trQψ)2 = 1
4R + |Qψ|2, it follows that

R = 4a2(n± trβ)(n ± trβ − 2). (3.7)

By d trQψ = divQψ, we infer that

(n± trβ)∇a = −(Qψ)ij,iej = ∇a± β(∇a) = 2∇a. (3.8)

Consequently, ∇a = 0 since R is non-zero. Moreover, R is a positive constant and a = b = − λ
2n1

or a = −b = − λ
2n2

, where n1 � dimT+Mn, n2 � dimT−Mn.
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(2) If R ≡ 0, (3.7) yields a = 0 or n ± trβ − 2 ≡ 0. If a = 0, ∇ψ = 0 and Ric ≡ 0. If
n+ trβ − 2 ≡ 0, we see by (3.5) that

1
2
Ric(ei) · ψ = ∇a · (ei + β(ei)) · ψ + (n+ trβ)aiψ,

where β(∇a) = ∇a � aiei. Obviously

1
2
Ric(∇a) · ψ = ∇a · [∇a+ β(∇a)] · ψ + 2|∇a|2ψ = 0, (3.9)

1
2
Ric(X) · ψ = ∇a · [X + β(X)] · ψ + 2〈∇a,X〉ψ

= 0, ∀X ⊥ ∇a, (3.10)

from which the result follows.
(3) Since the Clifford multiplication by vector fields is skew-symmetric with respect to

〈·, ·〉, the vector field Xψ is real. We need the following formula for arbitrary vector fields
X,Y, Z ∈ Γ(TM)

(LXg)(Y, Z) = X(g(Y, Z)) − g(LXY, Z) − g(Y,LXZ)

= g(∇YX,Z) + g(Y,∇ZX),

since ∇ is metric and torsion-free. On the other hand, by the definition of Xψ, at the point p
with ∇ei|p = 0,

g(∇iXψ, ej) = ei(g(Xψ, ej))

=
√−1〈Qψ(ej) ·Qψ(ei) · ψ, ψ〉 −

√−1〈Qψ(ei) ·Qψ(ej) · ψ, ψ〉

which is clearly skew-symmetric with respect to ei, ej.

Remark 3.1 We can compute if R �≡ 0 and Mn is closed,

Rij = 4a2(n− 2 ± trβ)(δij ± βij). (3.11)

Hence, Ric ≥ 0 and moreover, by the Bochner-Weitzenböck formula, we know that every
harmonic 1-form on Mn is parallel.

One application of the quasi-Killing spinor is another simple proof of the following theorem,
which is due to Alexandrov, Grantcharov and Ivanov [12]. The other related issues can be seen
in [10, 14–15].

Theorem 3.2 Let (Mn, g), n ≥ 3 be a closed Riemannian spin manifold of positive scalar
curvature admitting a non-trivial parallel vector field of unit length. Then any eigenvalue λ of
the Dirac operator D satisfies

λ2 ≥ n− 1
4(n− 2)

inf
Mn

R. (3.12)

The equality in (3.12) occurs if and only if there exists a quasi-Killing spinor field of type( − λ
2(n−1) ,− λ

2(n−1)

)
on (Mn, g).
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Proof First suppose that ξ is a unit parallel vector field and let

Tiϕ � ∇iϕ+
λ

2(n− 1)
ei · ϕ+

λ

2(n− 1)
β(ei) · ϕ, (3.13)

where Dϕ = λϕ, β(ei) � ei− 2〈ei, ξ〉ξ. Then, an elementary calculation provides the following

|Tϕ|2 = |∇ϕ|2 +
1

2(n− 1)
(|Dβϕ−Dϕ|2 − |Dβϕ|2 − |Dϕ|2). (3.14)

At the same time, ∇ξ = 0 yields∫
Mn

|Dβϕ|2 =
∫
Mn

|Dϕ|2 = λ2

∫
Mn

|ϕ|2.

Hence integrating (3.14) and applying the Schrödinger-Lichnerowicz formula (2.6), we find that∫
Mn

2(n− 1)|Tϕ|2 =
∫
Mn

2(n− 2)λ2|ϕ|2 − n− 1
2

R|ϕ|2 + |Dβϕ−Dϕ|2.

