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Initial Boundary Value Problem of an Equation from
Mathematical Finance*
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Abstract Consider the initial boundary value problem of the strong degenerate parabolic
equation
Ozatt + udyu — Ou = f(z,y,t,u), (z,y,t) € Qr =Q x (0,7)

with a homogeneous boundary condition. By introducing a new kind of entropy solu-
tion, according to Oleinik rules, the partial boundary condition is given to assure the
well-posedness of the problem. By the parabolic regularization method, the uniform esti-
mate of the gradient is obtained, and by using Kolmogoroff’s theorem, the solvability of
the equation is obtained in BV (Qr) sense. The stability of the solutions is obtained by
Kruzkov’s double variables method.
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1 Introduction

In this paper, we consider the initial boundary value problem of the following equation:
axa:u+uayu_atu:f(xvyatvu)a (z,y,t) € Qr = Q2 x (0,T), (1.1)

where 2 C R? is a domain with the suitably smooth boundary 9. Equation (1.1) arises in
mathematical finance (see [1]), and arises when studying nonlinear physical phenomena such
as the combined effects of diffusion and convection of matter (see [2]). Antonelli, Barucci and
Mancino [1] introduced a new model for the agent’s decision under risk, in which the utility
function is the solution of Equation (1.1), and in particular, 0 <« < 1. Under the assumption
that f is a uniformly Lipschitz continuous function, Crandall, Ishii and Lions [3], Citti, Pascucci
and Polidoro [4], Antonelli and Pascucci [5], step by step, proved that there is a local classical
solution of Cauchy problem of Equation (1.1).

Clearly, Equation (1.1) is a strong degenerate parabolic equation since it lacks the second-
order partial derivative term 0y, u. There are some different ways to deal with the existence and
uniqueness of the global weak solution of the Cauchy problem of Equation (1.1). For example,

Equation (1.1) is the special case of the degenerate parabolic equations discussed in [6-7], etc.,
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and one can refer to [8-12] for the related results. However, Zhan [13] showed that the global
weak solution of Equation (1.1) can not be classical generally. In other words, some blow-up
phenomena happen in finite time. Based on these facts, we are interested in the initial boundary
value problem of Equation (1.1).

It is well known that there are some rules on how to quote the initial boundary value problem
of a linear degenerate parabolic equation, for which one can refer to Oleinik’s books [14-15] etc.,
and we call these rules as Oleinik rules for simplicity. If = (0, R) x (0, N) C R?, considering
the nonnegative solutions, according to Oleinik rules, and using Oleinik’s line method (see
[16]), the local classical solution of Equation (1.1) has been discussed in [17]. The main aim
of this paper is to discuss the initial boundary value problem of Equation (1.1), provided that
the spatial variables (z,y) lie in a general domain Q C R?, and the boundary 9 is suitably

smooth. Certainly, the initial value condition is always required, i.e.,

u(z,y,0) = uo(z,y), (z,y) € Q. (1.2)
To assure the well-posedness of Equation (1.1), according to Oleinik rules, we should impose

u(@,y,t) =0, (z,y,t) € T3 (1.3)
as the homogeneous boundary value condition, where
Eg ={(z,y,1) € =02 x[0,T) : na(x,y,t) # 0}, (1.4)

and 77 = {n1,n9,0} is the outer unit normal vector of 3. We shall investigate the solvability
of Equation (1.1) with the initial value (1.2) and the partial boundary value condition (1.3).
The most important innovation of the paper lies in how to get a suitable entropy solution of
(1.1)—(1.3) to arrive at its well-posedness. We shall use the general parabolic regularization

method, i.e., considering the initial boundary value problem of the following equation:
eAUg + Ozgue + ueayus — Oyue = f(%:% t7u€)7 (l‘, yvt) €0 x (Oa T)a (15)

to prove the existence of the solution. In order to prove the compactness of {u.}, we need some
estimates on {u.}. Based on the estimates, by Kolmogoroff’s theorem, and using some ideas of

[6-7] and [18], the existence of the solution is proved.

Theorem 1.1 Suppose that ug(z) € L>(Q) is suitably smooth. If fu, fy, fi are bounded
functions, and f, is bounded too when u is bounded, then Equation (1.1) with the initial boundary

value conditions (1.2)~(1.3) has an entropy solution.