Note by the definition,

β(ei) · Tiϕ = Dβϕ− λϕ,

ei · Tiϕ = Dϕ− λϕ.

So using the Cauchy-Schwarz inequality leads to

|Dβϕ−Dϕ|2 ≤
(∑

|β(ei) − ei||Tiϕ|
)2

=
(∑

(2 − 2βii)
1
2 |Tiϕ|

)2

≤
∑

(2 − 2βii) ·
∑

|Tiϕ|2

= 4|Tϕ|2.

From this, it follows immediately that

0 ≤ n− 3
n− 2

∫
Mn

|Tϕ|2 ≤
∫
Mn

[
λ2 − n− 1

4(n− 2)
R

]
|ϕ|2.

If λ2 achieves its minimum, then Tϕ ≡ 0, which implies the associated eigenspinor ϕ is a non-
trivial quasi-Killing spinor field on locally decomposable Riemannian spin manifold (Mn, g, β).

Remark 3.2 It follows from Tϕ ≡ 0, βij = δij − 2ξiξj that

∇ξϕ = 0, ∇Xϕ = − λ

n− 1
X · ϕ, ∀X⊥ξ.

By Bär’s result in [2], the universal covering space of the manifolds in the limiting case was
described in [12].

Remark 3.3 The proof given above also works if ξ is just a harmonic vector field of unit
length, and hence the result in [14] is also obtained. In fact, with the help of the Bochner-
Weitzenböck formula on 1-forms, it is not difficult to check that for any φ,

D2
βφ = D2φ− ξ · ∇∗∇(ξ · φ) −∇∗∇φ. (3.15)
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Note the fact that ξ is a harmonic vector field of unit length implies div(β) = 0, hence Dβ is
self-adjoint with respect to L2-product. Hence∫

Mn

|Dβφ|2 (3.15)
=

∫
Mn

〈D2φ− ξ · ∇∗∇(ξ · φ) −∇∗∇φ, φ〉

=
∫
Mn

|Dφ|2 + |∇(ξ · φ)|2 − |∇φ|2.

So, if Dφ = λφ, one can use the classical Rayleigh inequality and (2.6) to conclude
∫
Mn

|Dβφ|2 ≥
∫
Mn

|Dφ|2,

and the remaining proof is quite similar to that of Theorem 3.2.

4 Quasi-twistor Spinors

Analogous to the Kählerian twistor equation in [8], we have the following definition.

Definition 4.1 (see [10]) A non-trivial solution ψ to the following field equation on almost
product Riemannian manifold (Mn, g, β):

∇Xψ = pX ·Dψ + qβ(X) ·Dβψ, (4.1)

is called a quasi-twistor spinor of type (p, q), where p, q ∈ R.

Remark 4.1 Obviously, the quasi-twistor spinor of type (− 1
n , 0) is the familiar twistor

spinor or called conformal Killing spinor which lies in the kernel of the twistor operator P (see
(2.3)).

On a locally decomposable spin manifold, a straightforward computation using (4.1) gives
the following 1

2 -Ric formula (see [10])

1
2
Ric(ei) · ψ = −pei ·D2ψ − (2p+ 1)∇i(Dψ) − 2q∇β(ei)(Dβψ) − qβ(ei) ·DDβψ

and the following useful identity

4(p+ q + 1)D2ψ = Rψ. (4.2)

Theorem 4.1 Suppose that ψ is a quasi-twistor spinor of type (p, q) on a locally decom-
posable Riemannian spin manifold (Mn, g, β), β �= ±Id and Dψ = λψ, where λ �= 0. Then
p = q = − 1

2n1
or − 1

2n2
.

Proof (1) If trβ = 0, then from D2ψ = D2
βψ = λ2ψ �= 0 and

(1 + np)Dψ + tr(β)qDβψ = 0,

(1 + nq)Dβψ + tr(β)pDψ = 0,

one gets p = q = − 1
n .

(2) If p = − 1
n , q = 0, or q = − 1

n , p = 0, then the limiting-case in Friedrich’s inequality
is achieved, and moreover, Mn carries a nontrivial Killing spinor with a real nonzero Killing
number. Hence Mn is locally irreducible, which is a contradiction (see [16]).
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(3) If trβ �= 0 and pq �= 0, we know

qtrβ
1 + np

=
1 + nq

ptrβ
= ±1. (4.3)

Hence p = q = − 1
2n1

or − 1
2n2

. In this case, Dβψ = ∓Dψ = ∓λψ. Consequently, ψ is a
quasi-Killing spinor.