The entropy solution in Theorem 1.1 is in the BV sense, which is defined in the following
Definition 2.1. Moreover, we shall use Kruzkov’s double variables method (see [19]), to discuss
the stability of the solutions. Due to the complicated formula of the entropy solution defined,
some special techniques are used. Beyond one’s imagination, if we consider the special domain,
such as the half space @ = R%, or the unit disc Q = {(z,y) : 2 + y* < 1}, then the stability of

the solution may be free from the limitation of the boundary value condition.
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Kobayasi K. and Ohwa H. [25] studied the well-posedness of anisotropic degenerate parabolic

equations
Ou+divf(u) =V - (A(u)Vu) (1.6)

with the inhomogeneous boundary condition on a bounded rectangle by using the kinetic for-
mulation which was introduced in [26]. Li Y. and Wang Q. [27] considered the entropy solutions
of the homogeneous Dirichlet boundary value problem of (1.6) in an arbitrary bounded domain.
Since the entropy solutions defined in [25, 27] are only in the L™ space, the existence of the
trace (defined in the traditional way, which was called the strong trace in [27]) on the boundary
is not guaranteed, the appropriate definition of entropy solutions are quoted, and the trace of
the solution on the boundary is defined in an integral formula sense, which was called the weak
trace in [27]. So, not only Definition 2.1 in our paper is different from the definitions of entropy

solutions in [25, 27], but also the trace of the solution in our paper is in the traditional way.

2 Definition of the Solution

Following references [20-21], u € BV(Qr), Qr =  x (0,T), if and only if u € L] _(Qr)

and -
/ / lu(z+ b1,y + host + hs) — u(z,y, £)|dadt < KA,
o JB,

where
B, ={(z,y) e R*|X| < p}, h=(h1,h2, h3)

and K is a positive constant. This is equivalent to that the generalized derivatives of every
function in BV (Qr) are regular Radon measures on Q7.

Let I, be the set of all jump points of u € BV (Qr), v be the normal of T',, at X = (z,v,1t),
and vt (X) and u~ (X) be the approximate limits of v at X € T, with respect to (v, Y —X) > 0
and (v,Y — X) < 0 respectively. For the continuous function p(z,y,t,u) and v € BV (Qr),
define

1
By, t,u) = / Pyt rut + (1= r)u”)dr, (2.1)
0

which is called the composite mean value of p. For a given ¢, we denote I'Y,, H*, (vi,--- ,v};) and
u!, as all jump points of u(-, ), the Housdorff measure of I}, the unit normal vector of I'},, and
the asymptotic limit of u(-,t) respectively. Moreover, if f(s) € C*(R) and u € BV (Qr), then
f(u) € BV(Qr) and

ou

5‘f(u) :}\-/(u)ax’ i:1,2, (Elzx, x2:y. (22)

83%

Let Sy(s) = [, hy(7)d7 for small ) > 0, where h,(s) = %(1—%)4_. Obviously h,(s) € C(R)

and

hn(s) 20, [shy(s)] <1, |Sy(s)] <1
lim S, (s) = sgn(s), lim sS,(s) =0, (2.3)
n—~0 n—0

where sgn represents the sign function.



468 H. S. Zhan

Definition 2.1 A function u is said to be the entropy solution of (1.1)—=(1.3), if
(1) u € BV(Qr) N L>=(Qr), and there exists a function g* € L*(Qr), such that

// gl(x,y,t)sf?(fc,y,t)dwdydt:/ @sO(fc,y,t)dwdydt
T Qr Oz

for any o(z,y,t) € L*(Qr).
(2) For any 0 < ¢ € CZ(Qr) any k € R, and any small n > 0, u satisfies

[ it e = By ke, + Lfu = D
— [ u)Sp(u— k) — Sp(u — k) (9pu)@]dzdydt > 0.

For any k € R, n >0, here

U u—k
B, (u, k) = / sSp(s—k)ds, Iy(u—k)= / Sy (s)ds.
k 0
(3) The trace on the boundary
yu |y,= 0.

(4) The initial value condition is true in the sense that

m/ lu(z,y,t) — uo(z,y)|dady =0, ae. (z,y) € Q.
Q

li
t—0

Clearly, by (2.5), we have

// I (v — k)pr — By(u, k)py + In(u — k)pze — f(-, w)Sy(u — k)pldedydt > 0.