Now we turn to discuss the existence of twistor spinors. It is well-known that

dim(KerP ) ≤ 2[n2 ]+1 = 2rank(ΣMn)

if n ≥ 3, and the maximal possible dimension is attained only for conformal flat manifolds as in
the case of conformal Killing fields. Furthermore, Hijazi proved that on a Kähler spin manifold
with R �≡ 0, the space of twistor spinors is reduced to zero (see [8]). Another proof of this result
can also been seen in [11]. Here, we prove the following theorem.

Theorem 4.2 Suppose that (Mn, g) is a closed Riemannian spin manifold admitting a
non-trivial harmonic vector field ξ, ψ is a non-trivial twistor spinor. Then on Mn the following
integrability condition holds:

|ξ|2∇R · ψ = nξ(R)ξ · ψ + 2(n− 1)ξ ·D(Ric)(ξ) · ψ, (4.4)

where D(Ric)(ξ) � ei · (∇iRic)(ξ).

Proof Let ψ be a non-trivial twistor spinor, i.e.,

∇iψ = − 1
n
ei ·Dψ, (4.5)

which implies the following integrability conditions

n

2
Ric(ei) · ψ = ei ·D2ψ − (n− 2)∇iDψ (4.6)

and

D2ψ =
n

4(n− 1)
Rψ. (4.7)

Hence from (4.6),

D(|ξ|2D2ψ) = (2 − n)D(ξ∇ξDψ) − n

2
D[ξ · Ric(ξ) · ψ]. (4.8)

First, the harmonicity of the vector field ξ = ξiei, together with the compactness of Mn, implies
that

0 = Dξ = dξ + δξ. (4.9)

This means that ξi,j = ξj,i and ξi,i = 0, respectively. Moreover,

∇ξξ = ξiξj,iej = ξiξi,jej =
1
2
d|ξ|2. (4.10)
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On the one hand,

(2 − n)D(ξ∇ξDψ)
(4.9)
= (2 − n)ei · ξ · ∇i(∇ξDψ)

= (n− 2)(ξ · ei + 2ξi)∇i(∇ξDψ)

= (n− 2)ξ · ei · (Rei,ξ + ∇ξ∇i + ∇[ei,ξ])Dψ + 2(n− 2)∇ξ∇ξDψ

(2.5)
= (n− 2)

[1
2
ξ · Ric(ξ) ·Dψ + ξ∇ξD

2ψ + ξ · ei · ∇[ei,ξ]Dψ
]

+ 2(n− 2)∇ξ∇ξDψ

(4.6)
=

n− 2
2

ξ · Ric(ξ) ·Dψ + nξ∇ξD
2ψ − n

2
ξ · ei · Ric(∇iξ) · ψ

− n∇ξ[Ric(ξ) · ψ] + 2∇ξξ ·D2ψ,

and on the other hand,

−n
2
D[ξ · Ric(ξ) · ψ] = −n

2
ei · ξ · ∇i[Ric(ξ) · ψ]

=
n

2
(ξ · ei + 2ξi)∇i[Ric(ξ) · ψ]

=
n

2
ξ · [D(Ricξ) · ψ + ei · Ric(ξ) · ∇iψ] + n∇ξ[Ric(ξ) · ψ]

(4.5)
=

n

2
ξ ·D(Ricξ) · ψ − n− 2

2
ξ · Ric(ξ) ·Dψ + n∇ξ[Ric(ξ) · ψ].

Therefore (4.8) turns into

D(|ξ|2D2ψ) = nξ∇ξD
2ψ + 2∇ξξ ·D2ψ +

n

2
ξ ·D(Ric(ξ)) · ψ − n

2
ξ · ei · Ric(∇iξ) · ψ

= nξ∇ξD
2ψ + 2∇ξξ ·D2ψ +

n

2
ξ ·D(Ric)(ξ) · ψ. (4.11)

From (4.5), (4.7) and (4.10)–(4.11), it is clear that

|ξ|2∇R · ψ = nξ(R)ξ · ψ + 2(n− 1)ξ ·D(Ric)(ξ) · ψ.

Hence the proof of the theorem is completed.

Remark 4.2 Note

D(Ric(ξ)) · ψ = ek · ∇k(ξiRijej) · ψ
= (ξi,kRij + ξiRij,k)ek · ej · ψ
=

∑
k �=j

(ξi,kRij + ξiRij,k)ek · ej · ψ − div(Ric(ξ))ψ

and any non-trivial twistor spinor on a spin manifold vanishes at most at one point (see [5]).
So taking the inner product of (4.4) with ξ · ψ and comparing its real part, we obtain on Mn,

2div(Ric(ξ)) − ξ(R) = 2ξi,jRij ,

which is also a corollary of the well-known fact that the Einstein tensor G � Ric − R
2 g is

divergence-free.

As an immediate consequence of the preceding theorem, we obtain the following corollary.
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Corollary 4.1 Suppose a closed Riemannian spin manifold admits a non-trivial parallel
vector field and R �≡ 0, and then the space of twistor spinors is trivial.

Proof Suppose ξ is a unit parallel vector field, and we denote the dual one-form of ξ also
by ξ. Since

Δξ = ∇∗∇ξ + Ric(ξ),

it follows that Ric(ξ) = 0. Hence the theorem above implies

∇R · ψ = nξ(R)ξ · ψ = 0, (4.12)

for any non-trivial twistor spinor ψ. Eventually, we find that R ≡ constant ≥ 0, since all
eigenvalues of D2 are non-negative on closed spin manifolds. Hence (4.7) implies that the
limiting-case in Friedrich’s inequality is achieved, and moreover, (Mn, g) is Einstein with R ≥ 0.
In fact, ψ is the sum of two non-parallel real Killing spinors, or ψ is parallel (in this case R ≡ 0),
which is a contradiction.

Corollary 4.2 Suppose spin manifold (Mn, g) is a closed Riemannian symmetric space
with b1(M) �= 0 and R �≡ 0, and then the space of twistor spinors is trivial.

Remark 4.3 In fact, from the proof of the theorem above one can easily see that if a (not
necessarily closed) Riemannian spin manifold admits a non-trivial unit parallel vector field and
R �≡ 0, ∇R · ψ = nξ(R)ξ · ψ still holds for any non-trivial twistor spinor ψ. So R must be a
constant (≤ 0).

Now we return to studying the uniqueness of quasi-twistor spinors.

Theorem 4.3 Let ψ be a quasi-twistor spinor of type (p, q) on a locally decomposable com-
plete Riemannian spin manifold (Mn, g, β), β �= ±Id. Then

(1) If ∇R �= 0, then p = q = − 1
2n1

or − 1
2n2

;
(2) If R is a nonzero constant and ψ ∈ L2(ΣMn), we also have p = q = − 1

2n1
or − 1

2n2
, here

n1 � dimT+Mn, and n2 � dimT−Mn.

Proof (1) First, assume ∇R �= 0. From

∇iψ = pei ·Dψ + qβ(ei) ·Dβψ,

we obtain

(1 + np)Dψ + tr(β)qDβψ = 0, (4.13)

(1 + nq)Dβψ + tr(β)pDψ = 0. (4.14)

Noting R �≡ 0, we also have

(1 + np)(1 + nq) = pq(trβ)2 (4.15)

and

(1 + np)D3ψ + tr(β)qD2Dβψ = 0, (4.16)

(1 + nq)D3
βψ + tr(β)pD2

βDψ = 0. (4.17)
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Note D2 = D2
β and 4(p+ q + 1)D2ψ = Rψ �≡ 0, so p+ q + 1 �= 0 and

(1 + np)(∇R · ψ +RDψ) + tr(β)q[β(∇R) · ψ +RDβψ] = 0,

(1 + nq)[β(∇R) · ψ +RDβψ] + tr(β)p(∇R · ψ +RDψ) = 0.

That is

(1 + np)∇R · ψ + tr(β)qβ(∇R) · ψ = 0, (4.18)

(1 + nq)β(∇R) · ψ + tr(β)p∇R · ψ = 0. (4.19)

If ψ(m) �= 0, it follows from (4.18) that

(1 + np)∇R(m) + tr(β)qβ(∇R)(m) = 0.