Let n — 0 in this inequality. We have

(2.5)

1
// [|u — k| — §sgn(u — k)(u2 — k2)<py +|u — k|oze — f(-,u)sgn(u — k)p|dzdt > 0.
Qr

This is just the entropy solution defined in [23—-24]. Thus if u is the entropy solution in Definition

2.1, then u is an entropy solution defined in general cases.

3 Proof of Theorem 1.1

Lemma 3.1 (see [28]) Assume that Q C RY is an open bounded set and let g, f € L1(),

as k — 0o, gr — [ weakly in LY(Q), 1 < q < oo. Then
SN a a
khlgomf HngLq(Q) 2 ||gHL<1(Q)'
We now consider the following regularized problem:
eAu+ Oppu + udyu — Ou = f(-,u), (z,y,t) € Q2 x(0,T),
with the initial value (1.2) and the homogeneous boundary value condition

u(a,y,t) =0, (v.y.1) € T =92 x [0,T).
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Under the assumptions of Theorem 1.1, it is well known that there is a classical solution u. of
the initial boundary value problem of (3.1) with (1.2) and (3.2), and e.g., one can refer to the
chapter 8 of [29].

We need to make some estimates for u. of (3.1). Firstly, since ug(x) € L>(Q) is suitably

smooth, by the maximum principle, we have
e < luollz> <. (3.3)

Secondly, let’s make the BV estimates of wu..

Lemma 3.2 (see [18]) Let uc be the solution of (3.1) with (1.2) and (3.2). If the assumptions

of Theorem 2.2 are true, then

Oug
5/89‘ on

with constants ¢;,i = 1,2 independent of e, where T = {ny,n2} is the outer normal vector of Q,
and Vue = {0zu., Oyu.}.

ou,

do < ¢ + CQ(|VU5|L1(Q + ‘

Ll(Q)>

Theorem 3.1 Let u. be the solution of (3.1) with (1.2) and (3.2). If the assumptions of
Theorem 1.1 are true, then

lgrad uc|p1 ) < ¢, (3.4)
where |grad u|? = Z | |2 + | “|2, ¢ is independent of €, and x1 = x, x2 =y.

Proof In what follows, we simply denote the solution of (3.1) with (1.2) and (3.2), wu., as
u, r1 =, To =y, T3 =t sometimes from the context, and the dual index of i represents the
sum from 1 to 2, while the dual index of s or p represents the sum from 1 to 3. Differentiate

(3.1) with respect to x5, s = 1,2,3, and sum up for s after multiplying the resulting relation
Sy (lgrad u])

Toradal Then integrating over §2 yields

/ Ouy, w (|gradu|)dxdy
Q ° |eradul

\grwdu|
/ / 7)drdzdy = g/ I, (Jgrad u|)dzdy, (3.5)
ot Q

ou Sy (|lgrad ul)
v, ——=——dad
q Oz 8x(8x)u ° Jeradu| vy

0 S, (Jgrad ul)
/Qam(u e, |grad u| e

by .,

0 0
—Law@%%@mwmw

91, (Jgrad ul)
= Ugg T rad u da—/ 7ux§xu%xdmd , 3.6
| e g L(eradulyao - [ SonEECHD.,, y (36)

where & = u,,, and do is the surface integrable unit.

/ VANTISR TP |gradu|)dxdy
|grad u



470 H. S. Zhan

I °I
/ andﬂ' — E/ Muxswuﬂ%wdxdy’ (37)
) ‘ Q2

Q 9€:0&p
o E

_ O(uy) du 2 Sy (|graduf)
7/9(“ oz, Uy, + 9 gradu|) lerad d] dzdy

oI, (|grad ul) /8u
= | u————=dady + | —|gradulS,(|grad u|)dzdy
[ o [ Slsraduls, (lgrad )
0
:/ 8—u[|gradu|5n(|gradu|)—In(|gradu|)]dxdy—|—/ uly(Jgrad u|)nedo
Q 9y 0
= —Ag—;[|gradu|5n(|gradu|)—In(|gradu|)]da:dy. (3.8)

By the assumption that fi, fz, f, are bounded, and f, is bounded due to |u| < ¢, then