Suppose now ψ(m) = 0. Since ψ is a solution of the elliptic differential equation

D2ψ =
1

4(p+ q + 1)
Rψ,

there exists a sequence of points mi converging to m such that ψ(mi) �= 0. Then we have
(1 + np)∇R + tr(β)qβ(∇R) = 0 at points mi and with respect to the continuity of ∇R and
β(∇R). We obtain again (1 + np)∇R(m) + tr(β)qβ(∇R)(m) = 0. Hence from (4.18), using
β2 = Id, one gets the system

(A)
{

(1 + np+ qtrβ)[∇R + β(∇R)] = 0,
(1 + np− qtrβ)[∇R − β(∇R)] = 0.

Similarly, from (4.19), we obtain

(B)
{

(1 + nq + ptrβ)[∇R + β(∇R)] = 0,
(1 + nq − ptrβ)[∇R − β(∇R)] = 0.

Hence, if ∇R+ β(∇R) �= 0 and ∇R �= 0, then from (A) and (B)

1 + nq + ptrβ = 0,

1 + np+ qtrβ = 0.

Note
β �= ±Id.

So ∣∣∣∣ trβ n
n trβ

∣∣∣∣ �= 0.

Hence solving the linear equations above leads to

p = q = − 1
2n1

, β(∇R) = ∇R, (4.20)

and Dψ = Dβψ. Moreover, ∇iψ = − 1
n1
ei ·Dψ for i ≤ n1 and ∇jψ = 0 for j > n1.

If ∇R + β(∇R) = 0 and ∇R �= 0, then ∇R− β(∇R) �= 0. Moreover, from (A) and (B),

1 + nq − ptrβ = 0, (4.21)

1 + np− qtrβ = 0. (4.22)
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A similar argument shows that

p = q = − 1
2n2

, β(∇R) = −∇R, (4.23)

and Dψ = −Dβψ.
(2) Now suppose that R is a nonzero constant and ψ ∈ L2(ΣMn). Hence D2ψ ∈ L2(ΣMn)

by (4.2). Note for the L2-norm ‖·‖ and any number t > 0, we have (see [17, p. 96])

‖Dψ‖2 ≤ t‖D2ψ‖2 +
1
t
‖Dψ‖2,

which implies thatDψ ∈ L2(ΣMn). Therefore we know that ψ lies in the domain of the maximal
extension of D. Since Mn is complete, D is essentially self-adjoint as an unbounded operator in
L2(ΣMn), so the maximal and the minimal extensions coincide and ψ ∈ dom(D) = dom(D∗).

On the other hand, by combining (4.13) and (4.14) we find that

p(1 + np)|Dψ|2 = q(1 + nq)|Dβψ|2. (4.24)

Therefore by integrating (4.24) and using D2
β = D2, one obtains

(p− q)[n(p+ q) + 1]‖Dψ‖2 = 0. (4.25)

Case 1 If ‖Dψ‖2(= ‖Dβψ‖2) ≡ 0, then ∇ψ = 0.
Case 2 If p = q, then (4.15) implies that

p = q = − 1
2n1

or − 1
2n2

.

Case 3 Suppose p+ q = − 1
n . Then

D2ψ =
n

4(n− 1)
Rψ.

Clearly, R is a positive constant. Hence Mn carries a non-parallel real Killing spinor, which is
a contradiction.

Obviously, from the proof of the above theorem, one gets the following theorem.

Theorem 4.4 Let ψ be a quasi-twistor spinor of type (p, q) on a locally decomposable closed
Riemannian spin manifold (Mn, g, β), β �= ±Id. Then

(1) p = q = − 1
2n1

or − 1
2n2

; or
(2) ∇ψ = 0.

Remark 4.4 When Dψ = λψ, Kim and Alexandrov classify all the types of spin manifolds
admitting non-trivial quasi-twistor spinors of type

( − 1
2n1

,− 1
2n1

)
.

Corollary 4.3 On a locally decomposable closed Riemannian spin manifold with β �= ±Id
and Ric �≡ 0, the space of twistor spinors is trivial.
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