/ 8f(a:,y,t,u)ux§S,,(|gradu|)dxdy < c/ lgrad u|dzdy. (3.9)
Q Oxs ° |gradul Q

From (3.5)-(3.9), we have

T I,(|grad u|)dazdy

0°I,,(|grad ul) / 021, (|grad ul)
= — — 2 U alUy dxdy — € niuxxux z;dzd
/Q dgog, TS T ogog, e
ou af(tvxvyau) S (|gradu|)
+ /Q 8—y[|gradu|5n(|gradu|) — I (Jgrad u|)|dzdy —/Q e Ug, n|gradu| dazdy
I d I d
o[ Oallgradul) oo, / OLy(|gradul) o (3.10)
o0 Oz a0 Ox;
Observe that on ¥ = 90 x [0,T),
u=0, Ugly =ulx =0,
which implies that
axxu|E+EAU|Z :f(xvyatvo)' (311)

Let the surface integral in (3.10) be

oI, d oI, d
n(lgradul) oo, 6/ n(lgradul) o
o0 O o0 Ox;
Then, by Lemma 3.2, using (3.11), lir%S can be estimated by |gradu|r, ), and one can refer
T]‘)

to [18] for details.
Thus, by (3.10), letting n — 0, and noticing that

S:

lim [|grad ul.S, (|grad u]) — I (|grad ul)] = 0,
n—

we have q
E/ lgrad uldzdy < ¢q +02/ |grad u|dzdy, (3.12)
Q Q
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and by the well known Gronwall lemma, we have
/ lgrad u|dady < ¢, (3.13)
Q

where ¢ is a constant independent of ¢. By (3.13), using Equation (3.1), it is easy to show that

// g, | day dzedt = // lu, [*dedydt < c. (3.14)
Qr Qr

Now, we denote back that u. is the solution of (3.1). Thus by Kolmogoroff’s theorem,
there exists a subsequence {u., } of u. and a function v € BV (Qr) N L*>®(Qr) such that u., is
strongly convergent to u, so u., — u a.e. on Qr. By (3.14), there exist functions g' € L?(Qr)
and a subsequence of {e}, and we can simply denote this subsequence as e, such that when

e — 0,

Ou. |
G g i LA(Q).

We now prove that u is a generalized solution of (1.1)—(1.3). Let » € C3(Q7), » > 0. Multi-
plying (3.1) by ¢S, (u: — k), and integrating over Qr, we obtain

8u€ aue
// ) k)dadydt = // 83: Sy (ue — k)dadydt

+E// AucpSy(ue — k)dadydt

+ // UelUey Sy (ue — k)dzdydt
— / f(z,y,t, uc)pSy(ue — k)dedydt. (3.15)
Qr
Let’s calculate every term in (3.15) by the part integral method:
5‘u6
/ k)dadydt = // — k)prdadydt, (3.16)
e/ AucpSy (ue — k)dzdydt = —e/ Ve (Sy(ue — k)Vo + 0S8, (ue — k)Vu, )dedydt
Qr Qr

= —¢ // VueSy(ue — k)Vedadydt

. / / | Vue 2 8! (ue — k)pdadyd, (3.17)
/ / DrattepSy (ue — k)dadydt = / / 8“5 — k)pz + @S] (ue — k)ue, )dzdydt
/ / 8“5 — k) ppdadydt
// Ueg) S' — k)pdzdydt, (3.18)

-] % S S — K)pudadydr = [ | 1i(ue = Dygasdadyat, (3.19)
T T
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// Ue — a9y goS — k)dadydt = // 0 (Ue, k), dzdydt. (3.20)

From (3.15)~(3.20), we have

// — k)pdadydt + // k)pupdedydt — //Q B (ue, k)pydedydt

— e/ Vu. - VS, (u. — k)dzdydt — 5// | Vue [* 8] (ue — k)edadydt

// tew)2S! (e — K)dadydt — /Q F@ oty u) oSy (ue — k)dadydt = 0. (3.21)

By (3.21), we have

// — k)prdadydt + // — k)pgrdedydt — // B, (ue, k)pydedydt

—€ / g Vue - VoS, (ue — k)dzdydt — / / (uex)® Sy (ue — k)pdadydt

_ / [ @t uc)pSy (ue — K)dad 2 0 (3.22)

By Lemma 3.1,

hm mf // Sy (ue — k) %ue %ue edadydt

> // 9" 1257 (u — k)pdzdydt. (3.23)

Let ¢ — 0 in (3.22). By (3.23), we get (2.5). At the same time, (2.6) is naturally concealed in
the limiting process.

The proof of (2.7) is similar to that in [2, 6], so we omit the details here.

4 Double Variables Method

Lemma 4.1 (see [6]) Let u be a solution of (1.1). Then

(ut —u")vy =0, ae. (z,y,t) on [y, (4.1)

which is true in the sense of the Hausdorff measure Ha(T,,).

In this section, we shall prove how to use the double variables method to consider the

stability of the solutions. Let u,v be two entropy solutions of (1.1) with initial values

u(z,y,0) = uo(z,y), v(z,y,0)=vo(z,9), (4.2)

and with the homogeneous boundary value u(x,y,t) = v(x,y,t) = 0 when (z,y,t) € 33. For
simplicity, we denote the spatial variables (x,y) as (x1,z2) or (y1,y2) in what follows, and

correspondingly, dr = dxidzs, dy = dyi1dys.
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By Definition 2.1, we have

// T[In(“ — k)1 — By(u, k), + Iy(u — k)pg, 2,

— Sp(u—k)lg" (w)Pe = f(-,u)S,(u — k)pldadt > 0, (4.3)
// (v =Dpr = By(v, )y, + In(v — Dy, y,
= Sp(v=Dlg (V)P = F(-,0)S,(v = Dg)dydr > 0. (4.4)

Let ¢(z,t,y,7) = ¢(x, t)jn(x — y,t — 7). Here ¢(z,t) > 0, ¢(,t) € C5°(Qr), and
2

jh(x_yvt_'r):Wh(t_T)Hwh(xi_yi)v (4.5)
i=1
wi(s) = %w(%), w(s) € CP(R), w(s)>0, w(s)=0if |s] >1, /jo w(s)ds=1. (4.6)

We choose k = v(y,7), | =u(x,t), ¢ = (z,t,y,7) in (4.3)-(4.4), integrate over Qr, add
them together, and then we get

//T//T (u =) (Wt + ¥7) = (By(u, 0)Pa, + By(v,u)thy,)

Iy (u = 0)aye, + In(v — w)ihy,y, ]
- {Si,(u = 0)(lg' @)+ | g (v) [7) = [f(,u) Sy (u = v) + (-, 0)Sy(v — w)]}pdadtdydr.  (4.7)

Clearly,
ajh dJn 9gn | Ojn o .
or =0, 83131—’—8?;z =0 =L,
31/) oy 09 . op oy 09 .

ot + or E‘”“ 0x; t o Oy; 83:1‘7

Noticing that
. L 1 2 2
T B, (u,0) = lim By (v, 0) = = 5sgn(u — o) (u? = 02), (4.8)

/ /QT / / T[B"(“”"sz + By (v, u)thy, |dedtdydr
3 Jf, [ st 002 0

and as h — 0, we have
1
2 // // Sgn(u a ’U)(u2 - U2)¢x2jhd$dtdydr
Qr T

— _% // ) sgn(u — v)(u2 - UQ)Qﬁxzdxdt. (4.9)

as 1 — 0, we have

For the third term and the forth term in the bracket of (4.7), we have

//QT // . [y (u = 0)a, 2, + Iy(v — u)ihy,y, |dzdtdydr
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;4
// U 177(“‘ U)(¢x1a:1jh 2¢x1jhzl + ¢jhx1w1) +.l (U - u)gﬁ]h 1 ldxdtdydT
T T 1 Y1y

= // / {In(u - ’U)¢$1$1jh + In(u - U)¢x1jhx1 + In(v — 'U:)(b;cljhxl }dl‘dtdydT
Qr Qr

AL s+ 0o =

o

1
— —sut —(1= - i
/0 Sy(v —su (1—s)u )ds} P quhxl}dxdtdydr. (4.10)

4

Noticing that
//Q /Q S (u =) (lg* (W) + |g* (v)[*)¢dadtdydr
B //Q / ,, Sn(u=)(lg" ()] =g’ (v)*yedadtdydr
U _ 1 1 -
+2//QT / or Sy (u = v)g~(u)g" (v)dzdidyd
N //Q /Q Sy (= v)[lg" ()| = |g" (v)|]Ydadtdydr
+ 2//QT /QT Sn(u — 0)0z, u0y, vipdadydtdr, (4.11)

and by the properties of the BV function (the equality (2.2) and Lemma 4.1)

// // amlayl/ / Sy (o — 6)doddypdadtdydr
Qr T v 4
Lo ou
= // // )0y, / / S) (0 —su™ — (1 = s)u” )dods =—dxdtdydr
Qr T 0 Jsut+(1—s)u— ory
= // // waxl/ doé - 8y1/ dosS,) (v — u)dzdtdydr,
T T 0 0
// // O, Oy, / / S, (o — 6)doddypdadtdydr
T T v 4
// // b (/1/ S ( S )*)audd)ddtdd
= o—su” —(1—s)u”)=—dods)dx T
T T . 0 Jsut+(l—s)u— " 0z y

1 v
= // / b, / / Sy(o—su™ —(1— s)u’)dads%dxdtdydr
Qr Qr 0 Jsut+(1—s)u— 0xq

We have

_//T//T [/015’7(8“++(1—8)u‘—v)ds

1
- / Sp(v—sut —(1— s)u*)ds} %jhzlqﬁdxdtdydT
0 0x1
+ 2// / Sy (u— v)axl/ ds - 8y1/ dsypdadtdydr
Qr J JQr 0 0
1
:_// // {/ Sp(sut + (1 —s)u™ —wv)ds
T T 0
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1
- / Sp(v —sut — (1 - s)u‘)ds} %jhxlqbdmdtdydT
0 axl

1 rv
0
2 // // / / Splo —su® — (1 - S)U_)dUdS—ujhz1¢dxdtdyd7—
Qr Qr JO Jsut+(1—s)u- ox,

://T//T[/OlSn(su"’—i—(l—s)u_—v)ds

1
0
—I—/ Sp(v —sut — (1 - s)u‘)} —ujhxlqbda:dtdydT =0. (4.12)
0 3%1
Noticing that hn}) Iy(u—v) = 111% I,(v —u) = |u—vl|, we have
n— n—
%E%[In(u = 0)@a Jhay + Iy(v = )b, jhy,] = 0. (4.13)

Combining (4.7)—(4.13), and letting n — 0, h — 0, we get

S {1t =6+ = g, — (= ) =2

= [f(u) = f(0)lsgn(u — v)¢ fdadt > 0. (4.14)

5 Stability of the Solutions

In the last section of this paper, we shall discuss the stability of the solutions.

Theorem 5.1 Let 0 < u < 1, 0 < v < 1 be two solutions of Equation (1.1) with
the homogeneous boundary value yu |s,= v |s,= 0, and with the different initial values
uo(x1,x2), vo(x1, x2) € L™(Q) respectively. Suppose that |f,(-,u)| < ¢, and that the distance
function d(x) = dist(z, 0S2) satisfies

|ds 2y | < ¢, (5.1)

so then for any t € (0,7,
/ |u(zq, o, t) — v(x1, 22, t)|dz1dwe
Q

< / [uo(x1, x2) — vo(21, x2)|dr1dT2 + Ccesssup [u — v| (2 nes; x(0,1) (5.2)
Q

where X% = 00\ X3.

Proof Let 0. be the mollifier as usual. In detail, for the known function

1 1 .
sy =4 A i<,

0, it |s| > 1,

where

A= e\s\é—ldx,
B1(0)

and for any given € > 0, 0.(s) is defined as
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Now, we can choose ¢ in (4.14) by

(b(l‘, t) = Wz\e(x)n(t)a

where 7(t) € C§°(0,T), and wye(z) € C3(£) is defined as follows. For any given small enough
0< )\ 0<wy<1,wlpg =0 and

wra(d) =1, if d(x) = dist(z, 02) > A

When 0 < d(z) < A,

and when d < 0, we let wy(d) = 0. Then
o0

Wxe = wy *0:(d) = / wi(d — s)d:(s)ds,

— 00

W (d) = / W (d — )6 (s)ds
{|s|<e}N{0<d—s<A}

(5.3)

2
Held) = o x0d) = - [ 225 (s)ds
{Is|<e}N{0<d—s<A}

2

- / 0 (s)ds. (5.4)
A J{isl<e} N{0<d—s<A}

Now,

J(wre(d(2))) 212,
J(Wie(d)dz, )z

)W (d)d3, + Wi (d)do,a,]
)

2
{——Qdil/ 5. (s)ds + whe (d)daya, |-
A {Isl<e} N{0<d—s<A}

Using the condition (5.1), and |d, 4, | < ¢, and with the fact that |d,
fulyu) <e¢, 0 <u,v <1, and from (4.14), we have

<|Vdl=1,i=1,2,0<

//T |u(z,t) — v(x,t)|zj)tdxdt+c/OT /fma n(®)|who(d) | |u — v|dzdt
+C//T |u(x,t) — v(x,t)|pdzdt > 0. (5.5)

Here Q) = {z : d(x) = dist(x, 092) < A\}. By (5.3),

0< // (e, £) — vz, )1 (8)|wre (d)dadt + ¢ / / n(®)|whe (d) | [u— vldadt
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+c//T x,t) —v(z, ) |nt)wie (d)dadt

u(x,t) —v(z, t)|n (t)|wre (d)dzdt + ¢ T77(t)dtl |u — v|dx
. 0 A Sy,
+ c//T x,t) — v(z, t)|n(t)wre (d)dadt.

Let ¢ — 0. Then
/ T 1
0= //T lu(z,t) — v(z,t)|n (t)|w/\(d)da:dt+c/0 n(t)des /m lu — v|dz
+ C// u(x,t) (z,t)|n(t)wx (d)dxdt.

As XA — 0, according to the definition of the trace, by yu |s,= yv |5,= 0, we have

T
0< // u(x, t) —v(z, t)|n'(t )dxdt—i—c/ n(t)||u — v|aadt
T 0

+c// u(z,t) — v(z, t)|n(t)dedt
// u(z,t) —v(z t)|ntdxdt+c/ n(®)[lu — vlsy x(0,r)dt
+c// u(z,t) — v(z, t)|n(t)dzdt.

Let 0<s<7<T, and

n(t) = /  a(0)do, € < min{r, T — s},

—t

Here a.(t) is the kernel of the mollifier with a(t) = 0 for t ¢ (—¢,¢€). Let € — 0. Then

/ |u(z, s) —v(z, s)|dz </ |u(x,7) — v(z, 7)|dx + cesssup | [u — v[syx(0,1)

/ / |u(z,t) — v(z, t)|dadt.

By the Gronwall lemma, the desired result follows by letting s — 0, i.e.,

lu(z,7) —v(x, 7)|p1() < |u(z,0) —v(x,0)|L1 () + cesssup ju — U|z:gx(o,T)-

So we have the conclusion.
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Theorem 5.2 Let u,v be two solutions of Equation (1.1) with the different initial values

uo(x1, x2),vo(x1,2) € L®(Q) respectively. 0 < u <1, 0 <wv < 1. Suppose that the domain §2

is just the unit disc {(x1,z2) : 23 + 23 < 1}, and suppose |fu(-,u)| < c. Then

/ lu(z,t) — v(z, t)|p(z)dady </ |ug — vol|da,

where
px) =1—|z|* =1— (27 +23).

(5.7)

(5.8)
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Proof We can choose ¢ = ¢(x)n(t) in (4.14), where n(t) € C§°(0,T). Then we have
/ 0 {lu(z,t) = v(@, O)nje(x) = 2lu = vin(t) + [u = vPz2n(t) + clu — vlp(z)n(t) }dzdt > 0.

T

Due tothat 0 <u <1, 0<wv <1, |z2| <1,
—2|u — | + |u — v’r = —|u — v|(2 — |u+ v]zs) < 0.
We have
c// |u(z,t) — v(z, t)|np(z)dedt + // [u(x, t) — v(z,t)|n;p(x)dzdt >0,
T T
and as the proof of Theorem 5.1, we have
[ lute.t) = (e O)e(@)dady < | uo = oliole)ds < [ o = wnld.

Theorem 5.3 It is supposed that the domain Q = R2 = {(x1,22) : w2 > 0}. Let u,v be
two solutions of Equation (1.1) with the different initial values uo(x1, x2), vo(x1,z2) € L=(Q)N
LY(Q) respectively. If | fu(-,u)| < c, then

/ [[u(z,t) —v(z, t)|ws(z)|dedy < / |ug — vo|de, (5.9)
Q Q
where

wi(z) = %[1 +sm§(d— %r)}, 0 <d(z) <A,

wa@) =1, d@) >,

and d(z) = dist(z, 0Q) = 5.

Remark 5.1 The condition of the initial values ug(z1,x2), vo(z1,z2) € L>(Q) N LY(Q) in
the theorem is stronger than the solutions obtained in Theorem 1.1. At the same time, due to
Q=R% = {(x1,22) : 2 > 0}, it implies that

S = {(2,t) € S = Q% [0,T) : my (2, ) # 0}

is an empty set. It means that the solution of the equation is free from the limitation of the

boundary value in this case.

Proof We can choose ¢ in (4.14) by

¢(x, 1) = wa(x)n(t),

where n(t) € C§°(0,T), and then

3(2,;(;): 1/\ %(d—%r) mzzzl)\cosx(d—%r)a

82w)\(x) 1 T 1 AT
o = gy (4= )+ greos 3 (40 da =0




IBVP of Equation from Mathematical Finance 479

From (4.14), we have

//T (z,t) — v(z,t)|wr(z)nidzdt — 4)\/ /Q . 2|cos—(d— A_ﬂ)d dt

~ [ 1w = . osentu — vyodad > o (5.10)

where Qrx = {2 : d(x,0R%) = 25 < 7A}. Then cos 1 (d — 2Z) > 0, and by (5.10), we have

c// lu(z,t) — v(z, t)|ws(z)ndedt + // lu(z,t) — v(z, t)|wx(x)nidzdt > 0. (5.11)
T T
As the proof of Theorem 5.1, we have

/| (x,t) — v(z, t)]wi(x |dx</|u0—v0|wA( dx</|u0—vo|dx

The proof of Theorem 5.3 is complete.

At the end of this paper, let us consider a special domain
Qr ={(z1,22) : 1 > 21 > 0,1 > a9 > 0}.

Then X35 = {(z,t) : 21 =0 or 1 =1} C Ik x (0,T). We denote X5 = 9Qr \ X3, and let

For small enough A, we set

L [1—1—5111/\((12( x) — A;

1, if da(z) > 7.

wi(z) = )} if 0<dy(z) <A,

Theorem 5.4 [t is supposed that the domain = Qr. Let u,v be two solutions of Equation

(1.1) with the homogeneous boundary value
YU [25= v [5;= 0,
and with the different initial values uo(x1, x2), vo(x1,x2) € L>(Q) € L>®(Q) respectively. Then
/Q [u(z,t) —v(z, t)|wr(z)di (x)dedy < /Q lug — voldx + cesssup [u — v|(z nesyx01)-  (5.12)
Proof Through a limit process, we can choose ¢ in (4.14) by
¢z, 1) = wa(@)di (z)n(t),

where n(t) € C§°(0,T).
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When 0 < 23 = da(z) < WA,

When x5 > % and 0 < 1 — 29 = do(x) < A,
1 1/, A
O (2,1) = di (2)(onea (@) = di (2)(t) 35 cos 5 (d = 5 )
1 1/, A
= —di(x)n(t) = cos — (d — —W)

Certainly, when 7\ < zo <1 — 7,

At the same time, it is clear that

¢I1I1 ((E, t) = -2

From (4.14), we have

//T u(x,t) — vz, t)ws (x)d (2)mdadt

—2//T u(a, 1) = vl t)lwr(e)mdads

/ /Q A|u —?|di (@ )cos—(dQ—A—”)dxdt
_A/o /Qm ju? — o?|d; )cos—(dQ—A—”)dxdt
-/ LG = £ sgn o)t 2 0.

Here
Qorr = {2 1 do(x) = 22 < WA}

implies cos % (d — )‘2—”) > 0, and
Qax =4z 1 da(z) =1 — 29 <7}

implies cos % (d — )‘2—”) < 0, so then

//T u(@,t) — v(x, t)|wx(z)dy (x)n;dzdt

1 AT
— 2 ?|d —(de — — )dzdt
/\/0 /Qlﬂ |u® — 7| 1(x)cos/\< 2 ) x

+ c// ) |t — v|wy(x)dy (x)n(t)dzdt > 0.

H. S. Zhan

(5.13)

(5.14)
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Due to

(o) <

we have

// [u(x, t) — v(z, t)|wa(z)d (z)n;dzdt

T
+ ﬁ / / |u — v|dy (z)dadt + c// |u — v|wx(x)dy (x)n(t)dzdt > 0. (5.15)
0 Jin .
Let A — 0 in (5.15). As the proof of Theorem 5.1, we have the conclusion.
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